
PROJECTS 1-39

Contents
About this Book 11

Introduction: Swift for Complete Beginners 15
How to install Xcode and create a playground
Variables and constants
Types of Data
Operators
String interpolation
Arrays
Dictionaries
Conditional statements
Loops
Switch case
Functions
Optionals
Optional chaining
Enumerations
Structs
Classes
Properties
Static properties and methods
Access control
Polymorphism and type casting
Closures
Wrap up

Project 1: Storm Viewer 96
Setting up
Deleting skeleton code
Listing our images
Introducing Interface Builder
Sending new data
Final tweaks
Wrap up

Project 2: Guess the Flag 135
Setting up

www.hackingwithswift.com 2

Designing your layout
Making the basic game work
Guess which flag?
From outlets to actions
Wrap up

Project 3: Social Media 166
About technique projects
Activity View Controllers
Twitter and Facebook
Wrap up

Project 4: Easy Browser 176
Setting up
Creating a simple browser
Choosing a website
Monitoring page loads
Refactoring for the win
Wrap up

Project 5: Word Scramble 199
Setting up
Reading from disk
Pick a word, any word
Prepare for submission
Returning values
Or else what?
Wrap up

Project 6: Auto Layout 229
Setting up
Advanced Auto Layout
Auto Layout in code
Sizes, metrics and priorities
Wrap up

Project 7: Whitehouse Petitions 244
Setting up
Creating the basic UI
Parsing JSON
Rendering a petition
Finishing touches
Wrap up

www.hackingwithswift.com 3

Wrap up

Project 8: 7 Swifty Words 267
Setting up
Buttons… buttons everywhere.
Loading a level
It's play time!
Property observers
Wrap up

Project 9: Grand Central Dispatch 285
Setting up
Why is locking the UI bad?
GCD 101
Back to the main thread
Wrap up

Project 10: Names to Faces 295
Setting up
Designing UICollectionView cells
Data sources and delegates
Importing photos
Custom classes
Connecting up the people
Wrap up

Project 11: Pachinko 317
Setting up
Falling boxes
Bouncing balls
Spinning slots
Collision detection
Scores on the board
Special effects
Wrap up

Project 12: NSUserDefaults 347
Setting up
Reading and writing basics
Fixing Project 10
Wrap up

www.hackingwithswift.com 4

Project 13: Instafilter 358
Setting up
Designing the interface
Importing a picture
Applying filters
Saving to the photo library
Wrap up

Project 14: Whack-a-Penguin 376
Setting up
Getting up and running
Penguin, show thyself
Whack to win
Wrap up

Project 15: Animation 398
Setting up
Preparing for action
Switch, case, animate
Transform!
Wrap up

Project 16: JavaScript Injection 412
Setting up
Making a shell app
Adding an extension
What do you want to get?
Establishing communication
Hacking with JavaScript
Fixing the keyboard
Wrap up

Project 17: Swifty Ninja 434
Setting up
Basics quick start
Shaping up for action
Enemy or bomb?
Follow the sequence
Slice to win
Game over, man
Wrap up

www.hackingwithswift.com 5

Project 18: iAd and Debugging 474
Setting up
iAd in 10 minutes
Debugging in Xcode
Wrap up

Project 19: Capital Cities 486
Setting up
Up and running with MapKit
Annotations and accessory views
Wrap up

Project 20: Fireworks Night 498
Setting up
Ready... aim... fire!
Swipe to select
Making things go bang
Wrap up

Project 21: Local Notifications 517
Setting up
Scheduling notifications
Acting on responses
Wrap up

Project 22: Detect-a-Beacon 528
Setting up
Requesting location
Hunting the beacon
Wrap up

Project 23: Space Race 540
Setting up
Space: the final frontier
Bring on the enemies!
Making contact
Wrap up

Project 24: Swift Extensions 553

www.hackingwithswift.com 6

Setting up
Adding to integers
Cleaning up the mess
Extensions for brevity
Wrap up

Project 25: Selfie Share 567
Setting up
Importing photos again
Going peer to peer
Invitation only
Wrap up

Project 26: Marble Maze 584
Setting up
Loading a level
Tilt to move
Contacting but not colliding
Wrap up

Project 27: Core Graphics 605
Setting up
Creating the sandbox
Drawing into a context
Ellipses and checkerboards
Transforms and lines
Images and text
Wrap up

Project 28: Secret Swift 628
Setting up
The basic text editor
Writing somewhere safe
Touch to activate
Wrap up

Project 29: Exploding Monkeys 642
Setting up
Building the environment
Mixing UIKit and SpriteKit
Unleash the bananas!
Destructible terrain

www.hackingwithswift.com 7

Wrap up

Project 30: Instruments 673
Setting up
What are we working with?
What can Instruments tell us?
Fixing the bugs
Wrap up

Project 31: Multibrowser 687
Setting up
UIStackView by example
UIStackView in Swift 2
Removing views from a UIStackView
iPad multitasking in iOS 9
Wrap up

Project 32: SwiftSearcher 708
Setting up
Automatically resizing UITableViewCells with NSAttributedString and Dynamic Type
How to use SFSafariViewController to browse a web page
How to add Core Spotlight to index your app content
Wrap up

Project 33: What's that Whistle? 733
Setting up
Recording from the microphone: AVAudioRecorder
Animating UIStackView subview layout
Writing to iCloud with CloudKit: CKRecord and CKAsset
A hands-on guide to the CloudKit dashboard
Reading from iCloud with CloudKit: CKQueryOperation and NSPredicate
Working with CloudKit records: CKReference, fetchRecordWithID, and saveRecord
Delivering notifications with CloudKit push messages: CKSubscription and

saveSubscription
Wrap up

Project 34: Four in a Row 804
Setting up
Creating the interface with UIStackView
Preparing for basic play
Adding in players: GKGameModelPlayer
Detecting wins and draws in Four in a Row

www.hackingwithswift.com 8

How GameplayKit works: GKGameModel, GKGameModelPlayer and
GKGameModelUpdate

Implementing GKGameModel: gameModelUpdatesForPlayer() and
applyGameModelUpdate()

Creating a GameplayKit AI using GKMinmaxStrategist
Wrap up

Project 35: Random Numbers 848
Setting up
Generating random numbers in iOS 8 and earlier
Generating random numbers with GameplayKit: GKRandomSource
Choosing a random number source: GKARC4RandomSource and other GameplayKit

options
Shaping GameplayKit random numbers: GKRandomDistribution, GKShuffledDistribution

and GKGaussianDistribution
Shuffling an array with GameplayKit: arrayByShufflingObjectsInArray()
Wrap up

Project 36: Crashy Plane 867
Setting up
Creating a player: ResizeFill vs AspectFill
Sky, background and ground: parallax scrolling with SpriteKit
Creating collisions and making random numbers with GameplayKit
Pixel-perfect physics in SpriteKit, plus explosions and more
Background music with SKAudioNode, an intro, plus game over
Wrap up

Project 37: Psychic Tester 901
Setting up
Laying out the cards: addChildViewController()
Animating a 3D flip effect using transitionWithView()
Adding a CAGradientLayer with IBDesignable and IBInspectable
Creating a particle system using CAEmitterLayer
Wiggling cards and background music with AVAudioPlayer
How to measure touch strength using 3D Touch
Communicating between iOS and watchOS: WCSession
Designing a simple watchOS app to receive data
Wrap up

Project 38: GitHub Commits 941
Setting up
Designing a Core Data model
Adding Core Data to our project: NSPersistentStoreCoordinator

www.hackingwithswift.com 9

Creating an NSManagedObject subclass with Xcode
Loading Core Data objects using NSFetchRequest and NSSortDescriptor
How to make a Core Data attribute unique using constraints
Examples of using NSPredicate to filter NSFetchRequest
Adding Core Data entity relationships: lightweight vs heavyweight migration
How to delete a Core Data object
Optimizing Core Data Performance using NSFetchedResultsController
Wrap up

Project 39: Unit testing with XCTest 998
Setting up
Creating our first unit test using XCTest
Loading our data and splitting up words: filter()
Counting unique strings in an array
measureBlock(): How to optimize our slow code and adjust the baseline
Filtering using functions as parameters
Updating the user interface with filtering
User interface testing with XCTest
Wrap up

Appendix: The Swift Knowledge Base 1043

www.hackingwithswift.com 10

About this book
The Hacking with Swift tutorial series is designed to make it easy for beginners to get
started coding for iPad and iPhone using the Swift programming language.

My teaching method skips out a lot of theory. It skips out the smart techniques that transform
20 lines of easy-to-understand code into 1 line of near-magic. It ignores coding conventions
by the dozen. And perhaps later on, once you've finished, you'll want to go back and learn all
the theory I so blithely walked past. But let me tell you this: the problem with learning theory
by itself is that your brain doesn't really have any interest in remembering stuff just for the
sake of it.

You see, here you'll be learning to code on a Need To Know basis. Nearly everything you
learn from me will have a direct, practical application to something we're working on. That
way, your brain can see exactly why a certain technique is helpful and you can start using it
straight away.

This book has been written on the back of my personal motto: "Programming is an art. Don't
spend all your time sharpening your pencil when you should be drawing." We'll be doing
some "sharpening" but a heck of a lot more "drawing" – if that doesn't suit your way of
learning, you should exit now.

The three golden rules
The series is crafted around a few basic tenets, and it's important you understand them
before continuing:

1. Follow the series: The tutorials are designed to be used in order, starting at the beginning
and working through to the end. The reason for this is that concepts are introduced
sequentially on a need-to-know basis – you only learn about something when you really have
to in order to make the project work.
2. Don't skip the games and techniques: The tutorials follow a sequence: app, game,
technique, app, game, technique, etc. That is, you develop an app, then you develop a
game, then we focus on a particular iOS component together to help make your apps better.
The apps and games are, of course, standalone projects that you can go on to develop as

www.hackingwithswift.com 11

you wish, whereas the technique tutorials will often be used to improve or prepare you for
other projects.
3. Get ready to hack: This is not designed to be the one-stop learning solution for all your
Swift needs. It's called "Hacking with Swift" because the goal of each project is to reach the
end with as little complication as possible – we're hacking, or playing around, with the
language, not trying to give you Comp Sci 101.

I can't re-iterate that last point enough. What I have found time and time again is that any
tutorial, no matter how carefully written or what audience it's aimed at, will fail to fit the needs
of many possible readers. And these people get angry, saying how the tutorial is wrong, how
the tutorial is lame, how their tutorial would be much better if only they had the time to write
it, and so on.

Over the last 12 years of writing, I have learned to ignore minority whinging and move on,
because what matters is that this tutorial is useful to you.

You'd be surprised by how many people think the path to success is through reading books,
attending classes or, well, doing pretty much anything except sitting down in front of a
computer and typing. Not me. I believe the best way to learn something is try to it yourself
and see how it goes.

Sure, going to classes might re-enforce what you've learned, or it might teach you some
time-saving techniques, but ultimately I've met too many people with computing degrees
who stumble when asked to write simple programs. Don't believe me? Try doing a Google
search for "fizz buzz test", and you'll be surprised too.

So, dive in, make things, and please, please, please have fun – because if you're not enjoying
yourself, Swift coding probably isn't for you.

To download the files for any Hacking with Swift project, or if you'd like to learn more about
the series, visit the series website and see the full range: hackingwithswift.com.

If you spot any errors in this book, either typos or technical mistakes, please do let me know
so I can correct them as soon as possible. The best way to get in touch is on Twitter
@twostraws, but you can also email paul@hackingwithswift.com.

www.hackingwithswift.com 12

Xcode, Swift and iOS
I'm not going to talk much, because I want to get straight into coding. However, there are
some points you do need to know:

 • You should install the latest Xcode from the Mac App Store. It's free, and includes
everything you need to make iOS apps in the iOS Simulator. Most of the projects in this
series will be developed in the simulator, but a couple will require a device because the
technology isn't available in the simulator – things like Touch ID and the accelerometer, for
example. Projects that require a device also require you to have an active iOS developer
account with Apple so that you can deploy your project to a device.
 • Swift is a relatively new language, and is evolving quickly. Every new release of Xcode
seems to change something or other, and often that means code that used to work now no
longer does. At the time of writing, Swift is mature enough that the changes are relatively
minor, so hopefully you can make them yourself. If not, check to see if there's an update of
the project files on hackingwithswift.com.
 • These projects are designed to work with iOS 9.0 or later, which is the version that runs on
the majority of devices. You can downgrade them to 7.0 with relatively few changes if you
desperately want to maximise your reach, but it's really not worth it at this point.

Important note: if any bugs are found in the project files, or if Swift updates come out that
force syntax changes, I'm going to be making changes to the projects on the website and
updating this book as needed. Please make sure you read the release notes for each project
to see what's changed, and follow me on Twitter @twostraws if you want to be notified of
updates.

I'm also happy to answer questions on Twitter if you encounter problems, so please feel free
to get in touch!

Swift, the Swift logo, Xcode, Instruments, Cocoa Touch, Touch ID, AirDrop, iBeacon, iPhone,
iPad, Safari, App Store, Mac and OS X are trademarks of Apple Inc., registered in the U.S.
and other countries.

Hacking with Swift is copyright Paul Hudson. All rights reserved. No part of this book or
corresponding materials (such as text, images, or source code) may be reproduced or
distributed by any means without prior written permission of the copyright owner.

www.hackingwithswift.com 13

Dedication
This book is dedicated to my daughter Charlotte, aka "Bonk", who has provided lots of hugs
and lots of happiness at every point in its creation.

www.hackingwithswift.com 14

Introduction
Swift for Complete Beginners
If you want to learn the language all at once before you
start making apps, this is for you.

www.hackingwithswift.com 15

How to install Xcode and create a
playground
Xcode is Apple's programming application for developers. It's free from the Mac App Store,
and it's required to do iPhone and iPad development. So, your first action is to click here to
install Xcode from the Mac App Store – it's quite a big download, so start downloading it
now and carry on reading.

While that's downloading, I can explain a couple of the absolute basics to you:

 • iOS is the name of the operating system that runs on all iPhones and iPads. It's
responsible for all the basic operations of the phone, such as making phone calls, drawing
on the screen, and running apps.
 • Swift is Apple's modern programming language that lets you write apps for iOS. It contains
the functionality for building programs, but doesn't handle anything like user interfaces,
audio or networking.
 • Swift 1.2 was the first major update to Swift, tweaking various language features and
improving others.
 • Swift 2 is the second major update to Swift, and it's the version used across all of Hacking
with Swift.
 • UIKit is Apple's user interface toolkit. It contains things like buttons, text boxes, navigation
controls and more, and you drive it using Swift.
 • Cocoa Touch is the name given for Apple's vast collection of frameworks for iOS. It
includes UIKit to do user interfaces, but also SpriteKit for making 2D games, SceneKit for
making 3D games, MapKit for maps, Core Graphics for drawing, Core Animation for
animating things, iAd for placing adverts, and much more.
 • NeXTSTEP is an operating system created by a company that Steve Jobs founded called
NeXT. It was bought by Apple, at which point Jobs was placed back in control of the
company, and put NeXTSTEP technology right into the core of Apple's development
platform.
 • iOS Simulator is a tool that comes with Xcode that looks and works almost exactly like a
real iPhone or iPad. It lets you test your app very quickly without having to use a real device.
 • Playgrounds are miniature Swift testing environments that let you type code and see the
results immediately. You don't build real apps with them, but they are great for learning. We'll
be using playgrounds in this introduction.
 • Crashes are when your code goes disastrously wrong and your app cannot recover. If a
user is running your app it will just disappear and they'll be back on the home screen. If
you're running in Xcode, you'll see a crash report.

www.hackingwithswift.com 16

 • Taylor Swift has nothing to do with the Swift programming language. This is a shame, as
you might imagine, but I'll try to make up for this shortfall by using her songs in this tutorial.
Deal with it.

That's it for the basics – if Xcode still hasn't finished downloading then why not watch some
Taylor Swift videos while you wait? The examples in this tutorial will certainly make a lot more
sense…

www.hackingwithswift.com 17

Variables and constants
Every useful program needs to store data at some point, and in Swift there are two ways to
do it: variables and constants. A variable is a data store that can have its value changed
whenever you want, and a constant is a data store that you set once and can never change.
So, variables have values that can vary, and constants have values that are constant – easy,
right?

Having both these options might seem pointless, after all you could just create a variable
then never change it – why does it need to be made a constant? Well, it turns out that many
programmers are – shock! – less than perfect at programming, and we make mistakes. One
of the advantages of separating constants and variables is that Xcode will tell us if we've
made a mistake. If we say, "make this date a constant, because I know it will never change"
then 10 lines later try to change it, Xcode will refuse to build our app.

Constants are also important because they let Xcode make decisions about the way it builds
your app. If it knows a value will never change, it is able to apply optimizations to make your
code run faster.

In Swift, you make a variable using the var keyword, like this:

var name = "Tim McGraw"

Let's put that into a playground so you can start getting feedback. Delete everything in there
apart from the import UIKit line (that's the bit that pulls in Apple's core iOS framework and
it's need later on), and add that variable. You should see the picture below.

www.hackingwithswift.com 18

In Xcode playgrounds, you type your code on the left and see results on the right a second later.

Because this is a variable, you can change it whenever you want, but you shouldn't use the
var keyword each time – that's only used when you're declaring new variables. Try writing
this:

var name = "Tim McGraw"

name = "Romeo"

So, the first line creates the name variable and gives it an initial value, then the second line
updates the name variable so that its value is now "Romeo". You'll see both values printed in
the results area of the playground.

Now, what if we had made that a constant rather than a variable? Well, constants use the let
keyword rather than var, so you can change your first line of code to say let name rather
than var name like this:

import UIKit

let name = "Tim McGraw"

name = "Romeo"

But now there's a problem: Xcode is showing a red warning symbol next to line three, and it
should have drawn a squiggly underline underneath name. If you click the red warning

www.hackingwithswift.com 19

should have drawn a squiggly underline underneath name. If you click the red warning
symbol, Xcode will tell you the problem: "Cannot assign to 'let' value 'name'" – which is
Xcode-speak for "you're trying to change a constant and you can't do that."

If you try to change a constant in Swift, Xcode will refuse to build your app.

So, constants are a great way to make a promise to Swift and to yourself that a value won't
change, because if you do try to change it Xcode will refuse to run. Swift developers have a
strong preference to use constants wherever possible because it makes your code easier to
understand. In fact, in the very latest versions of Swift, Xcode will actually tell you if you
make something a variable then never change it!

Important note: variable and constant names must be unique in your code. You'll get an
error if you try to use the same variable name twice, like this:

var name = "Tim McGraw"

var name = "Romeo"

If the playground finds an error in your code, it will either flag up a warning in a red box, or
will just refuse to run. You'll know if the latter has happened because the text in the results
pane has gone gray rather than its usual black.

www.hackingwithswift.com 20

Types of Data
There are lots of kinds of data, and Swift handles them all individually. You already saw one
of the most important types when you assigned some text to a variable, but in Swift these
are called a String – literally a string of characters.

Strings can be long (e.g. a million letters or more), short (e.g. 10 letters) or even empty (no
letters), it doesn't matter: they are all strings in Swift's eyes, and all work the same. Swift
knows that name should hold a string because you assign a string to it when you create it:
"Tim McGraw". If you were to rewrite your code to this it would stop working:

var name

name = "Tim McGraw"

This time Xcode will give you an error message that won't make much sense just yet: "Type
annotation missing in pattern". What it means is, "I can't figure out what data type name is
because you aren't giving me enough information."

At this point you have two options: either create your variable and give it an initial value on
one line of code, or use what's called a type annotation, which is where you tell Swift what
data type the variable will hold later on, even though you aren't giving it a value right now.

You've already seen how the first option looks, so let's look at the second: type annotations.
We know that name is going to be a string, so we can tell Swift that by writing a colon then
String, like this:

var name: String

name = "Tim McGraw"

You'll have no errors now, because Swift knows what type of data name will hold in the
future.

Note: some people like to put a space before and after the colon, making var name : String,
but they are wrong and you should try to avoid mentioning their wrongness in polite

www.hackingwithswift.com 21

company.

The lesson here is that Swift always wants to know what type of data every variable or
constant will hold. Always. You can't escape it, and that's a good thing because it provides
something called type safety – if you say "this will hold a string" then later try and put a rabbit
in there, Swift will refuse.

We can try this out now by introducing another important data type, called Int, which is short
for "integer." Integers are round numbers like 3, 30, 300, or -16777216. For example:

var name: String

name = "Tim McGraw"

var age: Int

age = 25

That declares one variable to be a string and one to be an integer. Note how both String and
Int have capital letters at the start, whereas name and age do not – this is the standard
coding convention in Swift. A coding convention is something that doesn't matter to Swift
(you can write your names how you like!) but does matter to other developers. In this case,
data types start with a capital letter, whereas variables and constants do not.

Now that we have variables of two different types, you can see type safety in action. Try
writing this:

name = 25

age = "Time McGraw"

In that code, you're trying to put an integer into a string variable, and a string into an integer
variable – and, thankfully, Xcode will throw up errors. You might think this is pedantic, but it's
actually quite helpful: you make a promise that a variable will hold one particular type of data,
and Xcode will enforce that throughout your work.

Before you go on, please delete those two lines of code causing the error, otherwise

www.hackingwithswift.com 22

Before you go on, please delete those two lines of code causing the error, otherwise
nothing in your playground will work going forward!

Float and Double
Let's look at two more data types, called Float and Double. This is Swift's way of storing
numbers with a fractional component, such as 3.1, 3.141, 3.1415926, and -16777216.5.
There are two data types for this because you get to choose how much accuracy you want,
but most of the time it doesn't matter so the official Apple recommendation is always to use
Double because it has the highest accuracy.

Try putting this into your playground:

var latitude: Double

latitude = 36.166667

var longitude: Float

longitude = -86.783333

You can see both numbers appear on the right, but look carefully because there's a tiny
discrepancy. We said that longitude should be equal to -86.783333, but in the results pane
you'll see -86.78333 – it's missing one last 3 on the end. Now, you might well say, "what
does 0.000003 matter amongst friends?" but this is ably demonstrating what I was saying
about accuracy.

Because these playgrounds update as you type, we can try things out so you can see
exactly how Float and Double differ. Try changing the code to be this:

var longitude: Float

longitude = -86.783333

longitude = -186.783333

longitude = -1286.783333

longitude = -12386.783333

longitude = -123486.783333

www.hackingwithswift.com 23

longitude = -123486.783333

longitude = -1234586.783333

That's adding increasing numbers before the decimal point, while keeping the same amount
of numbers after. But if you look in the results pane you'll notice that as you add more
numbers before the point, Swift is removing numbers after. This is because it has limited
space in which to store your number, so it's storing the most important part first – being off
by 1,000,000 is a big thing, whereas being off by 0.000003 is less so.

In Swift a Float holds much less data than a Double, so you should use Double where possible.

Now try changing the Float to be a Double and you'll see Swift prints the correct number out
every time:

var longitude: Double

This is because, again, Double has twice the accuracy of Float so it doesn't need to cut your

www.hackingwithswift.com 24

number to fit. Doubles still have limits, though – if you were to try a massive number like
123456789.123456789 you would see it gets cut down to 123456789.1234568.

Boolean
Swift has a built-in data type that can store whether a value is true or false, called a Bool,
short for Boolean. Bools don't have space for "maybe" or "perhaps", only absolutes: true or
false. For example:

var stayOutTooLate: Bool

stayOutTooLate = true

var nothingInBrain: Bool

nothingInBrain = true

var missABeat: Bool

missABeat = false

Using type annotations wisely
As you've learned, there are two ways to tell Swift what type of data a variable holds: assign
a value when you create the variable, or use a type annotation. If you have a choice, the first
is always preferable because it's clearer. For example:

var name = "Tim McGraw"

www.hackingwithswift.com 25

…is preferred to:

var name: String

name = "Tim McGraw"

This applies to all data types. For example:

var age = 25

var longitude = -86.783333

var nothingInBrain = true

This technique is called type inference, because Swift can infer what data type should be
used for a variable by looking at the type of data you want to put in there. When it comes to
numbers like -86.783333, Swift will always infer a Double rather than a Float.

For the sake of completeness, I should add that it's possible to specify a data type and
provide a value at the same time, like this:

var name: String = "Tim McGraw"

www.hackingwithswift.com 26

Operators
Operators are those little symbols you learned in your very first math classes: + to add, - to
subtract, * to multiply, / to divide, = to assign value, and so on. They all exist in Swift, along
with a few extras.

Let's try a few basics – please type this into your playground:

var a = 10

a = a + 1

a = a - 1

a = a * a

In the results pane, you'll see 10, 11, 10 and 100 respectively. Now try this:

var b = 10

b += 10

b -= 10

+= is an operator that means "add then assign to." In our case it means "take the current
value of b, add 10 to it, then put the result back into b." As you might imagine, -= does the
same but subtracts rather than adds. So, that code will show 10, 20, 10 in the results pane.

Some of these operators apply to other data types. As you might imagine, you can add two
doubles together like this:

var a = 1.1

var b = 2.2

var c = a + b

www.hackingwithswift.com 27

When it comes to strings, + will join them together. For example:

var name1 = "Tim McGraw"

var name2 = "Romeo"

var both = name1 + " and " + name2

That will write "Tim McGraw and Romeo" into the results pane.

Comparison operators
Swift has a set of operators that perform comparisons on values. For example:

var a = 1.1

var b = 2.2

var c = a + b

c > 3

c >= 3

c > 4

c < 4

That shows off greater than (>), greater than or equal (>=), and less than (<). In the results
window you'll see true, true, false, true – these are Booleans, because the answer to each of
these statements can only ever be true or false.

If you want to check for equality, you can't use = because already has a meaning: it's used to
give a variable a value. So, Swift has an alternative in the form of ==, meaning "is equal to."
For example:

www.hackingwithswift.com 28

var name = "Tim McGraw"

name == "Tim McGraw"

That will show "true" in the results pane. Now, one thing that might catch you out is that in
Swift strings are case-sensitive, which means "Tim McGraw", "TIM MCGRAW" and "TiM
mCgRaW" are all considered different. If you use == to compare two strings, you need to
make sure they have the same letter case.

There's one more operator I want to introduce you to, and it's called the "not" operator: !.
Yes, it's just an exclamation mark. This makes your statement mean the opposite of what it
did. For example:

var stayOutTooLate = true

stayOutTooLate

!stayOutTooLate

That will print out true, true, false – with the last value there because it flipped the previous
true.

You can also use ! with = to make != or "not equal". For example:

var name = "Tim McGraw"

name == "Tim McGraw"

name != "Tim McGraw"

www.hackingwithswift.com 29

String interpolation
This is a fancy name for what is actually a very simple thing: combining variables and
constants inside a string.

Clear out all the code you just wrote and leave only this:

var name = "Tim McGraw"

If we wanted to print out a message to the user that included their name, string interpolation
is what makes that easy: you just write a backslash, then an open parenthesis, then your
code, then a close parenthesis, like this:

var name = "Tim McGraw"

"Your name is \(name)"

The results pane will now show "Your name is Tim McGraw" all as one string, because string
interpolation combined the two for us.

Now, we could have written that using the + operator, like this:

var name = "Tim McGraw"

"Your name is " + name

…but that's not as efficient, particularly if you're combining multiple variables together. In
addition, string interpolation in Swift is smart enough to be able to handle a variety of
different data types automatically. For example:

var name = "Tim McGraw"

var age = 25

var latitude = 36.166667

www.hackingwithswift.com 30

var latitude = 36.166667

"Your name is \(name), your age is \(age), and your latitude is \
(latitude)"

Doing that using + is much more difficult, because Swift doesn't let you add integers and
doubles to a string.

At this point your result may no longer fit in the results pane, so either resize your window or
hover over the result and click the + button that appears to have it shown inline.

One of the powerful features of string interpolation is that everything between \(and) can
actually be a full Swift expression. For example, you can do mathematics in there using
operators, like this:

var age = 25

"You are \(age) years old. In another \(age) years you will be \(age
* 2)."

www.hackingwithswift.com 31

Arrays
Arrays let you group lots of values together into a single collection, then access those values
by their position in the collection. Swift uses type inference to figure out what type of data
your array holds, like so:

var oddNumbers = [2, 4, 6, 8]

var songs = ["Shake it Off", "You Belong with Me", "Back to
December"]

As you can see, Swift uses brackets to mark the start and end of an array, and each item in
the array is separated with a comma.

When it comes to reading items out an array, there's a catch: Swift starts counting at 0. This
means the first item is 0, the second item is 1, the third is 2, and so on. Try putting this into
your playground:

var songs = ["Shake it Off", "You Belong with Me", "Back to
December"]

songs[0]

songs[1]

songs[2]

That will print "Shake it Off", "You Belong with Me", and "Back to December" in the results
pane.

An item's position in an array is called its index, and you can read any item from the array
just by providing its index. However, you do need to be careful: our array has three items in,
which means indexes 0, 1 and 2 work great. But if you try and read songs[3] your
playground will stop working – and if you tried that in a real app it would crash!

Because you've created your array by giving it three strings, Swift knows this is an array of
strings. You can confirm this by using a special command in the playground that will print out
the data type of any variable, like this:

www.hackingwithswift.com 32

var songs = ["Shake it Off", "You Belong with Me", "Back to
December"]

songs.dynamicType

That will print Swift.Array<Swift.String> into the results pane, telling you that Swift
considers songs to be an array of strings.

Let's say you made a mistake, and accidentally put a number on the end of the array. Try this
now and see what the results pane prints:

var songs = ["Shake it Off", "You Belong with Me", "Back to
December", 3]

songs.dynamicType

This time you'll see something else: Swift.Array<NSObject>. If you get an error saying "Type
of expression is ambiguous" you probably deleted the import UIKit line by accident. Think
back to the absolute basics I outlined while you were downloading Xcode: one of the things I
mentioned was a company that Steve Jobs founded called NeXT, which made an operating
system called NeXTSTEP, which in turn got bought by Apple and placed at the core of its
development platform.

Well, here's the proof: now that our array holds both strings and numbers, Swift is behind the
scenes converting the array to hold the data type NSObject – literally "an object from
NeXTSTEP." This is the iOS way of saying "any kind of data," because the NeXT technologies
are so deeply embedded in the Apple platform that literally everything builds on it.

Type safety is important, and although it's neat that Swift is trying to be helpful by making
our array hold any kind of data, this particular case was an accident. Fortunately, I've already
said that you can use type annotations to specify exactly what type of data you want an
array to store. To specify the type of an array, write the data type you want to store with
brackets around it, like this:

var songs: [String] = ["Shake it Off", "You Belong with Me", "Back to

www.hackingwithswift.com 33

var songs: [String] = ["Shake it Off", "You Belong with Me", "Back to
December", 3]

Now that we've told Swift we want to store only strings in the array, it will refuse to run the
code because it has a 3 on the end.

Creating arrays
If you make an array using the syntax shown above, Swift creates the array and fills it with
the values we specified. Things aren't quite so straightforward if you want to create the array
then fill it later – this syntax doesn't work:

var songs: [String]

songs[0] = "Shake it Off"

The reason is one that will seem needlessly pedantic at first, but has deep underlying
performance implications so I'm afraid you're just stuck with it. Put simply, writing var songs:
[String] tells Swift "the songs variable will hold an array of strings," but it doesn't actually
create that array. It doesn't allocate any RAM, or do any of the work to actually create a Swift
array. It just says that at some point there will be an array, and it will hold strings.

There are a few ways to express this correctly, and the one that probably makes most sense
at this time is this:

var songs: [String] = []

That uses a type annotation to make it clear we want an array of strings, and it assigns an
empty array (that's the [] part) to it.

You'll also commonly see this construct:

www.hackingwithswift.com 34

You'll also commonly see this construct:

var songs = [String]()

That means the same thing: the () tells Swift we want to create the array in question, which is
then assigned to songs using type inference. This option is two characters shorter, so it's no
surprise programmers prefer it!

Array operators
You can use a limited set of operators on arrays. For example, you can merge two arrays by
using the + operator, like this:

var songs = ["Shake it Off", "You Belong with Me", "Love Story"]

var songs2 = ["Today was a Fairytale", "White Horse", "Fifteen"]

var both = songs + songs2

You can also use += to add and assign, like this:

both += ["Everything has Changed"]

www.hackingwithswift.com 35

Dictionaries
As you've seen, Swift arrays are a collection where you access each item using a numerical
index, such as songs[0]. Dictionaries are another common type of collection, but they differ
from arrays because they let you access values based on a key you specify.

To give you an example, let's imagine how we might store data about a person in an array:

var person = ["Taylor", "Alison", "Swift", "December",
"taylorswift.com"]

To read out that person's middle name, we'd use person[1], and to read out the month they
were born we'd use person[3]. This has a few problems, not least that it's difficult to
remember what index number is assigned to each value in the array! And what happens if the
person has no middle name? Chances are all the other values would move down one place,
causing chaos in your code.

With dictionaries we can re-write this to be far more sensible, because rather than arbitrary
numbers you get to read and write values using a key you specify. For example:

var person = ["first": "Taylor", "middle": "Alison", "last": "Swift",
"month": "December", "website": "taylorswift.com"]

person["middle"]

person["month"]

It might help if I use lots of whitespace to break up the dictionary on your screen, like this:

var person = [

 "first": "Taylor",

 "middle": "Alison",

 "last": "Swift",

 "month": "December",

 "website": "taylorswift.com"

www.hackingwithswift.com 36

 "website": "taylorswift.com"

]

person["middle"]

person["month"]

As you can see, when you make a dictionary you write its key, then a colon, then its value.
You can then read any value from the dictionary just by knowing its key, which is much easier
to work with.

As with arrays, you can store a wide variety of values inside dictionaries, although the keys
are most commonly strings.

www.hackingwithswift.com 37

Conditional statements
Sometimes you want code to execute only if a certain condition is true, and in Swift that is
represented primarily by the if and else statements. You give Swift a condition to check, then
a block of code to execute if that condition is true.

You can optionally also write else and provide a block of code to execute if the condition is
false, or even else if and have more conditions. A "block" of code is just a chunk of code
marked with an open brace – { – at its start and a close brace – } – at its end.

Here's a basic example:

var action: String

var person = "hater"

if person == "hater" {

 action = "hate"

}

That uses the == (equality) operator introduced previously to check whether the string inside
person is exactly equivalent to the srting "hater". If it is, it sets the action variable to "hate".
Note that open and close braces, also known by their less technical name of "curly brackets"
– that marks the start and end of the code that will be executed if the condition is true.

Let's add else if and else blocks:

var action: String

var person = "hater"

if person == "hater" {

 action = "hate"

} else if person == "player" {

 action = "play"

www.hackingwithswift.com 38

 action = "play"

} else {

 action = "cruise"

}

That will check each condition in order, and only one of the blocks will be executed: a person
is either a hater, a player, or anything else.

Evaluating multiple conditions
You can ask Swift to evaluate as many conditions as you want, but they all need to be true in
order for Swift to execute the block of code. To check multiple conditions, use the &&
operator – it means "and". For example:

var action: String

var stayOutTooLate = true

var nothingInBrain = true

if stayOutTooLate && nothingInBrain {

 action = "cruise"

}

Because stayOutTooLate and nothingInBrain are both true, the whole condition is true, and
action gets set to "cruise." Swift uses something called short-circuit evaluation to boost
performance: if it is evaluating multiple things that all need to be true, and the first one is
false, it doesn't even both evaluating the rest.

www.hackingwithswift.com 39

Looking for the opposite of truth
This might sound deeply philosophical, but actually this is important: sometimes you care
whether a condition is not true, i.e. is false. You can do this with the ! (not) operator that was
introduced earlier. For example:

if !stayOutTooLate && !nothingInBrain {

 action = "cruise"

}

This time, the action variable will only be set if both stayOutTooLate and nothingInBrain
are false – the ! has flipped them around.

www.hackingwithswift.com 40

Loops
Computers are great at doing boring tasks billions of times in the time it took you to read this
sentence. When it comes to repeating tasks in code, you can either copy and paste your
code multiple times, or you can use loops – simple programming constructs that repeat a
block of code for as long as a condition is true.

To demonstrate this, I want to introduce you to a special debugging function called print():
you give it some text to print, and it will print it. If you're running in a playground like we are,
you'll see your text appear in the results window. If you're running a real app in Xcode, you'll
see your text appear in Xcode's log window. Either way, print() is a great way to get a sneak
peek at the contents of a variable.

Take a look at this code:

print("1 x 10 is \(1 * 10)")

print("2 x 10 is \(2 * 10)")

print("3 x 10 is \(3 * 10)")

print("4 x 10 is \(4 * 10)")

print("5 x 10 is \(5 * 10)")

print("6 x 10 is \(6 * 10)")

print("7 x 10 is \(7 * 10)")

print("8 x 10 is \(8 * 10)")

print("9 x 10 is \(9 * 10)")

print("10 x 10 is \(10 * 10)")

When it has finished running, you'll have the 10 times table in your playground results pane.
But it's hardly efficient code, and in fact a much cleaner way is to loop over a range of
numbers using what's called the closed range operator, which is three periods in a
row: ...Using the closed range operator, we could re-write that whole thing in three lines:

for i in 1...10 {

 print("\(i) x 10 is \(i * 10)")

}

www.hackingwithswift.com 41

}

The results pane just shows "(10 times)" for our loop, meaning that the loop was run 10
times. If you want to know what the loop actually did, hover over the "(10 times)" then click
the + button that appears on the right. You'll see a box saying "10 x 10 is 100" appear inside
your code, and if you hover over that two further buttons will appear. From those two, click
the one on the right, and you should see the picture below

When a Swift playground runs through a loop it only shows how many times that loop was run.
If you want to inspect the values more closely, click the + button in the results area.

What the loop does is count from 1 to 10 (including 1 and 10), assigns that number to the
constant i, then runs the block of code inside the braces.

If you don't need to know what number you're on, you can use an underscore instead. For
example, we could print some Taylor Swift lyrics like this:

var str = "Fakers gonna"

for _ in 1 ... 5 {

 str += " fake"

www.hackingwithswift.com 42

 str += " fake"

}

print(str)

That will print "Fakers gonna fake fake fake fake fake" by adding to the string each time the
loop goes around.

There's a variant of the closed range operator called the half open range operator, and they
are easily confused. The half open range operator looks like ..< and counts from one number
up to and excluding another. For example, 1 ..< 5 will count 1, 2, 3, 4.

Looping over arrays
Swift provides a very simple way to loop over all the elements in an array. Because Swift
already knows what kind of data your array holds, it will go through every element in the
array, assign it to a constant you name, then run a block of your code. For example, we
could print out a list of great songs like this:

var songs = ["Shake it Off", "You Belong with Me", "Back to
December"]

for song in songs {

 print("My favorite song is \(song)")

}

You can also use the for i in loop construct to loop through arrays, because you can use that
constant to index into an array. We could even use it to index into two arrays, like this:

var people = ["players", "haters", "heart-breakers", "fakers"]

var actions = ["play", "hate", "break", "fake"]

www.hackingwithswift.com 43

var actions = ["play", "hate", "break", "fake"]

for i in 0 ... 3 {

 print("\(people[i]) gonna \(actions[i])")

}

You might wonder what use the half open range operator has, but it's particularly useful for
working with arrays because they count from zero. So, rather than counting from 0 up to and
including 3, we could count from 0 up to and excluding the number of items in an array.
Remember: they count from zero, so if they have 4 items the maximum index is 3, which is
why we need to use excluding for the loop.

To count how many items are in an array, use someArray.count. So, we could rewrite our
code like this:

var people = ["players", "haters", "heart-breakers", "fakers"]

var actions = ["play", "hate", "break", "fake"]

for i in 0 ..< people.count {

 print("\(people[i]) gonna \(actions[i])")

}

Inner loops
You can put loops inside loops if you want, and even loops inside loops inside loops –
 although you might suddenly find you're doing something 10 million times, so be careful!

We can combine two of our previous loops to create this:

var people = ["players", "haters", "heart-breakers", "fakers"]

var actions = ["play", "hate", "break", "fake"]

www.hackingwithswift.com 44

var actions = ["play", "hate", "break", "fake"]

for i in 0 ..< people.count {

 var str = "\(people[i]) gonna"

 for _ in 1 ... 5 {

 str += " \(actions[i])"

 }

 print(str)

}

That outputs "players gonna play play play play play", then "haters gonna…" Well, you get
the idea.

One important note: although programmers conventionally use i, j and even k for loop
constants, you can name them whatever you please: for personNumber in 0 ..<
count(people) is perfectly valid.

While loops
There's a third kind of loop you'll see, which repeats a block of code until you tell it to stop.
This is used for things like game loops where you have no idea in advance how long the
game will last – you just keep repeating "check for touches, animate robots, draw screen,
check for touches…" and so on, until eventually the user taps a button to exit the game and
go back to the main menu.

These loops are called while loops, and they look like this:

var counter = 0

www.hackingwithswift.com 45

while true {

 print("Counter is now \(counter)")

 counter += 1

 if counter == 556 {

 break

 }

}

That code introduces a new keyword, called break. It's used to exit a while or for loop at a
point you decide. Without it, the code above would never end because the condition to
check is just "true", and true is always true. Without that break statement the loop is an
infinite loop, which is A Bad Thing.

These while loops work best when you're using unknown data, such as downloading things
from the internet, reading from a file such as XML, looking through user input, and so on.
This is because you only know when to stop the loop after you've run it a sufficient number
of times.

There is a counterpart to break called continue. Whereas breaking out of a loop stops
execution immediately and continues directly after the loop, continuing a loop only exits the
current iteration of the loop – it will jump back to the top of the loop and pick up from there.

As an example, consider the code below:

var songs = ["Shake it Off", "You Belong with Me", "Back to
December"]

for song in songs {

 if song == "You Belong with Me" {

 continue

 }

www.hackingwithswift.com 46

 print("My favorite song is \(song)")

}

That loops through three Taylor Swift songs, but it will only print the name of two. The reason
for this is the continue keyword: when the loop tries to use the song "You Belong with Me",
continue gets called, which means the loop immediately jumps back to the start – the print()
is call never made, and instead the loop continues straight on to Back to December.

www.hackingwithswift.com 47

Switch case
You've seen if statements and now loops, but Swift has another type of flow control called
switch/case. It's easiest to think of this as being an advanced form of if, because you can
have lots of matches and Swift will execute the right one.

In the most basic form of a switch/case you tell Swift what variable you want to check, the
provide a list of possible cases for that variable. Swift will find the first case that matches
your variable, then run its block of code. When that block finishes, Swift exits the whole
switch/case block.

Here's a basic example:

let liveAlbums = 2

switch liveAlbums {

case 0:

 print("You're just starting out")

case 1:

 print("You just released iTunes Live From SoHo")

case 2:

 print("You just released Speak Now World Tour")

default:

 print("Have you done something new?")

}

We could very well have written that using lots of if and else if blocks, but this way is clearer
and that's important.

www.hackingwithswift.com 48

One advantage to switch/case is that Swift will ensure your cases are exhaustive. That is, if
there's the possibility of your variable having a value you don't check for, Xcode will refuse to
build your app. In situations where the values are effectively open ended, like our liveAlbums
integer, you need to include a default case to catch these potential values. Yes, even if you
"know" your data can only fall within a certain range.

Swift can apply some evaluation to your case statements in order to match against variables.
For example, if you wanted to check for a range of possible values, you could use the closed
range operator like this:

let studioAlbums = 5

switch studioAlbums {

case 0...1:

 print("You're just starting out")

case 2...3:

 print("You're a rising star")

case 4...5:

 print("You're world famous!")

default:

 print("Have you done something new?")

}

One thing you should know is that switch/case blocks in Swift don't fall through like they do
in some other languages you might have seen. If you're used to writing break in your case
blocks, you should know this isn't needed in Swift. Instead, you use the fallthrough keyword
to make one case fall into the next – it's effectively the opposite. Of course, if you have no
idea what any of this means, that's even better: don't worry about it!

www.hackingwithswift.com 49

Functions
Functions let you define re-usable pieces of code that perform specific pieces of
functionality. Usually functions are able to receive some values to modify the way they work,
but it's not required.

Let's start with a simple function:

func favoriteAlbum() {

 print("My favourite is Fearless")

}

If you put that code into your playground, nothing will be printed. And yes, it is correct. The
reason nothing is printed is that we've placed the "My favourite is Fearless" message into a
function called favoriteAlbum(), and that code won't be called until we ask Swift to run the
favoriteAlbum() method. To do that, add this line of code:

favoriteAlbum()

That runs the function (or "calls" it), so now you'll see "My favourite is Fearless" printed out.

As you can see, you define a function by writing func, then your function name, then open
and close parentheses, then a block of code marked by open and close braces. You then call
that function by writing its name followed by an open and close parentheses.

Of course, that's a silly example – that function does the same thing no matter what, so
there's no point it existing. But what if we wanted to print a different album each time? In that
case, we could tell Swift we want our function to accept a value when it's called, then use
that value inside it.

Let's do that now:

func favoriteAlbum(album: String) {

 print("My favourite is \(album)")

www.hackingwithswift.com 50

 print("My favourite is \(album)")

}

That tells Swift we want the function to accept one value (called a "parameter"), named
"album", that should be a string. We then use string interpolation to write that favorite album
directly into our output message.

You might still be wondering what the point is, given that it's still just one line of code. Well,
imagine we used that function in 20 different places around a big app, then your head
designer comes along and tells you to change the message to "I love Fearless so much – it's
my favorite!" Do you really want to find and change all 20 instances in your code? Probably
not. With a function you change it once, and everything updates.

You can make your functions accept as many parameters as you want, so let's make it
accept name and a year:

func printAlbumRelease(name: String, year: Int) {

 print("\(name) was released in \(year)")

}

printAlbumRelease("Fearless", year: 2008)

printAlbumRelease("Speak Now", year: 2010)

printAlbumRelease("Red", year: 2012)

You might wonder why the first parameter doesn't need a label. Well, this is an old Apple
naming convention: function names should be designed to be read, including their first
parameter. So Apple would call that function something like
printReleaseDateOfAlbumNamed() so that a human reading the code aloud would say
"release date of album named Fearless, year 2008."

www.hackingwithswift.com 51

Return values
Swift functions can return a value by writing -> then a data type. Once you do this, Swift will
ensure that your function will return a value no matter what, so again this is you make a
promise about what your code does.

As an example, let's write a function that returns true if an album is one of Taylor Swift's, or
false otherwise. This needs to accept one parameter (the name of the album to check) and
will return a Boolean. Here's the code:

func albumsIsTaylor(name: String) -> Bool {

 if name == "Taylor Swift" { return true }

 if name == "Fearless" { return true }

 if name == "Speak Now" { return true }

 if name == "Red" { return true }

 if name == "1989" { return true }

 return false

}

If you wanted to try your new switch/case knowledge, this function is a place where it would
work well.

You can now call that by passing the album name in and acting on the result:

if albumsIsTaylor("Red") {

 print("That's one of hers!")

} else {

 print("Who made that?!")

}

if albumsIsTaylor("Blue") {

 print("That's one of hers!")

www.hackingwithswift.com 52

 print("That's one of hers!")

} else {

 print("Who made that?!")

}

www.hackingwithswift.com 53

Optionals
Swift is a very safe language, by which I mean it works hard to ensure your code never fails
in surprising ways.

One of the most common ways that code fails is when it tries to use data that is bad or
missing. For example, imagine a function like this:

func getHaterStatus() -> String {

 return "Hate"

}

That function doesn't accept any parameters, and it returns a string: "Hate". But what if
today is a particularly sunny day, and those haters don't feel like hating – what then? Well,
maybe we want to return nothing: this hater is doing no hating today. Now, when it comes to
a string you might think an empty string is a great way to communicate nothing, and that
might be true sometimes. But how about numbers – is 0 an "empty number"? Or -1?

Before you start trying to create imaginary rules for yourself, Swift has a solution: optionals.
An optional value is one that might have a value or might not.

When we used -> String it means "this will definitely return a string," which means this
function cannot return no value, and thus can be called safe in the knowledge that you'll
always get a value back. If we wanted to tell Swift that this function might return a value or it
might not, we need to use this instead:

func getHaterStatus() -> String? {

 return "Hate"

}

Note the extra question mark: that means "optional string." Now, in our case we're still
returning "Hate" no matter what, but let's go ahead and modify that function further: if the
weather is sunny, the haters have turned over a new leaf and have given up their life of

www.hackingwithswift.com 54

hating, so want to return no value. In Swift, this "no value" has a special name: nil.

Change the function to this:

func getHaterStatus(weather: String) -> String? {

 if weather == "sunny" {

 return nil

 } else {

 return "Hate"

 }

}

That accepts one string parameter (the weather) and returns one string (hating status), but
that return value might be there or it might not – it's nil. In this case, it means we might get a
string, or we might get nil.

Now for the important stuff: Swift wants your code to be really safe, and trying to use a nil
value is a bad idea – it might crash your code, it might screw up your app logic, or it might
make your user interface show the wrong thing. As a result, when you declare a value as
being optional, Swift will make sure you handle it safely.

Let's try this now: add these lines of code to your playground:

var status: String

status = getHaterStatus("rainy")

The first line creates a string variable, and the second assigns to it the value from
getHaterStatus() – and today the weather is rainy, so those haters are hating for sure.

That code will not run, because we said that status is of type String, which requires a value,
but getHaterStatus() might not provide one because it returns an optional string. Swift
simply will not let you make this mistake, which is extremely helpful because it effectively

www.hackingwithswift.com 55

stops dead a whole class of common bugs.

To fix the problem, we need to make the status variable a String?, or just remove the type
annotation entirely and let Swift use type inference. The first option looks like this:

var status: String?

status = getHaterStatus("rainy")

And the second like this:

var status = getHaterStatus("rainy")

Regardless of which you choose, that value might be there or might not, and by default Swift
won't let you use it dangerously. As an example, imagine a function like this:

func takeHaterAction(status: String) {

 if status == "Hate" {

 print("Hating")

 }

}

That takes a string and prints a message depending on its contents. This function takes a
String value, and not a String? value – you can't pass in an optional here, it wants a real
string, which means we can't call it using the status variable.

Swift has two solutions. Both are used, but one is definitely preferred over the other. The first
solution is called optional unwrapping, and it's done inside a conditional statement using
special syntax. It does two things at the same time: checks whether an optional has a value,
and if so unwraps it into a non-optional type then runs a code block.

The syntax looks like this:

www.hackingwithswift.com 56

The syntax looks like this:

if let unwrappedStatus = status {

 // unwrappedStatus contains a non-optional value!

} else {

 // in case you you want an else block, here you go…

}

These if let statements check and unwrap in one succinct line of code, which makes them
very common. Using this method, we can safely unwrap the return value of getHaterStatus()
and be sure that we only call takeHaterAction() with a valid, non-optional string. Here's the
complete code:

func getHaterStatus(weather: String) -> String? {

 if weather == "sunny" {

 return nil

 } else {

 return "Hate"

 }

}

func takeHaterAction(status: String) {

 if status == "Hate" {

 print("Hating")

 }

}

if let status = getHaterStatus("rainy") {

 takeHaterAction(status)

}

www.hackingwithswift.com 57

If you understand this concept, you're welcome to skip down to the title that says
"Force unwrapping optionals". If you're still not quite sure about optionals, carry on
reading.OK, if you're still here it means the explanation above either made no sense, or you
sort of understood but could probably use some clarification. Optionals are used extensively
in Swift, so you really do need to understand them. I'm going to try explaining again, in a
different way, and hopefully that will help!

Here's a new function:

func yearAlbumReleased(name: String) -> Int {

 if name == "Taylor Swift" { return 2006 }

 if name == "Fearless" { return 2008 }

 if name == "Speak Now" { return 2010 }

 if name == "Red" { return 2012 }

 if name == "1989" { return 2014 }

 return 0

}

That takes the name of a Taylor Swift album, and returns the year it was released. But if we
call it with the album name "Lantern" because we mixed up Taylor Swift with Hudson
Mohawke (an easy mistake to make, right?) then it returns 0 because it's not one of Taylor's
albums. But does 0 make sense here? Sure, if the album was released back in 0 AD when
Caesar Augustus was emperor of Rome, 0 might make sense, but here it's just confusing –
 people need to know that 0 means "not recognized."

A much better idea is to re-write that function so that it either returns an integer (when a year
was found) or nil (when nothing was found), which is easy thanks to optionals. Here's the
new function:

func yearAlbumReleased(name: String) -> Int? {

 if name == "Taylor Swift" { return 2006 }

 if name == "Fearless" { return 2008 }

www.hackingwithswift.com 58

 if name == "Fearless" { return 2008 }

 if name == "Speak Now" { return 2010 }

 if name == "Red" { return 2012 }

 if name == "1989" { return 2014 }

 return nil

}

Now that it returns nil, we need to unwrap the result using if let because we need to check
whether a value exists or not.

If you understand this concept, you're welcome to skip down to the title that says
"Implict and force unwrapping optionals". If you're still not quite sure about optionals,
carry on reading.OK, if you're still here it means you're really struggling with optionals, so
I'm going to have one last go at explaining them.

Here's an array of names:

var items = ["James", "John", "Sally"]

If we wanted to write a function that looked in that array and told us the index of a particular
name, we might write something like this:

func positionOfString(items: [String], str: String) -> Int {

 for i in 0 ..< items.count {

 if items[i] == str {

 return i

 }

 }

 return 0

www.hackingwithswift.com 59

 return 0

}

That loops through all the items in the array, returning its position if it finds a match,
otherwise returning 0.

Now try running these three lines of code:

let jamesPosition = positionOfString(items, str: "James")

let johnPosition = positionOfString(items, str: "John")

let sallyPosition = positionOfString(items, str: "Sally")

let bobPosition = positionOfString(items, str: "Bob")

That will output 0, 1, 2, 0 – the positions of James and Bob are the same, even though one
exists and one doesn't. This is because I used 0 to mean "not found." The easy fix might be
to make -1 not found, but whether it's 0 or -1 you still have a problem because you have to
remember that specific number means "not found."

The solution is optionals: return an integer if you found the match, or nil otherwise. In fact,
this is exactly the approach the built-in "find in array" functions work:
someArray.indexOf(someValue).

When you work with these "might be there, might not be" values, Swift forces you to unwrap
them before using them, thus acknowledging that there might not be a value. That's what if
let syntax does: if the optional has a value then unwrap it and use it, otherwise don't use it at
all.

If you're still not sure how optionals work, then the best thing to do is ask me on Twitter and
I'll try to help: you can find me @twostraws.

Force unwrapping optionals

www.hackingwithswift.com 60

Swift lets you override its safety by using the exclamation mark character: !. If you know that
an optional definitely has a value, you can force unwrap it by placing this exclamation mark
after it. Please be careful, though: if you try this on a variable that does not have a value, your
code will crash.

To put together a working example, here's some foundation code:

func yearAlbumReleased(name: String) -> Int? {

 if name == "Taylor Swift" { return 2006 }

 if name == "Fearless" { return 2008 }

 if name == "Speak Now" { return 2010 }

 if name == "Red" { return 2012 }

 if name == "1989" { return 2014 }

 return nil

}

var year = yearAlbumReleased("Red")

if year == nil {

 print("There was an error")

} else {

 print("It was released in \(year)")

}

That gets the year an album was released. If the album couldn't be found, year will be set to
nil, and an error message will be printed. Otherwise, the year will be printed.

Or will it? Well, yearAlbumReleased() returns an optional string, and this code doesn't use if
let to unwrap that optional. As a result, it will print out the following: "It was released in
Optional(2012)" – probably not what we wanted!

www.hackingwithswift.com 61

At this point in the code, we have already checked that we have a valid value, so it's a bit
pointless to have another if let in there to safely unwrap the optional. So, Swift provides a
solution – change the second print() call to this:

print("It was released in \(year!)")

Note the exclamation mark: it means "I'm certain this contains a value, so force unwrap it
now."

Implicitly unwrapped optionals
You can also use this exclamation mark syntax to create implicitly unwrapped optionals,
which is where some people really start to get confused. So, please read this carefully!

 • A regular variable must contain a value. Example: String must contain a string, even if that
is string empty, i.e. "".
 • An optional variable might contain a value, or might not. It must be unwrapped before it is
used. Example: String? might contain a string, or it might contain nil. The only way to find
out is to unwrap it.
 • An implicitly unwrapped optional might contain a value, or might not. But it does not need
to be unwrapped before it is used. Swift won't check for you, so you need to be extra careful.
Example: String! might contain a string, or it might contain nil – and it's down to you to use it
appropriately.

There are two main times you're going to meet implicitly unwrapped optionals. The first is
when you're working with Apple's APIs: these frequently return implicitly unwrapped
optionals because their code pre-dates Swift and that was how things were done in Ye Olde
Ages Of Programming.

The second is when you're working with user interface elements in UIKit. These need to be
declared up front, but you can't use them until they have been created by iOS – and it likes
to create user interface elements at the last possible moment to avoid any unnecessary
work. Having to continually unwrap values you definitely know will be there is annoying, so
these are made implicitly unwrapped.

www.hackingwithswift.com 62

Don't worry if you find implicitly unwrapped optionals a bit hard to grasp - it will become
clear as you work with the language.

www.hackingwithswift.com 63

Optional chaining
Working with optionals can feel a bit clumsy sometimes, and all the unwrapping and
checking can become so onerous that you might be tempted to throw some exclamation
marks to force unwrap stuff so you can get on with work. Be careful, though: if you force
unwrap an optional that doesn't have a value, your code will crash.

Swift has two techniques to help make your code less complicated. The first is called
optional chaining, which lets you run code only if your optional has a value. Put the below
code into your playground to get us started:

func albumReleasedYear(year: Int) -> String? {

 switch year {

 case 2006: return "Taylor Swift"

 case 2008: return "Fearless"

 case 2010: return "Speak Now"

 case 2012: return "Red"

 case 2014: return "1989"

 default: return nil

 }

}

let album = albumReleasedYear(2006)

print("The album is \(album)")

That will output "The album is Optional("Taylor Swift")" into the results pane.

If we wanted to convert the return value of albumReleasedYear() to be uppercase letters
(that is, "TAYLOR SWIFT" rather than "Taylor Swift") we could use the uppercaseString
value of that string. For example:

let str = "Hello world"

print(str.uppercaseString)

www.hackingwithswift.com 64

print(str.uppercaseString)

The problem is, albumReleasedYear() returns an optional string: it might return a string or it
might return nothing at all. So, what we really mean is, "if we got a string back make it
uppercase, otherwise do nothing." And that's where optional chaining comes in, because it
provides exactly that behavior.

Try changing the last two lines of code to this:

let album = albumReleasedYear(2006)?.uppercaseString

print("The album is \(album)")

Note that there's a question mark in there, which is the optional chaining: everything after the
question mark will only be run if everything before the question mark has a value. This
doesn't affect the underlying data type of album, because that line of code will now either
return nil or will return the uppercase album name – it's still an optional string.

Your optional chains can be as long as you need, for example:

let album =
albumReleasedYear(2006)?.someOptionalValue?.someOtherOptionalValue?.w
hatever

Swift will check them from left to right until it finds nil, at which point it stops.

The nil coalescing operator
This simple Swift feature makes your code much simpler and safer, and yet has such a
grandiose name that many people are scared of it. This is a shame, because the nil
coalescing operator will make your life easier if you take the time to figure it out!

www.hackingwithswift.com 65

What it is does is let you say "use value A if you can, but if value A is nil then use value B."
That's it. It's particularly helpful with optionals, because it effectively stops them from being
optional because you provide a non-optional value B. So, if A is optional and has a value, it
gets used (we have a value.) If A is present and has no value, B gets used (so we still have a
value). Either way, we definitely have a value.

To give you a real context, try using this code in your playground:

let album = albumReleasedYear(2006) ?? "unknown"

print("The album is \(album)")

That double question mark is the nil coalescing operator, and in this situation it means "if
albumReleasedYear() returned a value then put it into the album variable, but if
albumReleasedYear() returned nil then use 'unknown' instead."

If you look in the results pane now, you'll see "The album is Taylor Swift" printed in there – no
more optionals. This is because Swift can now be sure it will get a real value back, either
because the function returned one or because you're providing "unknown". This in turn
means you don't need to unwrap anything or risk crashes – you're guaranteed to have real
data to work with, which makes your code safer and easier to work with.

www.hackingwithswift.com 66

Enumerations
Enumerations – usually just called "enum" and pronounced "ee-num" - are a way for you to
define your own kind of value in Swift. In some programming languages they are simple little
things, but Swift adds a huge amount of power to them if you want to go beyond the basics.

Let's start with a simple example from earlier:

func getHaterStatus(weather: String) -> String? {

 if weather == "sunny" {

 return nil

 } else {

 return "Hate"

 }

}

That function accepts a string that defines the current weather. The problem is, a string is a
poor choice for that kind of data – is it "rain", "rainy" or "raining"? Or perhaps "showering",
"drizzly" or "stormy"? Worse, what if one person writes "Rain" with an uppercase R and
someone else writes "Ran" because they weren't looking at what they typed?

Enums solve this problem by letting you define a new data type, then define the possible
values it can hold. For example, we might say there are five kinds of weather: sun, cloud,
rain, wind and snow. If we make this an enum, it means Swift will accept only those five
values – anything else will trigger an error. And behind the scenes enums are usually just
simple numbers, which are a lot faster than strings for computers to work with.

Let's put that into code:

enum WeatherType {

 case Sun, Cloud, Rain, Wind, Snow

}

func getHaterStatus(weather: WeatherType) -> String? {

www.hackingwithswift.com 67

func getHaterStatus(weather: WeatherType) -> String? {

 if weather == WeatherType.Sun {

 return nil

 } else {

 return "Hate"

 }

}

getHaterStatus(WeatherType.Cloud)

Take a look at the first three lines: line 1 gives our type a name, WeatherType. This is what
you'll use in place of String or Int in your code. Line 2 defines the five possible cases our
enum can be, as I already outlined. Convention has these start with a capital letter, so Sun,
Cloud, etc. And line 3 is just a closing brace, ending the enum.

Now take a look at how it's used: I modified the getHaterStatus() so that it takes a
WeatherType value. The conditional statement is also rewritten to compare against
WeatherType.Sun, which is our value. Remember, this check is just a number behind the
scenes, which is lightning fast.

Now, go back and read that code again, because I'm about to rewrite it with two changes
that are important. All set?

enum WeatherType {

 case Sun

 case Cloud

 case Rain

 case Wind

 case Snow

}

func getHaterStatus(weather: WeatherType) -> String? {

 if weather == .Sun {

www.hackingwithswift.com 68

 if weather == .Sun {

 return nil

 } else {

 return "Hate"

 }

}

getHaterStatus(.Cloud)

I made two differences there. First, each of the weather types are now on their own line. This
might seem like a small change, and indeed in this example it is, but it becomes important
soon. The second change was that I wrote if weather == .Sun – I didn't need to spell out
that I meant WeatherType.Sun because Swift knows I am comparing against a
WeatherType variable, so it's using type inference.

Note that at this time Xcode is unable to use code completion to suggest enums if you use
this short form. If you type them in full, e.g. WeatherType.Sun, you will get code completion.

Enums are particularly useful inside switch/case blocks, particularly because Swift knows all
the values your enum can have so it can ensure you cover them all. For example, we might
try to rewrite the getHaterStatus() method to this:

func getHaterStatus(weather: WeatherType) -> String? {

 switch weather {

 case .Sun:

 return nil

 case .Cloud, .Wind:

 return "dislike"

 case .Rain:

 return "hate"

 }

}

www.hackingwithswift.com 69

Yes, I realise "haters gonna dislike" is hardly a great lyric, but its academic anyway because
this code won't build: it doesn't handle the .Snow case, and Swift wants all cases to be
covered. You either have to add a case for it or add a default case.

Enums with additional values
One of the most powerful features of Swift is that enumerations can have values attached to
them that you define. To extend our increasingly dubious example a bit further, I'm going to
add a value to the .Wind case so that we can say how fast the wind is. Modify your code to
this:

enum WeatherType {

 case Sun

 case Cloud

 case Rain

 case Wind(speed: Int)

 case Snow

}

As you can see, the other cases don't need a speed value – I put that just into wind. Now for
the real magic: Swift lets us add extra conditions to the swift/case block so that a case will
match only if those conditions are true. This uses the let keyword to access the value inside
a case, then the where keyword for pattern matching.

Here's the new function:

func getHaterStatus(weather: WeatherType) -> String? {

 switch weather {

 case .Sun:

www.hackingwithswift.com 70

 case .Sun:

 return nil

 case .Wind(let speed) where speed < 10:

 return "meh"

 case .Cloud, .Wind:

 return "dislike"

 case .Rain, .Snow:

 return "hate"

 }

}

getHaterStatus(WeatherType.Wind(speed: 5))

You can see .Wind appears in there twice, but the first time is true only if the wind is slower
than 10 kilometers per hour. If the wind is 10 or above, that won't match. The key is that you
use let to get hold of the value inside the enum (i.e. to declare a constant name you can
reference) then use a where condition to check.

Swift evaluates switch/case from top to bottom, and stops as soon as it finds match. This
means that if case .Cloud, .Wind: appears before case .Wind(let speed) where speed <
10: then it will be executed instead – and the output changes. So, think carefully about how
you order cases!

www.hackingwithswift.com 71

Structs
Structs are complex data types, meaning that they are made up of multiple values. You then
create an instance of the struct and fill in its values, then you can pass it around as a single
value in your code. For example, we could define a Person struct type that contains two
properties: clothes and shoes:

struct Person {

 var clothes: String

 var shoes: String

}

When you define a struct, Swift makes them very easy to create because it automatically
generates what's called a memberwise initializer. In plain speak, it means you create the
struct by passing in initial values for its two properties, like this:

let taylor = Person(clothes: "T-shirts", shoes: "sneakers")

let other = Person(clothes: "short skirts", shoes: "high heels")

Once you have created an instance of a struct, you can read its properties just by writing the
name of the struct, a period, then the property you want to read:

print(taylor.clothes)

print(other.shoes)

If you assign one struct to another, Swift copies it behind the scenes so that it is a complete,
standalone duplicate of the original. Well, that's not strictly true: Swift uses a technique
called "copy on write" which means it only actually copies your data if you try to change it.

To help you see how struct copies work, put this into your playground:

www.hackingwithswift.com 72

struct Person {

 var clothes: String

 var shoes: String

}

let taylor = Person(clothes: "T-shirts", shoes: "sneakers")

let other = Person(clothes: "short skirts", shoes: "high heels")

var taylorCopy = taylor

taylorCopy.shoes = "flip flops"

taylor

taylorCopy

That creates two Person structs, then creates a third one called taylorCopy as a copy of
taylor. What happens next is the interesting part: the code changes taylorCopy, and prints
both it and taylor. If you look in your results pane (you might need to resize it to fit) you'll see
that the copy has a different value to the original: changing one did not change the other.

www.hackingwithswift.com 73

Classes
Swift has another way of build complex data types called classes. They look similar to
structs, but have a number of important differences, including:

 • You don't get an automatic memberwise initializer for your classes; you need to write your
own.
 • You can define a class as being based off another class, adding any new things you want.
 • If you copy an object, both copies point at the same data by default.

All three of those are massive differences, so I'm going to cover them in more depth before
continuing.

Initializing an object
If we were to convert our Person struct into a Person class, Swift wouldn't let us write this:

class Person {

 var clothes: String

 var shoes: String

}

This is because we're declaring the two properties to be String, which if you remember
means they absolutely must have a value. This was fine in a struct because Swift
automatically produces a memberwise initializer for us that forced us to provide values for
the two properties, but this doesn't happen with classes so Swift can't be sure they will be
given values.

There are three solutions: make the two values optional strings, give them default values, or
write our own initializer. The first option is clumsy because it introduces optionals all over our
code where they don't need to be. The second option works, but it's a bit wasteful unless
those default values will actually be used. That leaves the third option, and really it's the right
one: write our own initializer.

www.hackingwithswift.com 74

To do this, create a function inside the class called init() that takes the two parameters we
care about:

class Person {

 var clothes: String

 var shoes: String

 init(clothes: String, shoes: String) {

 self.clothes = clothes

 self.shoes = shoes

 }

}

There are two things that might jump out at you in that code. First, you don't write func
before your init() function, because it's special. Second, because the parameter names being
passed in are the same as the names of the properties we want to assign, you use self. to
make your meaning clear – "the clothes property of this object should be set to the clothes
parameter that was passed in." You can give them unique names if you want – it's down to
you.

There are two more things you ought to know but can't see in that code. First, when you
write a function inside a class, it's called a method instead. In Swift you write func whether
it's a function or a method, but the distinction is preserved when you talk about them.

Second, Swift requires that all non-optional properties have a value by the end of the
initializer, or by the time the initializer calls any other method – whichever comes first.

Class inheritance
The second difference between classes and structs are that classes can build on each other
to produce greater things, known as class inheritance. This is a technique used extensively in

www.hackingwithswift.com 75

to produce greater things, known as class inheritance. This is a technique used extensively in
Cocoa Touch, even in the most basic programs, so it's something you should get to grips
with.

Let's start with something simple: a Singer class that has properties, which is their name and
age. As for methods, there will a simple initializer to handle setting the properties, plus a
sing() method that outputs some words:

class Singer {

 var name: String

 var age: Int

 init(name: String, age: Int) {

 self.name = name

 self.age = age

 }

 func sing() {

 print("La la la la")

 }

}

We can now create an instance of that object by calling that initializer, then read out its
properties and call its method:

var taylor = Singer(name: "Taylor", age: 25)

taylor.name

taylor.age

taylor.sing()

That's our basic class, but we're going to build on it: I want to define a CountrySinger class

www.hackingwithswift.com 76

that has everything the Singer class does, but when I call sing() on it I want to print "Trucks,
girls, and liquor" instead.

You could of course just copy and paste the original Singer into a new class called
CountrySinger but that's a lazy way to program and it will come back to haunt if you make
later changes to Singer and forget to copy them across. Instead, Swift has a smarter
solution: we can define CountrySinger as being based off Singer and it will get all its
properties and methods for us to build on:

class CountrySinger: Singer {

}

That colon is what does the magic: it means "CountrySinger extends Singer." Now, that
new CountrySinger class (called a subclass) doesn't add anything to Singer (called the
parent class, or superclass) yet. We want it to have its own sing() method, but in Swift you
need to learn a new keyword: override. This means "I know this method was implemented
by my parent class, but I want to change it for this subclass."

Having the override keyword is helpful, because it makes your intent clear. It also allows
Swift to check your code: if you don't use override Swift won't let you change a method you
got from your superclass, or if you use override and there wasn't anything to override, Swift
will point out your error.

So, we need to use override func, like this:

class CountrySinger : Singer {

 override func sing() {

 print("Trucks, girls, and liquor")

 }

}

www.hackingwithswift.com 77

Now modify the way the taylor object is created:

var taylor = CountrySinger(name: "Taylor", age: 25)

taylor.sing()

If you change CountrySinger to just Singer you should be able to see the different
messages appearing in the results pane.

Now, to make things more complicated, we're going to define a new class called
HeavyMetalSinger. But this time we're going to store a new property called noiseLevel
defining how loud this particular heavy metal singer likes to scream down their microphone.

This causes a problem, and it's one that needs to be solved in a very particular way:

 • Swift wants all non-optional properties to have a value.
 • Our Singer class doesn't have a noiseLevel property.
 • So, we need to create a custom initializer for HeavyMetalSinger that accepts a noise level.
 • That new initializer also needs to know the name and age of the heavy metal singer, so it
can pass it onto the superclass Singer.
 • Passing on data to the superclass is done through a method call, and you can't make
method calls in initializers until you have given all your properties values.
 • So, we need to set our own property first (noiseLevel) then pass on the other parameters
for the superclass to use.

That might sound awfully complicated, but in code it's straightforward. Here's the
HeavyMetalSinger class, complete with its own sing() method:

class HeavyMetalSinger : Singer {

 var noiseLevel: Int

 init(name: String, age: Int, noiseLevel: Int) {

 self.noiseLevel = noiseLevel

 super.init(name: name, age: age)

 }

www.hackingwithswift.com 78

 }

 override func sing() {

 print("Grrrrr rargh rargh rarrrrgh!")

 }

}

Notice how its initializer takes three parameters, then calls super.init() to pass name and
age on to the Singer superclass - but only after its own property has been set. You'll see
super used a lot when working with objects, and it just means "call a method on the class I
inherited from. It's usually used to mean "let my parent class do everything it needs to do
first, then I'll do my extra bits."

Class inheritance is a big topic so don't fret if it's not clear just yet. However, there is one
more thing you need to know: class inheritance often spans many levels. For example, A
could inherit from B, and B could inherit from C, and C could inherit from D, and so on. This
lets you build functionality and re-use up over a number of classes, helping to keep your
code modular and easy to understand.

Values vs References
When you copy a struct, the whole thing is duplicated, including all its values. This means
that changing one copy of a struct doesn't change the other copies – they are all individual.
With classes, each copy of an object points at the same original object, so if you change one
they all change. Swift calls structs "value types" because they just point at a value, and
classes "reference types" because objects are just shared references to the real value.

This is an important difference, and it means the choice between structs and classes is an
important one:

 • If you want to have one shared state that gets passed around and modified in place, you're
looking for classes. You can pass them into functions or store them in arrays, modify them in
there, and have that change reflected in the rest of your program.

www.hackingwithswift.com 79

 • If you want to avoid shared state where one copy can't affect all the others, you're looking
for structs. You can pass them into functions or store them in arrays, modify them in there,
and they won't change wherever else they are referenced.

If I were to summarise this key difference between structs and classes, I'd say this: classes
offer more flexibility, whereas structs offer more safety. As a basic rule, you should always
use structs until you have a reason to use classes.

www.hackingwithswift.com 80

Properties
Structs and classes (collectively: "types") can have their own variables and constants, and
these are called properties. These let you attach values to your types to represent them
uniquely, but because types can also have methods you can have them behave according to
their own data.

Let's take a look at an example now:

struct Person {

 var clothes: String

 var shoes: String

 func describe() {

 print("I like wearing \(clothes) with \(shoes)")

 }

}

let taylor = Person(clothes: "T-shirts", shoes: "sneakers")

let other = Person(clothes: "short skirts", shoes: "high heels")

taylor.describe()

other.describe()

As you can see, when you use a property inside a method it will automatically use the value
that belongs to the same object.

Property observers
Swift lets you add code to be run when a property is about to be changed or has been
changed. This is frequently a good way to have a user interface update when a value

www.hackingwithswift.com 81

changes, for example.

There are two kinds of property observer: willSet and didSet, and they are called before or
after a property is changed. In willSet Swift provides your code with a special value called
newValue that contains what the new property value is going to be, and in didSet you are
given oldValue to represent the previous value.

Let's attach two property observers to the clothes property of a Person struct:

struct Person {

 var clothes: String {

 willSet {

 updateUI("I'm changing from \(clothes) to \(newValue)")

 }

 didSet {

 updateUI("I just changed from \(oldValue) to \(clothes)")

 }

 }

}

func updateUI(msg: String) {

 print(msg)

}

var taylor = Person(clothes: "T-shirts")

taylor.clothes = "short skirts"

That will print out the messages "I'm changing from T-shirts to short skirts" and "I just
changed from T-shirts to short skirts."

www.hackingwithswift.com 82

Computed properties
It's possible to make properties that are actually code behind the scenes. We already used
the uppercaseString property of strings, for example – that's something that gets calculated
as needed, rather than every string always storing an uppercase version of itself.

To make a computed property, place an open brace after your property then use either get or
set to make an action happen at the appropriate time. For example, if we wanted to add a
ageInDogYears property that automatically returned a person's age multiplied by seven,
we'd do this:

struct Person {

 var age: Int

 var ageInDogYears: Int {

 get {

 return age * 7

 }

 }

}

var fan = Person(age: 25)

print(fan.ageInDogYears)

Computed properties are common in Apple's code, but less common in user code. Many
programmers prefer to use methods because their behavior is clearer.

www.hackingwithswift.com 83

Static properties and methods
Swift lets you create properties and methods that belong to a type, rather than to instances
of a type. This is helpful for organizing your data meaningfully by storing shared data.

Swift calls these shared properties "static properties", and you create one just by using the
static keyword. Once that's done, you access the property by using the full name of the
type. Here's a simple example:

struct TaylorFan {

 static var favoriteSong = "Shake it Off"

 var name: String

 var age: Int

}

let fan = TaylorFan(name: "James", age: 25)

print(TaylorFan.favoriteSong)

So, a Taylor Swift fan has a name and age that belongs to them, but they all have the same
favorite song.

Because static methods belong to the class rather than to instances of a class, you can't use
it to access any non-static properties from the class.

www.hackingwithswift.com 84

Access control
This is an important feature and one you need to understand, but sadly it's one that doesn't
work in Swift playgrounds so you'll just have to take my word for it. Access control lets you
specify what data inside structs and classes should be exposed to the outside world, and
you get to choose three modifiers:

 • Public: this means everyone can read and write the property.
 • Internal: this means only your Swift code can read and write the property.
 • Private: this means that only Swift code in the same file as the type can read and write the
property.

Most of the time you don't need to specify access control, but sometimes you'll want to
explicitly set a property to be private because it stops others from accessing it directly. This
is useful because your own methods can work with that property, but others can't, thus
forcing them to go through your code to perform certain actions.

To declare a property private, just do this:

class TaylorFan {

 private var name: String!

}

Reminder: this does nothing on Swift playgrounds, because one playground is effectively one
file and thus can read and write any data it likes.

www.hackingwithswift.com 85

Polymorphism and type casting
Because classes can inherit from each other (e.g. CountrySinger can inherit from Singer) it
means one class is effectively a superset of another: class B has all the things A has, with a
few extras. This in turn means that you can treat B as type B or as type A, depending on your
needs.

Confused? Let's try some code:

class Album {

 var name: String

 init(name: String) {

 self.name = name

 }

}

class StudioAlbum: Album {

 var studio: String

 init(name: String, studio: String) {

 self.studio = studio

 super.init(name: name)

 }

}

class LiveAlbum: Album {

 var location: String

 init(name: String, location: String) {

 self.location = location

 super.init(name: name)

www.hackingwithswift.com 86

 super.init(name: name)

 }

}

That defines three classes: albums, studio albums and live albums, with the latter two both
inheriting from Album. Because any instance of LiveAlbum is inherited from Album it can be
treated just as either Album or LiveAlbum – it's both at the same time. This is called
"polymorphism," but it means you can write code like this:

var taylorSwift = StudioAlbum(name: "Taylor Swift", studio: "The
Castles Studios")

var fearless = StudioAlbum(name: "Speak Now", studio: "Aimeeland
Studio")

var iTunesLive = LiveAlbum(name: "iTunes Live from SoHo", location:
"New York")

var allAlbums: [Album] = [taylorSwift, fearless, iTunesLive]

There we create an array that holds only albums, but put inside it two studio albums and a
live album. This is perfectly fine in Swift because they are all descended from the Album
class, so they share the same basic behavior.

We can push this a step further to really demonstrate how polymorphism works. Let's add a
getPerformance() method to all three classes:

class Album {

 var name: String

 init(name: String) {

 self.name = name

 }

www.hackingwithswift.com 87

 func getPerformance() -> String {

 return "The album \(name) sold lots"

 }

}

class StudioAlbum: Album {

 var studio: String

 init(name: String, studio: String) {

 self.studio = studio

 super.init(name: name)

 }

 override func getPerformance() -> String {

 return "The studio album \(name) sold lots"

 }

}

class LiveAlbum: Album {

 var location: String

 init(name: String, location: String) {

 self.location = location

 super.init(name: name)

 }

 override func getPerformance() -> String {

 return "The live album \(name) sold lots"

 }

}

www.hackingwithswift.com 88

The getPerformance() method exists in the Album class, but both child classes override it.
When we create an array that holds Albums, we're actually filling it with subclasses of
albums: LiveAlbum and StudioAlbum. They go into the array just fine because they inherit
from the Album class, but they never lose their original class. So, we could write code like
this:

var taylorSwift = StudioAlbum(name: "Taylor Swift", studio: "The
Castles Studios")

var fearless = StudioAlbum(name: "Speak Now", studio: "Aimeeland
Studio")

var iTunesLive = LiveAlbum(name: "iTunes Live from SoHo", location:
"New York")

var allAlbums: [Album] = [taylorSwift, fearless, iTunesLive]

for album in allAlbums {

 print(album.getPerformance())

}

That will automatically use the override version of getPerformance() depending on the
subclass in question. That's polymorphism in action: an object can work as its class and its
parent classes, all at the same time.

Converting types with type casting
You will often find you have an object of a certain type, but really you know it's a different
type. Sadly, if Swift doesn't know what you know, it won't build your code. So, there's a
solution, and it's called type casting: converting an object of one type to another.

Chances are you're struggling to think why this might be necessary, but I can give you a very
simple example:

www.hackingwithswift.com 89

simple example:

for album in allAlbums {

 print(album.getPerformance())

}

That was our loop from a few minutes ago. The allAlbums array holds the type Album, but
we know that really it's holding one of the subclasses: StudioAlbum or LiveAlbum. Swift
doesn't know that, so if you try to write something like print(album.studio) it will refuse to
build because only StudioAlbum objects have that property.

Type casting in Swift comes in three forms, but most of the time you'll only meet two: as?
and as!, known as optional downcasting and forced downcasting. The former means "I think
this conversion might be true, but it might fail," and the second means "I know this
conversion is true, and I'm happy for my app to crash if I'm wrong." When I say "conversion"
I don't mean that the object literally gets transformed. Instead, it's just converting how Swift
treats the object – you're telling Swift that an object it thought was type A is actually type E.

The question and exclamation marks should give you a hint of what's going on, because this
is very similar to optional territory. For example, if you write this:

for album in allAlbums {

 let studioAlbum = album as? StudioAlbum

}

Swift will make studioAlbum have the data type StudioAlbum?. That is, an optional studio
album: the conversion might have worked, in which case you have a studio album you can
work with, or it might have failed, in which case you have nil. This is most commonly used
with if let to automatically unwrap the optional result, like this:

for album in allAlbums {

 print(album.getPerformance())

www.hackingwithswift.com 90

 if let studioAlbum = album as? StudioAlbum {

 print(studioAlbum.studio)

 } else if let liveAlbum = album as? LiveAlbum {

 print(liveAlbum.location)

 }

}

That will go through every album and print its name, because that's common to the Album
class and all its subclasses. It then checks whether it can convert the album value into a
StudioAlbum, and if it can it prints out the studio name. The same thing is done for the
LiveAlbum in the array.

Forced downcasting is when you're really sure an object of one type can be treated like a
different type, but if you're wrong your program will just crash. Forced downcasting doesn't
need to return an optional value, because you're saying the conversion is definitely going to
work – if you're wrong, it means you wrote your code wrong.

To demonstrate this in a non-crashy way, let's strip out the live album so that we just have
studio albums in the array:

var taylorSwift = StudioAlbum(name: "Taylor Swift", studio: "The
Castles Studios")

var fearless = StudioAlbum(name: "Speak Now", studio: "Aimeeland
Studio")

var allAlbums: [Album] = [taylorSwift, fearless]

for album in allAlbums {

 let studioAlbum = album as! StudioAlbum

 print(studioAlbum.studio)

}

www.hackingwithswift.com 91

That's obviously a contrived example, because if that really were your code you would just
change allAlbums so that it had the data type [StudioAlbum]. Still, it shows how forced
downcasting works, and the example won't crash because it makes the correct
assumptions.

Swift lets you downcast as part of the array loop, which in this case would be more efficient.
If you wanted to write that forced downcast at the array level, you would write this:

for album in allAlbums as! [StudioAlbum] {

 print(album.studio)

}

That no longer needs to downcast every item inside the loop, because it happens when the
loop begins. Again, you had better be correct that all items in the array are StudioAlbums,
otherwise your code will crash.

Swift also allows optional downcasting at the array level, although it's a bit more tricksy
because you need to use the nil coalescing operator to ensure there's always a value for the
loop. Here's an example:

for album in allAlbums as? [LiveAlbum] ?? [LiveAlbum]() {

 print(album.location)

}

What that means is, "try to convert allAlbums to be an array of LiveAlbum objects, but if
that fails just create an empty of live albums and use that instead" – i.e., do nothing. It's
possible to use this, but I'm not sure you'd really want to!

www.hackingwithswift.com 92

Closures
You've met integers, strings, doubles, floats, Booleans, arrays, dictionaries, structs and
classes so far, but there's another type of data that is used extensively in Swift, and it's
called a closure. These are complicated, but they are so powerful and expressive that they
are used pervasively in Cocoa Touch, so you won't get very far without understanding them.

A closure can be thought of as a variable that holds code. So, where an integer holds 0 or
500, a closure holds lines of Swift code. It's different to a function, though, because closures
are a data type in their own right: you can pass a closure as a parameter or store it as a
property. Closures also capture the environment where they are created, which means they
take a copy of the values that are used inside them.

You never need to design your own closures so don't be afraid if you find the following quite
complicated. However, Cocoa Touch will often ask you to write closures to match its needs,
so you at least need to know how they work. Let's take a Cocoa Touch example first:

let vw = UIView()

UIView.animateWithDuration(0.5, animations: {

 vw.alpha = 0

})

UIView is a data type in UIKit that represents the most basic kind of user interface container.
Don't worry about what it does for now, all that matters is that it's the basic user interface
component. UIView has a method called animateWithDuration() and it lets you change the
way your interface looks using animation – you describe what's changing and over how
many seconds, and Cocoa Touch does the rest.

The animateWithDuration() method takes two parameters in that code: the number of
seconds to animate over, and a closure containing the code to be executed as part of the
animation. I've specified half a second as the first parameter, and for the second I've asked
UIKit to adjust the view's alpha (that's opacity) to 0, which means "completely transparent."

This method needs to use a closure because UIKit has to do all sorts of work to prepare for
the animation to begin, so what happens is that UIKIt takes a copy of the code inside the

www.hackingwithswift.com 93

braces (that's our closure), stores it away, does all its prep work, then runs our code when it's
ready. This wouldn't be possible if we just run our code directly.

The above code also shows how closure's capture their environment: I declared the vw
constant outside of the closure, then used it inside. Swift detects this, and makes that data
available inside the closure too.

Swift's system of automatically capturing a closure's environment is very helpful, but can
occasionally trip you up: if object A stores a closure as a property, and that property also
references object A, you have something called a strong reference cycle and you'll have
unhappy users. This is a substantially more advanced topic than you need to know right now,
so don't worry too much about it just yet.

Trailing closures
As closures are used so frequently, Swift can apply a little syntactic sugar to make your code
easier to read. The rule is this: if the last parameter to a method takes a closure, you can
eliminate that parameter and instead provide it as a block of code. For example, we could
convert the previous code to this:

let vw = UIView()

UIView.animateWithDuration(0.5) {

 vw.alpha = 0

}

It does make your code shorter and easier to read, so this syntax form – known as trailing
closure syntax – is preferred.

www.hackingwithswift.com 94

Wrap up
That's the end of our tour around the Swift programming language. I haven't tried to cover
everything in the language, but that's OK because you have all the important stuff, all the
sometimes-important stuff, and all the nice-to-know stuff – the interesting-but-rarely-used
features you'll either come across in a later project or through extended experience with the
language.

If you find yourself a bit confused about how exactly some features are used, don't worry: as
soon as you start coding apps with Swift things will start to make a lot more sense!

At this point, you have two options: start on Project 1 of Hacking with Swift, where you make
your initial iOS app and recap some of the basic features of Swift, or if you're really
desperate to learn more about the language I have four articles that teach you the new
features of Swift 2.0 by example.

www.hackingwithswift.com 95

Project 1
Storm Viewer
Get started coding in Swift by making an image viewer app
and learning key concepts.

www.hackingwithswift.com 96

Setting up
In this project you'll produce an application that lets users scroll through a list of images,
then select one to view. It's deliberately simple, because there are many other things you'll
need to learn along the way, so strap yourself in – this is going to be long!

Launch Xcode, and choose "Create a new project" from the welcome screen. Choose
Master-Detail Application from the list and click Next. For Product Name enter Project1, then
make sure you have Swift selected for language and Universal for devices.

Creating a new Master-Detail Application project in Xcode.

One of the fields you'll be asked for is "Organisation Identifier", which is a unique identifier
usually made up of your personal web site domain name in reverse. For example, I would use
com.hackingwithswift if I were making an app. You'll need to put something valid in there if
you're deploying to devices, but otherwise you can just use com.example.

www.hackingwithswift.com 97

Setting your Organization Identifier in Xcode.

Important note: some of Xcode's project templates have checkboxes saying "Use Core
Data", "Include Unit Tests" and "Include UI Tests". Please ensure these boxes are unchecked
for this project and indeed all projects in this series.

Now click Next again and you'll be asked where you want to save the project – your desktop
is fine. Once that's done, you'll be presented with the example project that Xcode made for
you. The first thing we need to do is make sure you have everything set up correctly, and that
means running the project as-is.

When you run a project, you get to choose what kind of device the iOS Simulator should
pretend to be, or you can also select a physical device if you have one plugged in. These
options are listed under the Product > Destination menu, and you should see iPad 2, iPad Air,
iPhone 6, and so on.

There's also a shortcut for this menu: at the top-left of Xcode's window is the play and stop
button, but to the right of that it should say Project1 then a device name. You can click on
that device name to select a different device.

www.hackingwithswift.com 98

For now, please choose iPhone 5s, and click the Play triangle button in the top-left
corner. This will compile your code, which is the process of converting it to instructions that
iPhones can understand, then launch the simulator and run the app. As you'll see when you
interact with the app, this basic project adds dates to the table when you click the + button,
you can delete them either by swiping or using the Edit button, and tapping on a date brings
in a new screen showing the date in its center.

The basic Master-Detail Application project in Xcode.

You'll be starting and stopping projects a lot as you learn, so there are three basic tips you
need to know:

 • You can run your project by pressing Cmd+R. This is equivalent to clicking the play button.
 • You can stop a running project by pressing Cmd+.
 • If you have made changes to a running project, just press Cmd+R again. Xcode will prompt
you to stop the current run before starting another. Make sure you check the "Do not show
this message again" box to avoid being bothered in the future.

www.hackingwithswift.com 99

This project is all about letting users select images to view, so you're going to need to import
some pictures. Download the files for this project from GitHub, and look in the Project1
folder. You'll see another folder in there called Project1, and inside that a folder called
Content.

I want you to drag that Content folder straight into your Xcode project, just under where it
says "Info.plist". A window will appear asking how you want to add the files: make sure
"Copy items if needed" is checked, and "Create groups" is selected. Important: do not
choose "Create folder references" otherwise your project will not work.

When you add items to Xcode, make sure you choose Create Folder References.

Click Finish and you'll see a yellow Content folder appear in Xcode. If you see a blue one,
you didn't select "Create groups", and you'll have problems following this tutorial!

www.hackingwithswift.com 100

Deleting skeleton code
Apple's example contains lots of code we don't need, so let's zap it: select the file
MasterViewController.swift to open it for editing. Around line 17 you'll see the code starting
with override func viewDidLoad() {, and there'll be some more lines of code until it reaches
a } on a line all by itself on line 28. If you're not sure which } I mean, it's the one that is
aligned directly beneath the first letter in override.

No line numbers? If your Xcode isn't showing line numbers by default, I suggest you turn
them on. Go to the Xcode menu and choose Preferences, then choose the Text Editing tab
and make sure "Line numbers" is checked.

This block of code is the viewDidLoad() method, which is code that gets called when the
system has finished creating the screen and is giving you the chance to configure it.

The method starts at the func viewDidLoad() { line and ends on the } not far below. These
symbols, known as braces (or sometimes curly brackets) are used to mark chunks of code,
and it's convention to indent lines inside braces so that it's easy to identify where code
blocks start and end. But enough of the theory: almost everything inside this method is not
needed, so delete its contents except for the line super.viewDidLoad().

Note: when I say "delete its contents" I mean leave the func viewDidLoad() { and } intact,
but remove everything in between except for that one line. So, it should look like this:

override func viewDidLoad() {

 super.viewDidLoad()

}

This method does nothing now, but that's OK: we'll be filling it in later.

Next up, look for the insertNewObject() method, which starts with func insertNewObject()
{ and ends with a closing brace a few lines later. Delete the entire method – yes, even the
func insertNewObject(sender: AnyObject) { and } parts.

These methods start with func, which is short for "function", which for nearly all intents and
purposes is identical to a method in Swift. There is one small exception, but you won't come

www.hackingwithswift.com 101

to it until project 24 so for now please just consider functions and methods identical.

Finally, delete the very last method in the file. This one has a very peculiar name, and it's a bit
of a hangover from Apple's previous language, Objective C. The method is quite long, and
although we don't need it here, you do need to understand what it means. Here's the method
definition:

override func tableView(tableView: UITableView, commitEditingStyle
editingStyle: UITableViewCellEditingStyle, forRowAtIndexPath
indexPath: NSIndexPath)

Let's break that down…

 • override This means the method has been defined already, and we want to override the
existing definition with this new definition. If you didn't override it, then the previously defined
method would execute, and in this instance it would do nothing.
 • func tableView The method's name is tableView, which doesn't sound very useful. But
the way Apple defines methods is to ensure that the information that gets passed into them –
the parameters – are named usefully, and in this case the very first thing that gets passed in
is the table view that triggered the code. A table view, as you might have gathered, is the
scrolling thing that's containing all the dates in the example project, and is a core component
in iOS.
 • tableView: UITableView As promised, the first thing that gets passed into to the method is
the table view that triggered the code, and here it is. But this contains two pieces of
information: tableView is the name that we can use to reference the table view inside the
method, and UITableView is the data type – the bit that describes what it is. Everything that
begins with "UI" is something Apple provides as part of its iOS development kit, so
UITableView is the default Apple table view.
 • commitEditingStyle editingStyle: UITableViewCellEditingStyle This provides the really
important part of the method: what it's trying to do. We know it involves a table view because
that's the name of the method, but the commitEditingStyle part is the actual action: this
code will be triggered when the user tries to commit the editing style of a table view.
Translated, that means this code will be called when the user tries to add or delete data from
the table.

www.hackingwithswift.com 102

But wait: there's more! When we had tableView: UITableView, it meant we could reference
the table view by using the "tableView" parameter, but here the parameter is
commitEditingStyle, which would be quite a clumsy way to reference the parameter. So
Swift lets you give parameters external names: one used when passing data in
(commitEditingStyle, in this case) and one to be used inside the method (editingStyle).
Finally, there's the colon and UITableViewCellEditingStyle, which means that the
editingStyle parameter will be of data type UITableViewCellEditingStyle.
 • forRowAtIndexPath indexPath: NSIndexPath Here's that sneaky parameter naming
again, but again hopefully you can see how it's useful: people calling the method would write
forRowAtIndexPath, and inside the method you would use just indexPath. It's of data type
NSIndexPath, which holds two pieces of information: a table section and a table row. We
aren't using sections here, but we are using rows – in the example project, every date that is
inserted is one row.

I'm not going to pretend it's easy to understand how Swift methods look and work, but the
best thing to do is not worry too much if you don't understand right now because after a few
hours of coding they will be second nature. At the very least you do need to know that these
methods are referred to using their name (tableView) and any named parameters.
Parameters without names are just referenced as underscores: _.

So, the method you just deleted is referred to as
tableView(_:commitEditingStyle:forRowAtIndexPath:) – clumsy, I know, which is why most
people usually just talk about the important bit, for example, "in the commitEditingStyle
method."

The last things to delete are a little more subtle: look for the
tableView(_:cellForRowAtIndexPath:) method (I'll just call it cellForRowAtIndexPath from
now on) and you'll see these two lines of code:

let object = objects[indexPath.row] as! NSDate

cell.textLabel!.text = object.description

I want you to delete the part that says as! NSDate and the part that says .description. Your
final code should look like this:

let object = objects[indexPath.row]

www.hackingwithswift.com 103

let object = objects[indexPath.row]

cell.textLabel!.text = object

When you make this change, Xcode will start telling you there are problems. This is perfectly
normal – there are more changes to come.

Now find the prepareForSegue() method and you'll see another as NSDate in there that you
should delete, so the line should read this:

let object = objects[indexPath.row]

If you were able to run the project now, you would see it's basically useless because the add
button has been removed. But you can't run the program just yet, because it has problems
that need to be fixed. That's OK, though, because we're about to bring it to life again…

www.hackingwithswift.com 104

Listing our images
The images I've provided you with come from the National Oceanic and Atmospheric
Administration (NOAA), which is a US government agency and thus produces public domain
content that we can freely reuse. Once they are copied into your project, Xcode will
automatically build them into your finished app so that you can access them.

Behind the scenes, an iOS (and OS X) app is actually a directory containing lots of files: the
binary itself (that's the compiled version of your code, ready to run), all the media assets your
app uses, any visual layout files you have, plus a variety of other things such as metadata
and security entitlements.

These app directories are called bundles, and they have the file extension .app. Because our
media files are loose inside the folder, we can ask the system to tell us all the files that are in
there then pull out the ones we want. You may have noticed that all the images start with the
name "nssl" (short for National Severe Storms Laboratory), so our task is simple: list all the
files in our app's directory, and pull out the ones that start with "nssl".

As I said before, the viewDidLoad() method starts at func viewDidLoad() { and ends at the }
a few lines later. We're going to put some more code into that method, just beneath the line
that says super.viewDidLoad():

let fm = NSFileManager.defaultManager()

let path = NSBundle.mainBundle().resourcePath!

let items = try! fm.contentsOfDirectoryAtPath(path)

for item in items {

 if item.hasPrefix("nssl") {

 objects.append(item)

 }

}

I already told you that any data types that start with UI belong to Apple's iOS development
kit, but that's only partially true. UI stands for User Interface, and so these types primarily

www.hackingwithswift.com 105

relate to things the user can interact with – UITableView is a table, UIButton is a button,
UITextField is a text entry field, and so on. But there are lots of other data types that Apple
provides you with, and here we can see two: NSFileManager and NSBundle.

To cut a long story short, NS is short for NeXTSTEP, software that Apple bought in 1997.
NeXSTEP developed technology that still today lies at the heart of iOS. NSBundle and
NSFileManager are data types that can do some great work for you, but they don't have a
visual component. Incidentally, these NS data types nearly always existing on OS X
identically to iOS, whereas all those UI things are available only on iOS.

Enough history, let's look at what this code does:

 • let fm = NSFileManager.defaultManager() This declares a constant called fm and assigns
it the value returned by NSFileManager.defaultManager(). This is a data type that lets us
work with the filesystem, and in our case we'll be using it to look for files.
 • let path = NSBundle.mainBundle().resourcePath! This declares a constant called path
that is set to the resource path of our app's bundle. Remember, a bundle is a directory
containing our compiled program and all our assets. So, this line says, "tell me where I can
find all those images I added to my app."
 • let items = try! fm.contentsOfDirectoryAtPath(path) This declares a third constant called
items that is set to the contents of the directory at a path. Which path? Well, the one that
was returned by the line before. As you can see, Apple's long method names really does
make their code quite self-descriptive!
 • for item in items { This starts a loop. Loops are a block of code that execute multiple
times. In this case, the loop executes once for every item we found in the app bundle. Note
that the line has an opening brace at the end: that signals the start of a new block of code,
and there's a matching closing brace four lines beneath.

Everything inside those braces will be executed each time the loop goes around. We could
translate this line as "treat items as a series of text strings, then pull out each one of those
text strings, give it the name item, then run the following code block…" We use text strings
because contentsOfDirectoryAtPath() returns a list of filenames.
 • if item.hasPrefix("nssl") { This is the first line inside our loop. By this point, we'll have the
first filename ready to work with, and it'll be called item. To decide whether it's one we care
about or not, we use the hasPrefix() method: it takes one parameter (the prefix to search for)
and returns either true or false.

www.hackingwithswift.com 106

That "if" at the start means this line is a conditional statement: if the item has the prefix
"nssl", then… that's right, another opening brace to mark another new code block. This time,
the code will be executed only if hasPrefix() returned true.
 • objects.append(item) This code will be executed only if hasPrefix() returned true, and it
adds the matching filename to the end of a list called objects. No, we didn't create that –
that was in the Xcode sample project.

In just those few lines of code, there's quite a lot to take in, so let's recap:

 • We use let to declare constants. Constants are pieces of data that we want to reference,
but that we know won't have a changing value. For example, your birthday is a constant, but
your age is not – your age is a variable, because it varies.
 • Swift coders really like to use constants in places most other developers use variables.
This is because when you're actually coding you start to realise that most of the data you
store doesn't actually change very much, so you might as well make it constant. Doing so
allows the system to do some optimisation, and also adds some extra safety because if you
try to change a constant the compiler will issue errors.
 • Text in Swift is represented using the String data type. Swift strings are extremely powerful
and guaranteed to work with any language you can think of – English, Chinese, Klingon and
more.
 • Collections of values are called arrays, and are usually restricted to holding one data type
at a time. An array of strings is written as [String] and can hold only strings. If you try to put
numbers in there, the compiler will emit errors. There is a special data type called AnyObject
that means, as you might imagine, any data type can be placed inside
 • The try! keyword is not used frequently, but we're using it here to mean "I realise calling
this code might fail, but I'm certain it won't." If the code does fail, our app will crash. At the
same time, if the code fails it means our app can't read its own data, so something must be
seriously wrong, which is why try! is OK here.
 • You can use for someVar in someArray to loop through every item in an array. Swift pulls
out each item and runs the code inside your loop once for each item.

If you're extremely observant you might have noticed one tiny, tiny little thing that also one of
the most complicated parts of Swift, so I'm going to keep it as simple as possible for now,
then expand more over time: it's the exclamation mark at the end of
NSBundle.mainBundle().resourcePath! No, that wasn't a typo from me. If you take away
the exclamation mark the code will no longer work, so clearly Xcode thinks it's important –
and indeed it is. Swift has three ways of working with data:

1. A variable or constant that holds the data. For example, foo: String is a string called foo.

www.hackingwithswift.com 107

2. A variable or constant that might hold the data, but we're not sure. This is called an
optional type, and looks like this: foo: String? You can't use these directly, instead you need
to "unwrap" them first.
3. A variable or constant that might hold the data, and in fact we're sure it does – at least
once it has first been set. This is called an implicitly unwrapped optional, and looks like this:
foo: String! You can use these directly.

When I explain this to people, they nearly always get optional and implicitly unwrapped
optional confused, largely because they aren't all that different. Implicitly unwrapped
optionals – the !s – serve two purposes: they make code easier to work with, and they make
for easier compatibility with Apple's vast collection of existing APIs.

We'll look at optionals in more depth later, but for now what matters is that
NSBundle.mainBundle().resourcePath may or may not return a string, so what it returns is
a String? – that is, an optional string. By adding the exclamation mark to the end we are
force unwrapping the optional string, which means we're saying, "I'm sure this will return a
real string, it will never be nil, so please just give it to me as a regular string."

Important warning: if you ever try to use a constant or variable that has a nil value, your app
will crash. As a result, some people have named ! the "crash" operator because it's easy to
get wrong. The same is true of try!, which is also easy to get wrong. Don't worry if this all
sounds hard for now – you'll be using it more later, and it make more sense over time.

Before we move on to the next piece of work, there's one small change to make: now you
know what AnyObject, String and arrays are, you should be able to see that at the top of
MasterViewController there is a line that says var objects = [AnyObject](), which defines
our array as containing AnyObject. With all the changes we've made, we now know for sure
that the objects we're adding will always be strings, so we can change that declaration like
so:

var objects = [String]()

With that change, Swift will now make sure we're always putting in and taking out strings
from the objects array, which means it's helping keep our code safe. Your project should now
build correctly, and if you run it you should see your image names inside the table. Success!
Let's make it more interesting…

www.hackingwithswift.com 108

Our project so far: the image names are listed inside the UITableView.

www.hackingwithswift.com 109

Introducing Interface Builder
As you saw when you first ran the template app, selecting a date brought in a new screen
showing the date all by itself. This was all done with a smooth animation from left to right,
and included adding a Back button so you can get back to the previous screen. You might
also have noticed that you can swipe from the left edge to the right to go back to the table
view.

All this behavior was provided for us by two important iOS data types:
UISplitViewController and UINavigationController. From those names you can divine two
things:

1. The "UI" means it's a user interface component designed for iOS.
2. The "Controller" part means it provides functionality.

Controllers are part of the holy trinity of software development: Model, View, Controller. In an
ideal world, every part of your app can be split into one of these three types: it's either a
model (something that describes the data you are working with), a view (the user interface of
your app), or a controller (the code that sends model data to and from the view).

In reality, things are rarely this clean, and it's extremely common to have a Fat Controller
problem: lots of code that ought to be in models and views ends up in your controller. It's not
ideal, but you can always go back later and rewrite the code to be neater. (Spoiler: you will
never do this.)

Now, you might be thinking that you haven't written any code using split view controllers or
navigation controllers, and you'd be right. This is because Apple has a dedicated tool for
editing the visual layouts of your apps, and it's called Interface Builder. You'll see the file
Main.storyboard in your project, so select that now to show Interface Builder.

Interface Builder (also known as the storyboard editor) is designed to show a visual flow of
your program. You will need to zoom out, though: your user interface is surprisingly
complicated for such a simple app! Hold down Cmd and tap the - key once to zoom out one
level. You should now be able to see that there are five squares arranged on the screen: one
saying Split View Controller, two saying Navigation Controller, one saying Table View and one
saying "Detail view content goes here."

www.hackingwithswift.com 110

Our simple application has a storyboard with five view controllers.

Between each of the squares are arrows moving from left to right, showing the program flow.
These are called segues (pronounced segways, like the motorised scooter.) The segue with
two circles connected by a line is called a relationship segue, and it's used to connect the
split view controller to both navigation controllers, and also to connect both navigation
controllers to the squares immediately to their right.

www.hackingwithswift.com 111

Relationship Segues have an icon showing two circles connected by a line.

We'll talk about view controllers in a moment, but for now all you need to know is that these
relationship segue describe one screen of content being embedded inside another. So, the
relationship segue between the top navigation controller and the table view to its right means
that the table view is inside the navigation controller.

Where this gets complicated – and extraordinarily clever – is when you look at the
relationship segues between the split view controller and its navigation controllers. It has two
navigation controllers as its relationship, which means both are embedded inside it. Can you
see them both? Nope. But that's because we asked to use the "iPhone 5s" device simulator
earlier on.

If you change that to be "iPad 2" then run it again, yuo'll see something different: in portrait,
you'll see a button at the top saying "Master" that, when tapped, makes the table of picture
names slide in from the left side. If you press Cmd+Right Arrow on your keyboard, you'll see
both the table view and the detail view at the same time, as the screen automatically splits in
two.

www.hackingwithswift.com 112

Our same project looks very different when running on iPad, even though the code is the same.

This is what Apple calls "adaptive user interfaces," which means you design your app once
and iOS automatically determines the best way of showing it on various devices. We've now
seen three different ways of seeing the same information: iPhone, iPad portrait and iPad
landscape, all from the same code. So, even though it means having a split view controller
and two navigation controllers, the end result means that our app looks great on all devices.

Back inside Interface Builder again, you'll notice there's a second kind of segue going from
the table view at the top to the navigation controller on the bottom. This segue looks like two
rectangles with a left arrow over them, and it's called a "Show Detail" segue, and it creates
the behavior you already saw: the detail view controller slides in from the right. It's an
adaptive segue (part of the "adaptive user interfaces" way of working) and it means "on
iPhone, animate in from the right, but on iPad just change the detail view conntroller."

www.hackingwithswift.com 113

The show detail segue looks like two rectangles with a left arrow over them.

This is a good time to touch on view controllers just briefly, because they are one of the most
important components in iOS. The data type UIViewController is used to represent all
screens in your app, and comes with a huge array of functionality built in. For example, it can
rotate with the device, it can respond if the device is running out of memory, it can show and
hide other view controllers, and so on.

View controllers can also be used to represent parts of screens in your app, and this is done
in a clever way. As an example, the mail app on iPhone has a view controller to show the
messages in your inbox, and when you tap on one it brings in a new view controller to show
message detail.

This set up is perfect for the iPhone, where screen space is limited and you can really only do
one thing at a time. But on iPad, the same mail app shows the messages on the left and the
detail on the right, which is two view controllers at the same time. Behind the scenes, this
uses the exact same split view controller you're using here, and iOS just adapts to make sure
the right layout is automatically used. Hurray for code reuse!

www.hackingwithswift.com 114

In our current app, we have five view controllers: the split view controller, two navigation
controllers, our master view controller (the table view) and the detail view controller. Each of
these is based on the UIViewController data type, but add their own functionality on top
using a technique known as inheritance – each custom view controller literally inherits the
functionality of UIViewController, before adding its own.

So, the split view controller is responsible for choosing the right layout depending on the
device, the navigation controller adds the title bar at the top, the master controller adds the
table view and the code we wrote with NSFileManager, and the detail controller has the text
showing the date that was selected. You can have multiple levels of inheritance, which is
where data type D inherits from C, which itself inherits from B, and B in turn inherits from A. It
might sound a little confusing, but it does mean you get to share as much code as possible.

Now, enough thinking – time for some action. We need to change the detail view controller
because right now it has some text in the middle for showing dates. We scrapped all that
date code and instead want to show images, so we need to redo its user interface. Double-
click on the detail view controller to zoom in and select it. In the middle you'll see the text
"Detail view content goes here" inside a UILabel, which is a simple view type that shows text
that can't be edited. Select it and press delete.

We're going to replace that label with a large UIImageView, which, as you might guess, is a
UI component that shows images. iOS comes with an awesome collection of view types that
you can drag and drop into place using storyboards, and these are all stored inside the
object library. This is usually visible in the bottom-right corner, and starts with "View
Controller," "Storyboard Reference," and so on. If you can't see it, press Ctrl+Alt+Cmd+3
and it should appear.

Some users have the object library set to icon view, which means you'll see just an arrow
followed by a series of yellow circles. This isn't helpful for a beginner, so look to the bottom
of the object library and you'll see a search box, and directly to the left of that you'll see a
button that uses list view instead of icon view.

In the picture below you can see my object library, with the image view selected. At the
bottom is the search area where you can filter the list of items, and just to the left of the
search field is the icon/list toggle button.

www.hackingwithswift.com 115

The object library, with the image view selected.

This object library contains all the built-in view types that you can use, and you'll see there a
quite a few. You can look at them all you want later on, but for now use the search box: type
"image" to bring up the Image View component. Click and drag the image view from the
object library onto the detail view controller, then let go. Now drag its edges so that it fills the
entire view controller – yes, even under the gray navigation bar that says "Detail".

www.hackingwithswift.com 116

Make your UIImageView take up the full screen.

This image view has no content right now, so it's filled with a pale blue background and the
word Image View. We won't be assigning any content to it right now, though – that's
something we'll do when the program runs. Instead, we need to tell the image view how to
size itself for our screen, whether that's iPhone or iPad.

This might seem strange at first, after all you just placed it to fill the view controller, and it has
the same size as the view controller, so that should be it, right? Well, not quite. For a start,
the detail view controller you can see on the storyboard is square, and have you ever seen a
square iPhone? And what about when you have multiple devices to support: iPhone 4s,
iPhone 5s and iPhone 6 all have different sizes, never mind iPad and iPad Pro, so how
should the image view respond?

iOS has an answer for this. And it's a brilliant answer that in many ways works like magic to
do what you want. It's called Auto Layout: it lets you define rules for how your views should
be laid out, and it automatically makes sure those rules are followed. But it has two rules of
its own, both of which must be followed by you:

www.hackingwithswift.com 117

 • Your layout rules must be complete. That is, you can't specify only an X position for
something, you must also specify a Y position. If it's been a while since you were at school,
"X" is position from the left of the screen, and "Y" is position from the top of the screen.
 • Your layout rules must not conflict. That is, you can't specify that a view must be 10 points
away from the left edge, 10 points away from the right edge, and 1000 points wide. An
iPhone 5 screen is only 320 points wide, so your layout is impossible. Auto Layout will try to
recover from these problems by breaking rules until it finds a solution, but the end result is
never what you want.

You can create Auto Layout rules – known as constraints – entirely inside Interface Builder,
and it will warn you if you aren't following the two rules. It will even help you correct any
mistakes you make by suggesting fixes!

We're going to create four constraints now: one each for the top, bottom, left and right of the
image view so that it expands to fill the detail view controller regardless of its size. There are
lots of ways of adding Auto Layout constraints, but the easiest way right now is to use the
Pin button: a tiny, almost anonymous button in the bottom-right of Interface Builder.

There are four buttons down there: the first has three rectangles with a line pointing down,
the second has two rectangles one above the other, the third has a square with lines either
side, and the fourth has a triangle with lines either side. All without titles – who said Apple
were geniuses at user interface design? The one we want is the Pin button, which is the third
one: a square with lines either side. You can hover over it to see the tooltip, which should say
Pin.

In the picture below you can see the strip of buttons at the bottom of my Interface Builder
view. The button on the left toggles the document outline, and the group of four buttons
towards the right control Auto Layout. You want to click the third one of the four on the right.

Buttons across the bottom of Interface Builder.

This Pin menu is what we're going to use now, so make sure your image view is selected
then click the Pin button. A popup will appear, with the title Add New Constraints. Deselect
the "Constrain to margins" checkbox, then click on the four red dotted lines near the top to
turn them into solid red lines.

This will create constraints that set the distance between the image view and its superview –

www.hackingwithswift.com 118

the view that it's sitting inside, in this case our detail view. As you're clicking these red lines,
the button at the bottom of the popup will change to "Add 4 Constraints", so click that now
to dismiss the popup and add the constraints.

Adding Auto Layout constraints using the Pin menu.

Visually, your layout will look pretty much identical once you've added the constraints, but
there are two subtle differences. First, there's a thin blue line surrounding the UIImageView
on the detail view controller, which is Interface Builder's way of showing you that the image
view has a correct Auto Layout definition.

Then in the Document Outline pane you'll see a new entry for "Constraints" beneath the
image view. If you're not sure where to look, or if your document outline pane is hidden,
select the image view then go to the Editor menu and choose Reveal in Document Outline to
show the document outline and highlight the image view. All four constraints that were added
are hidden under that Constraints item, and you can expand it to view them individually.

With the constraints added, there's one more thing to do here before we're finished with
Interface Builder, and that's to connect our new image view to some code. You see, having

www.hackingwithswift.com 119

the image view inside the layout isn't enough – if we actually want to reference the image
view inside code, we need to create a property for it that's attached to the layout.

What's a property? Well, you've already met constants (using let) and variables (using var),
but these are just temporary so they last only until the method ends. A property is the name
given to a constant or variable when it's attached to a data type such as our detail view
controller. The image view property we're going to create exists for as long as the detail view
controller does, because it belongs to it.

The Xcode template project had a UILabel in the detail view controller, and it had a
corresponding property attached. We're going to delete that property, then create a new one.

To make this process a little bit easier, Xcode has a special display layout called the Assistant
Editor. This splits your Xcode editor into two: the view you had before on top, and a related
view at the bottom. In this case, it's going to show us Interface Builder on top, and the code
for the detail view controller below.

Xcode decides what code to show based on what item is selected in Interface Builder, so
make sure the image view is selected now and choose View > Assistant Editor > Show
Assistant Editor from the menu. You can also use the keyboard shortcut Alt+Cmd+Return to
do the same, or click the assistant editor button. This is the second of six button at the top-
right of your Xcode window, and looks like two overlapping circles.

In the picture below, you can see the buttons in the top-right of my Xcode window when I'm
in Interface Builder. The first row are the standard editor, the assistant editor, the version
editor, then three buttons to control showing and hiding panes on the bottom, left and right
of Xcode. The second row shows various Interface Builder inspectors, with the third, fourth
and fifth inspectors being the most commonly used.

The assistant editor looks like two overlapping circles.

www.hackingwithswift.com 120

The assistant editor looks like two overlapping circles.

You should now see the detail view controller in Interface Builder in the top pane, and in the
bottom pane the source code for a file we haven't looked at yet: DetailViewController.swift.
This is (predictably) the code that manages the detail view controller, and you'll see in there
near the top this following line:

@IBOutlet weak var detailDescriptionLabel: UILabel!

Using the Assistant Editor you can view your layout and code at the same time.

Some bits of that are new, so let's break down the whole line:

 • @IBOutlet: This attribute is used to tell Xcode that there's a connection between this line
of code and Interface Builder.
 • weak: This tells iOS that we don't want to own the object in memory. This is because the
object has been placed inside a view, so the view owns it.
 • var: This declares a new variable or variable property. We already used let to declare

www.hackingwithswift.com 121

constants, and this is how you declare variables. Remember, a constant's value can be set
only once, whereas a variable's value can change.
 • detailDescriptionLabel: This was the property name assigned to the UILabel. Note the
way capital letters are used: variables and constants should start with a lowercase letter, then
use a capital letter at the start of any subsequent words. For example,
myAwesomeVariable. This is sometimes called camel case.
 • UILabel!: This declares the property to be of type UILabel, and again we see the implicitly
unwrapped optional symbol: !. This means that that UILabel may be there or it may not be
there, but we're certain it definitely will be there by the time we want to use it.

If you were struggling to understand implicitly unwrapped optionals (don't worry; they are
complicated!), this code might make it a bit clearer. You see, when the detail view controller
is created, its view hasn't been loaded yet – it's just some code running on the CPU.

When the basic stuff has been done (allocating enough memory to hold it all, for example),
iOS goes ahead and loads the layout from the storyboard, then connects all the IBOutlets
from the storyboard to the code.

So, when the detail controller is first made, the UILabel doesn't exist because it hasn't been
created yet – but we still need to have some space for it in memory. At this point, the
property is nil, or just some empty memory. But when the view gets loaded and the outlet
gets connected, the UILabel will point to a real UILabel, not to nil, so we can start using it.

In short: it starts life as nil, then gets set to a value before we can use it, so we're certain it
won't ever be nil by the time we want to use it – a textbook case of implicitly unwrapped
optionals.

(PS: If you still don't understand implicitly unwrapped optionals, that's perfectly fine – keep
on going and they'll become clear over time.)

Back to the project: we don't have a UILabel any more, so you can delete that whole line of
code. Don't worry: learning all that @IBOutlet stuff wasn't in vain, because we're about to
create a new outlet for the image view. This is done, again, visually: hold down Ctrl then click
and drag from the UIImageView in the top pane to the where the @IBOutlet line was in the
bottom pane. If you've forgotten, it was just below the line that says, class
DetailViewController: UIViewController {.

As you're Ctrl-dragging from the image view, a blue line will appear. When you move over the
code, a tooltip will appear next to your pointer saying "Insert Outlet or Outlet Collection," and

www.hackingwithswift.com 122

a second blue line will appear horizontally to show exactly where the outlet will be inserted.

Ctrl+drag from your storyboard into the code, and a message will appear saying 'Insert Outlet or
Outlet Collection'.

Let go of your mouse button and a popup will appear asking you to fill in some information.
Right now, all you need to do is give your outlet a name, so call it detailImageView and click
Connect. You'll see this line of code gets written for you:

@IBOutlet weak var detailImageView: UIImageView!

www.hackingwithswift.com 123

Name your UIImageView outlet detailImageView.

Yes, that's mostly the same as the previous code, but now it's an image view rather than a
label. Crucially, if you look to the left of this line of code, you'll see a gray circle with a ring
around it. This is Xcode's way of telling you that this outlet has a connection in place in
Interface Builder. If it didn't have a connection, you'd just see an empty ring.

www.hackingwithswift.com 124

Sending new data
In making this layout change, we've broken our code – you'll notice there's a red line in the
scroll bar of our code editor, and also a red warning symbol at the top of the Xcode window.
This is because other parts of DetailViewController.swift reference the UILabel, and we've
just deleted that property. So we need to make a few changes to this file so that it knows
how to handle our new data, then make some final changes to MasterViewController.swift in
order to pass the new data correctly.

First, look for this code in DetailViewController.swift:

var detailItem: AnyObject? {

 didSet {

 // Update the view.

 self.configureView()

 }

}

This declares a property called detailItem, giving it the type AnyObject? – that's Swift's way
of saying it might be any kind of object, or it might nothing at all. But this property has a
twist, because it has a property observer attached, in the form of didSet.

The didSet property observer is a block of code that will be executed any time this
property's value has been changed. There's also a corresponding willSet property observer
that can execute code just before a property is changed, but it's not used as often as didSet.

In this code, didSet is being used to call self.configureView(), which means "call the
configureView() method on myself." The self. isn't actually needed, so you can delete it if
you want. You might be interested to know that there are two trains of thought with regards
to using "self." when referring to variables and methods.

The first group of people never like to use self. unless it's required, because when it's
required it's actually important and meaningful, so using it in places where it isn't required
can confuse matters. The other group of people always like to use self. whenever it's
possible, even when it's not required. To be fair to this group, using self. everywhere was

www.hackingwithswift.com 125

good practice in Objective C, and it can be a hard habit to break.

Before we fix the errors in our code, we're going to introduce some more. You see,
detailItem is defined as AnyObject?, which is silly. We know exactly what kind of data is
going to be sent across from the master view controller, because we're working with an array
of strings. The only thing detailItem can be is a String, albeit an optional one.

So, change AnyObject? to be String?, then press Cmd+B to compile your project. This
creates another error, but that's OK because we're about to fix it!

The error will be in the configureView() method of DetailViewController.swift. Here's its
current code:

if let detail: AnyObject = self.detailItem {

 if let label = self.detailDescriptionLabel {

 label.text = detail.description

 }

}

The detailItem property is an optional data type: it was AnyObject? and now it's String?.
This means we need to unwrap the value before we can use it – we need to check whether
there is a value there, and, if so, extract it. The most common way to extract values from
optionals is to use an "if let" condition, which is what this current code is doing. For example:

if let foo = bar {

 doStuff(foo)

}

That code means "see if the bar variable contains a value, and if it does unwrap that value
and place it inside another variable called foo, then call doStuff() and pass in foo as a
parameter." So, if bar was of type String?, foo will be of type String because it won't be
optional any more. If bar didn't have a value, then doStuff() would never be called. The
advantage of this "if let" syntax is that it both checks for the existence of a value and

www.hackingwithswift.com 126

unwraps it all it once.

With all that in mind, let's take a look at the code again:

if let detail: AnyObject = self.detailItem {

 if let label = self.detailDescriptionLabel {

 label.text = detail.description

 }

}

You'll see that it first checks whether detailItem has a value, and if so it unwraps it into a
new constant called detail. It then checks whether detailDescriptionLabel has a value, and
if so it unwraps it into another new constant called label. If both of these had values and
were unwrapped, then the label's text property is set to be detail.description. In the case of
the dates that were originally in there, this would print the date as text. These lines are
erroring because we don't have a label any more, so please delete them and replace them
with this:

if let detail = self.detailItem {

 if let imageView = self.detailImageView {

 imageView.image = UIImage(named: detail)

 }

}

This changes a few things:

 • We no longer need to declare the detail constant as AnyObject, because self.detailItem
is of type String? not AnyObject?.
 • We unwrap the property detailImageView into imageView, because we have an image
view rather than a label now.
 • Rather than setting the text of the label, we're setting the image of the image view.

www.hackingwithswift.com 127

This new code also introduces a new data type, called UIImage. This doesn't have "View" in
its name like UIImageView does, so it's not a view – it's not something that's actually visible
to users. Instead, UIImage is the data type you'll use to load image data, such as PNG or
JPEGs.

When you create a UIImage, it takes a parameter called named that lets you specify the
name of the image to load. UIImage then looks for this filename in your app's bundle, and
loads it. By passing in the detail constant here, which was created by unwrapping
detailItem, this will load the image that was selected by the user.

That's the only error inside DetailViewController.swift, but you're probably curious how the
selected image name gets passed from the master view controller to the detail. To find out,
go to MasterViewController.swift. If you're still using the assistant editor view, switch back to
the standard editor by pressing Cmd+Return, by clicking the first of the six buttons in the
top-right of the Xcode window, or by choosing the View > Standard Editor > Show Standard
Editor menu item.

The image name is passed from MasterViewController.swift inside the prepareForSegue()
method. This gets called when a segue is about to execute, and gives you a chance to
configure the new view controller with information for it to use. In our project, this is where
we tell the detail view controller what item was selected, and it's done using this existing
code:

override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {

 if segue.identifier == "showDetail" {

 if let indexPath = self.tableView.indexPathForSelectedRow {

 let object = objects[indexPath.row]

 let controller = (segue.destinationViewController as!
UINavigationController).topViewController as! DetailViewController

 controller.detailItem = object

 controller.navigationItem.leftBarButtonItem =
self.splitViewController?.displayModeButtonItem()

 controller.navigationItem.leftItemsSupplementBackButton = true

 }

 }

www.hackingwithswift.com 128

 }

}

This is pretty complicated code, but only these three lines are important:

let object = objects[indexPath.row]

let controller = (segue.destinationViewController as!
UINavigationController).topViewController as! DetailViewController

controller.detailItem = object

To make it easier to understand, we're going to rewrite it. Replace those three with these:

let navigationController = segue.destinationViewController as!
UINavigationController

let controller = navigationController.topViewController as!
DetailViewController

controller.detailItem = objects[indexPath.row]

The first line looks for the destination view controller of the segue, which is where the "show
detail" segue pointed to. If you remember, that was the navigation controller, so this line of
code forces that to be treated as a navigation controller using as! UINavigationController.
This means "I know you think that the destination view controller is a regular
UIViewController, but trust me: it's actually a UIViewController."

This is required because when prepareForSegue() is called the new view controller that is
about to be shown has already been created, and it's our job to customise it with any data it
needs. We can access the new view controller by reading the
segue.destinationViewController property, but the problem is that it could be any kind of
view controller – Swift knows that it's definitely some sort of UIViewController, but has no
idea that behind the scenes it's actually an instance of UIViewController.

Sometimes this doesn't matter. If you just want to show something and don't care to modify
its values, you don't need to do any typecasting or indeed do any of this code – the segue

www.hackingwithswift.com 129

will just happen. But prepareForSegue() exists specifically so that we can do any
customization before the new view controller is shown, and in our case that means setting a
property on the detail view controller.

We need to typecast destinationViewController to be UINavigationController because of
what happens in line two: a navigation controller has a property called topViewController
that points to whichever view controller it is showing right now. For us that's our detail view
controller, but iOS doesn't know that – it thinks topViewController is just a regular
UIViewController. So we need to use as! again to override this: we're telling Swift that this
object is definitely our DetailViewController data type.

Finally, once we've found the navigation controller (line 1), found the detail view controller
inside it (line 2), we can update the detailItem property of that detail view controller to be the
image that was selected. This is done by setting its detailItem property to be
objects[indexPath.row].

The objects property, you might recall, is an array of strings that we loaded from the app
bundle. Arrays are an ordered collection of values, one after the other, and you can read
them out by specifying their position in the array counting from 0. So, the first item in the
objects array is objects[0], the second is objects[1], the tenth is objects[9] and so on.

So what's indexPath.row? Well, indexPath is set a couple of lines above to be whatever row
is selected in the table – i.e., the row that the user just tapped to trigger the segue. The row
property of that indexPath is the position inside the table, so by using
objects[indexPath.row] we're saying "get the item in the objects array at the position where
the user just tapped."

www.hackingwithswift.com 130

Final tweaks
At this point you have a working project: you can press Cmd+R to run it, flick through the
images in the table, then tap one to view it. But before this project is complete, there are two
other small changes we're going to make that makes the end result a little more polished.

First, you might have noticed that all the images are being stretched to fill the screen. This
isn't an accident – it's the default setting of UIImageView. This takes just a few clicks to fix:
choose Main.storyboard, select the image view in the detail view controller, then choose the
Attributes Inspector. This is in the right-hand pane, near the top, and is the fourth of six
inspectors, just to the left of the ruler icon.

If you don't fancy hunting around for it, just press Cmd+Alt+4 to bring it up. The stretching is
caused by the view mode, which is a dropdown button that defaults to "Scale to Fit."
Change that to be "Aspect Fit," and this first problem is solved.

The Aspect Fit content mode for UIImageViews forces them to resize their images so they are
fully visible.

If you were wondering, Aspect Fit sizes the image so that it's all visible. There's also Aspect

www.hackingwithswift.com 131

Fill, which sizes the image so that there's no space left blank – this usually means cropping
either the width or the height. If you use Aspect Fill, the image effectively hangs outside its
view area, so you should make sure you enable Clip Subviews to avoid the image
overspilling.

The second change we're going to make is to allow users to view the images fullscreen, with
no navigation bar getting in their way. There's a really easy way to make this happen, and it's
a property on UINavigationController called hidesBarsOnTap. When this is set to true, the
user can tap anywhere on the current view controller to hide the navigation bar, then tap
again to show it.

Be warned: you need to set it carefully when working with iPhones. If we had it set on all the
time then it would affect taps in the table view, which would cause havoc when the user tried
to select things. So, we need to enable it when showing the detail view controller, then
disable it when hiding.

You already met the method viewDidLoad(), which is called when the view controller's layout
has been loaded. There are several others that get called when the view is about to be
shown, when it has been shown, when it's about to go away, and when it has gone away.
These are called, respectively, viewWillAppear(), viewDidAppear(), viewWillDisappear()
and viewDidDisappear(). We're going to use viewWillAppear() and viewWillDisappear() to
modify the hidesBarsOnTap property so that it's set to true only when the detail view
controller is showing.

Open DetailViewController.swift, then add these two new methods directly below the end of
the viewDidLoad() method:

override func viewWillAppear(animated: Bool) {

 super.viewWillAppear(animated)

 navigationController?.hidesBarsOnTap = true

}

override func viewWillDisappear(animated: Bool) {

 super.viewWillDisappear(animated)

 navigationController?.hidesBarsOnTap = false

}

www.hackingwithswift.com 132

There are some important things to note in there:

 • We're using override for each of these methods, because they already have defaults
defined in UIViewController and we're asking it to use ours instead. Don't worry if you aren't
sure when to use override and when not, because if you don't use it and it's required Xcode
will tell you.
 • Both methods have a single parameter: whether the action is animated or not. We don't
really care in this instance, so we ignore it.
 • Both methods use the super prefix: super.viewWillAppear() and
super.viewWillDisappear(). This means "tell my parent data type that these methods were
called." In this instance, it means that it passes the method on to UIViewController, which
may do its own processing.
 • All view controllers have an optional property called navigationController, which, if set,
lets us reference the navigation controller we are inside. It's optional because not all view
controllers are inside a navigation controller. In Swift you can use a question mark inside a
statement to evaluate an optional, and execution of the line will continue only if the optional
could be unwrapped. So, if we're not inside a navigation controller, the hidesBarsOnTap
lines will do nothing.

If you run the app now, you'll see that you can tap to see a picture full size, and it will no
longer be stretched. While you're viewing a picture you can tap to hide the navigation bar at
the top, then tap to show it again. We're done!

www.hackingwithswift.com 133

Wrap up
This has been a very simple project in terms of what it can do, but you've also learned a
huge amount about Swift, Xcode and storyboards. I know it's not easy, but trust me: you've
made it this far, so you're through the hardest part.

To give you an idea of how far you've come, here are just some of the things we've covered:
constants and variables, method overrides, table views and image views, app bundles,
NSFileManager, typecasting, arrays, loops, optionals, view controllers, storyboards, outlets,
Auto Layout, UIImage and more.

Yes, that's a huge amount, and to be brutally honest chances are you'll forget half of it. But
that's OK, because we all learn through repetition, and if you continue to follow the rest of
this series you'll be using all these and more again and again until you know them like the
back of your hand.

If you want to spend a little more time on this app, try investigating the title property of your
two view controllers. This lets you customise the text that appears in the navigation bar at
the top when the view controller is being shown – it's easy to make this show the name of
the image that was selected.

www.hackingwithswift.com 134

Project 2
Guess the Flag
Make a game using UIKit, and learn about integers,
buttons, colors and actions.

www.hackingwithswift.com 135

Setting up
In this project you'll produce a game that shows some random flags to users and asks them
to choose which one belongs to a particular country. After the behemoth that was the
introductory project, this one will look quite easy in comparison – you've already learned
about things like outlets, image views, arrays and Auto Layout, after all.

(PS: If you skipped project 1 thinking it would all be about history or some other tedium, you
were wrong. This project will be very hard if you haven't completed project 1!)

However, one of the keys to learning is to use what you've learned several times over in
various ways, so that your new knowledge really sinks in. The purpose of this project is to do
exactly that: it's not complicated, it's about giving you the chance to use the things you just
learned so that you really start to internalize it all.

So, launch Xcode, and choose "Create a new project" from the welcome screen. Choose
Single View Application from the list and click Next. For Product Name enter "Project2", then
make sure you have Swift selected for language and iPhone for devices. Now click Next
again and you'll be asked where you want to save the project – your desktop is fine.

Creating a new Single View Application in Xcode.

www.hackingwithswift.com 136

Creating a new Single View Application in Xcode.

www.hackingwithswift.com 137

Designing your layout
When working on my own projects, I find designing the user interface the easiest way to
begin any project – it's fun, it's immediately clear whether your idea is feasible, and it also
forces you to think about user journeys while you work. This project isn't complicated, but
still Interface Builder is where we're going to begin.

A Single View Application project template gives you one UIViewController, called
ViewController, and a storyboard called Main.storyboard that contains the layout for our
single view controller. Choose that storyboard now to open Interface Builder, and you'll see a
big, blank space ready for your genius to begin.

The Single View Application gives you one, large, empty view controller to customize.

In our game, we're going to show users three flags, with the name of the country to guess
shown in the navigation bar at the top. What navigation bar? Well, there isn't one, or at least
not yet. Single View Application projects don't come with a navigation controller as standard,
but it's trivial to add one: click inside the view controller, then go to the Editor menu and
choose Embed In > Navigation Controller.

With the new navigation controller in place, scroll so you can see our empty view controller

www.hackingwithswift.com 138

again, and draw out three UIButtons onto the canvas. This is a new view type, but as you
might imagine it's just a button that users can tap. Each of them should be 200 wide by 100
high. You can set these values exactly by using the size inspector in the top-right of the
Xcode window.

Draw three buttons onto your view.

In the "old days" of iOS 6 and earlier, these UIButtons had a white background color and
rounded edges so they were visibly tappable, but from iOS 7 onwards buttons have been
completely flat with just some text. That's OK, though; we'll make them more interesting
soon.

You can jump to the size inspector directly by pressing the keyboard shortcut Alt+Cmd+5.
Don't worry about the X positions, but the Y positions should be 100 for the first flag, 230 for
the second, and 360 for the third. This should make them more or less evenly spaced in the
view controller.

In the picture below you can see the size inspector, which is the quickest and easiest way to
position and size views if you know exactly where you want them.

www.hackingwithswift.com 139

position and size views if you know exactly where you want them.

Use the size inspector to enter exact values for X, Y, width and height – it's much faster than
dragging things around.

The next step is to bring in Auto Layout so that we lay down our layout as rules that can be
adapted based on whatever device the user has. The rules in this case aren't complicated,
but I hope will begin to show you just how clever Auto Layout is.

We're going to create our Auto Layout rules differently from in Project 1. This is not because
one way is better than another, instead just so you that you can see the various possibilities
and decide which one suits you best.

Select the top button, then Ctrl-drag from there directly upwards to just outside itself – i.e.,
onto the white area of the view controller. As you do this, the white area will turn blue to show
that it's going to be used for Auto Layout.

www.hackingwithswift.com 140

The Single View Application gives you one, large, empty view controller to customize.

When you let go of the mouse button, you'll be presented with a list of possible constraints
to create. In that list are two we care about: "Top Space to Top Layout Guide" and "Center
Horizontally in Container."

You have two options when creating multiple constraints like this: you can either select one
then Ctrl-drag again and select the other, or you can hold down shift before selecting an item
in the menu, and you'll be able to select more than one at a time. That is, Ctrl-drag from the
button straight up to the white space in the view controller, let go of the mouse button and
Ctrl so the menu appears, then hold down Shift and choose "Top Space to Top Layout
Guide" and "Center Horizontally in Container."

www.hackingwithswift.com 141

Xcode will ask you which Auto Layout constraints you want to make.

That's the first flag complete, so before we go any further let's bring it to life by adding some
example content so you can see how it looks.

In Project 1, we added images to a project just by dragging a folder called Content into our
Xcode project. That's perfectly fine and you're welcome to continue doing that for your other
projects, but I want to introduce you to another option called Asset Catalogs. These are
highly optimised ways of importing and using images in iOS projects, and are just as easy to
use as a content folder.

In your Xcode project, select the file called Images.xcassets. This isn't really a file, instead it's
our default Xcode asset catalog. If you haven't already downloaded the files for this project,
please do so now from GitHub.

Select all 36 flag pictures from the project files, and drag them into the Xcode window to
beneath where it says "AppIcon" in our asset catalog. This will create 12 new entries in the
asset catalog, one for each country.

www.hackingwithswift.com 142

Select all the flag images in Finder.

Drag them into the asset catalog inside Xcode.

www.hackingwithswift.com 143

Drag them into the asset catalog inside Xcode.

When you let go, 12 new entries will be created in the asset catalog, one for each country.

As much as I hate diversions, this one is important: iOS assets come in the sizes 1x, 2x and
3x. A 1x image is just called its regular name, eg hello.png, and is used on all non-retina
devices – that's iPhone, iPhone 3G, iPhone 3GS, iPad, iPad 2 and iPad Mini.

A 2x image is exactly twice the size of the 1x image, and has @2x before its path extension.
For example, hello@2x.png. This is used on all retina devices, so that's iPhone 4, iPhone 4s,
iPhone 5, iPhone 5s, iPhone 6, iPad 3, iPad 4, iPad Air and iPad Air 2.

A 3x image is exactly three times the size of the 1x image, and has @3x before its path
extension. For example, hello@3x.png. This is used on retina HD devices, which at the time
of writing is just the iPhone 6 Plus.

Clearly it would be quite tedious to have to load the correct image for each device you're
working with, so iOS does two pieces of magic that make our lives much easier. First, images
are always referred to by their 1x name: hello.png. In fact, for PNG files you don't even need
the ".png" – you can just write "hello". iOS will automatically load 1x, 2x or 3x versions of the

www.hackingwithswift.com 144

image depending on the user's device and what images you have provided.

The second piece of magic iOS does is about layout space. In iOS, sizes are measured in
"points", not pixels. Non-retina iPhones were 320x480 pixels in size and retina iPhones took
that up to 640x960 (iPhone 4 and 4s) then 640x1136 (iPhone 5 and 5s), but rather than make
developers have to write their code twice Apple again took the pain away: an iPhone 3GS
(non-retina) is 320x480 points high, and an iPhone 4 (retina) is also 320x480 points high. So,
think of points as a virtual unit of measurement, and the system will automatically map it to
physical pixels for you.

All this is important because when we imported the images into our asset catalog, they were
automatically placed into 1x, 2x and 3x buckets. This is because I had named the files
correctly: france.png, france@2x.png, france@3x.png, and so on.

Once the images are imported, you can go ahead and use them either in code or in Interface
Builder, just as you would do if they were loose files inside a content folder. So, go back to
your storyboard, choose the first button and select the attributes inspector (Alt+Cmd+4).
You'll see it has the title "Button" right now (this is in a text field directly beneath where it
says "Title: Plain"), so please delete that text. Now click the arrow next to the Image
dropdown menu and choose "us".

As soon as you set a picture inside the button, our constraints for the button are complete: it
has a Y position because we placed a constraint, it has an X position because we're
centering it horizontally, and it has a width and a height because it's reading it from the
image we assigned. Go ahead and assign the US flag to the other two buttons while you're
there.

To complete our Auto Layout constraints, we need to assign Auto Layout constraints for the
middle and bottom buttons. Select the middle button, then Ctrl-drag to the first button – not
to the view controller. Let go, and you'll see "Vertical Spacing" and "Center X." Choose both
of these. Now choose the third button and Ctrl-drag to the second button, and again choose
"Vertical Spacing" and "Center X."

At this point, our Auto Layout is almost complete, but you'll notice that even though we
chose to center the flags horizontally, they all seem to be stuck where they were placed. The
reason for this is that you need to tell Interface Builder to update all the frames of your
buttons to match the Auto Layout rules you just created.

This is easy enough to do – from the four buttons at the bottom of Interface Builder, click the

www.hackingwithswift.com 145

one immediately to the right of the Pin button we used previously. This button is called
"Resolve Auto Layout issues", and when you click it you'll see a menu full of options. One of
those will be grayed out, saying "All Views in View Controller", but directly beneath that is the
option "Update Frames". Click that now, and all three buttons will snap to the real center.

The last step before we're finished with Interface Builder for now is to add some outlets for
our three flag buttons, so that we can reference them in code. Activate the assistant editor,
then Ctrl-drag from the first flag to create an outlet called button1, then from the second flag
to create button2, and from the third flag to create button3.

Create three outlets, one for each flag button.

We'll come back to it later on, but for now we're done with Interface Builder. Select
ViewController.swift and go back to the standard editor (that is, press Cmd+return turn off
the assistant editor) so we can get busy with some coding.

www.hackingwithswift.com 146

Making the basic game work
We're going to create an array of strings that will hold all the countries that will be used for
our game, and at the same time we're going to create two more properties that will hold the
player's current score – it's a game, after all!

Let's start with the new properties. Add these two lines directly beneath the @IBOutlet lines
you added earlier in ViewController.swift:

var countries = [String]()

var score = 0

The first line is something you saw in project 1: it creates a new property called countries
that will hold a new array of strings. The second one is new, but hopefully it's easy enough to
guess: it creates a new property called score and gives it the value 0. These two lines
ultimately do similar things, but the way they work is different.

 • var a = 0 tells Swift that we want to put the number 0 into score. 0 is what's known as an
integer (Int in Swift), which means it's a whole number. 556 is an integer. 100000001 is an
integer. 3.14159 is not, because it's not a whole number. By "whole number" I mean a
number that has nothing after its decimal point, but for the sake of clarity I should add that
integers can be negative too.
 • var a = [String]() This tells Swift that we want to put an array of strings into a. The syntax
looks a little strange because it both declares what type we want, which is [String], and also
creates it: those () literally make this a method call that creates the [String] array.

What you're seeing here is called type inference. Type inference means that Swift figures out
what data type a variable or constant should be based on what you put into it. This means a)
you need to put the right thing into your variables otherwise they'll have a different type from
what you expect, b) you can't change your mind later and try to put an integer into an array,
and c) you only have to give something an explicit type if Swift's inference is wrong.

To get you started, here are some example type inferences:

 • var score = 0 This makes an Int (integer), so it holds whole numbers.
 • var score = 0.0 This makes a Double, which is one of several ways of holding decimal

www.hackingwithswift.com 147

numbers, e.g. 3.14159.
 • var score = "hello" This makes a String, so it holds text.
 • var score = "" Even though there's no text in the quote marks, this still makes a String.
 • var score = ["hello"] This makes a [String] with one item, so it's an array where every item
is a String.
 • var score = ["hello", "world"] This makes a [String] with two items, so it's an array where
every item is a String.

It's preferable to let Swift's type inference do its work whenever possible. However, if you
want to be explicit, you can be:

 • var score: Double = 0 Swift sees the 0 so thinks you want an Int, but we're explicitly
forcing it to be a Double anyway.
 • var score: Float = 0.0 Swift sees the 0.0 and thinks you want a Double, but we're
explicitly forcing it to be a Float. I said that Double is one of several ways of holding decimal
numbers, and Float is another. Put simply, Double is a high-precision form of Float, which
means it holds much larger numbers, or alternatively much more precise numbers.

We're going to be putting all this into practice over the next few minutes. First, let's fill our
countries array with the flags we have, so add this code inside the viewDidLoad() method:

countries.append("estonia")

countries.append("france")

countries.append("germany")

countries.append("ireland")

countries.append("italy")

countries.append("monaco")

countries.append("nigeria")

countries.append("poland")

countries.append("russia")

countries.append("spain")

countries.append("uk")

countries.append("us")

www.hackingwithswift.com 148

This is identical to the code you saw in the project 1, so there's nothing to learn here. There's
a more efficient way of doing this, which is to create it all on one line. To do that, you would
write:

countries += ["estonia", "france", "germany", "ireland", "italy",
"monaco", "nigeria", "poland", "russia", "spain", "uk", "us"]

This one line of code does two things. First, it creates a new array containing all the
countries. Like our existing countries array, this is of type [String]. It then uses something
new, +=. This is called an operator, which means it operates on variables and constants – it
does things with them. + is an operator, as are -, *, = and more. So, when you say "5 + 4"
you've got a constant (5) an operator (+) and another constant (4).

In the case of += it combines the + operator (add) and the = operator (assign) to make "add
and assign." Translated, this means "add the thing on the right to the thing on the left," or in
the case of our countries line of code it means, "add the new array of countries on the right
to the existing array of countries on the left."

Now that we have the countries all set up, there's one more line to put just before the end of
viewDidLoad():

askQuestion()

This calls the askQuestion() method. Now, this method doesn't actually exist yet, so Swift
will complain. However, it's going to exist in just a moment. This askQuestion() method will
be where we choose some flags from the array, put them in the buttons, then prompt wait for
the user to select the correct one.

Add this new method underneath viewDidLoad():

func askQuestion() {

 button1.setImage(UIImage(named: countries[0]), forState: .Normal)

 button2.setImage(UIImage(named: countries[1]), forState: .Normal)

www.hackingwithswift.com 149

 button2.setImage(UIImage(named: countries[1]), forState: .Normal)

 button3.setImage(UIImage(named: countries[2]), forState: .Normal)

}

The first line is easy enough: we're declaring a new method called askQuestion(), and it
takes no parameters. The next three use UIImage(named:) and read from an array by
position, both of which we used in project 1, so that bit isn't new either. However, the rest of
those lines is new, and shows off two things:

 • button1.setImage() assigns a UIImage to the button. We have the US flag in there right
now, but this will change it when askQuestion() is called.
 • forState: .Normal The setImage() method takes a second parameter: which state of the
button should be changed? We're specifying .Normal, which means "the standard state of
the button."

That .Normal is hiding two more complexities, both of which you need to understand. First,
this is a data type called an "enum", short for enumeration. If you imagine that buttons have
three states, normal, highlighted and disabled. We could represent those three states as 0, 1
and 2, but it would be hard to program – was 1 disabled, or was it highlighted?

Enums solve this problem by letting us use meaningful names for things. In place of 0 we can
write .Normal, and in place of 1 we can write .Disabled, and so on. This makes code easier
to write and easier to read, without having any performance impact. Perfect!

The other thing .Normal is hiding is that period at the start: why is it .Normal and not just
Normal? Well, we're setting the title of a UIButton here, so we need to specify a button state
for it. But .Normal might apply to any number of other things, so how does Swift know we
mean a normal button state?

The actual data type setImage() expects is called UIControlState, and Swift is being clever:
it knows to expect a UIControlState value in there, so when we write .Normal it understands
that to mean "the Normal value of UIControlState." You could, if you wanted, write the line
out in full as UIControlState.Normal, but that's not common.

www.hackingwithswift.com 150

This is how your code should look at this point.

At this point, the game is in a fit state to run, so press Cmd+R now to launch the iPhone
Simulator and give it a try. You'll notice two problems: 1) we're showing the Estonian and
French flags, both of which have white in them so it's hard to tell whether they are flags or
just blocks of color, and 2) the "game" isn't much fun, because it's always the same three
flags!

The second problem is going to wait a few minutes, but we can fix the first problem now.
One of the many powerful things about views in iOS is that they are backed by what's called
a CALayer, which is a Core Animation data type responsible for managing the way your view
looks.

Conceptually, CALayer sits beneath all your UIViews (that's the parent of UIButton,
UILabel, and so on), so it's like an exposed underbelly giving you lots of options for
modifying the appearance of views, as long as you don't mind dealing with a little more
complexity. We're going to use one of these appearance options now: borderWidth.

The Estonian flag has a white stripe at the bottom, and because our view controller has a
white background that whole stripe is invisible. We can fix that by giving the layer of our

www.hackingwithswift.com 151

buttons a borderWidth of 1, which will draw a one point black line around them. Put these
three lines in viewDidLoad() directly before it calls askQuestion():

button1.layer.borderWidth = 1

button2.layer.borderWidth = 1

button3.layer.borderWidth = 1

Remember how points and pixels are different things? In this case, our border will be 1 pixel
on non-retina devices, 2 pixels on retina devices, and 3 on retina HD devices. Thanks to the
automatic point-to-pixel multiplication, this border will visually appear to have more or less
the same thickness on all devices.

By default, the border of CALayer is black, but you can change that if you want by using the
UIColor data type. I said that CALayer brings with it a little more complexity, and here's
where it starts to be visible: CALayer sits at a lower technical level than UIButton, which
means it doesn't understand what a UIColor is. UIButton knows what a UIColor is because
they are both at the same technical level, but CALayer is below UIButton, so UIColor is a
mystery.

Don't despair, though: CALayer has its own way of setting colors called CGColor, which
comes from Apple's Core Graphics framework. This, like CALayer, is at a lower level than
UIButton, so the two can talk happily – again, as long as you're happy with the extra
complexity. Even better, UIColor (which sits above CGColor) is able to convert to and from
CGColor easily, which means you don't need to worry about the complexity – hurray!

So, so, so: let's put all that together into some code that changes the border color using
UIColor and CGColor together. Put these three just below the three borderWidth lines in
viewDidLoad():

button1.layer.borderColor = UIColor.lightGrayColor().CGColor

button2.layer.borderColor = UIColor.lightGrayColor().CGColor

button3.layer.borderColor = UIColor.lightGrayColor().CGColor

www.hackingwithswift.com 152

As you can see, UIColor has a method called lightGrayColor that returns (shock!) a UIColor
instance that represents a light gray color. But we can't put a UIColor into the borderColor
property because it belongs to a CALayer, which doesn't understand what a UIColor is. So,
we add .CGColor to the end of the UIColor to have it automagically converted to a
CGColor. Perfect.

If lightGrayColor doesn't interest you, you can create your own color like this:

UIColor(red: 1.0, green: 0.6, blue: 0.2, alpha: 1.0).CGColor

You need to specify four values: red, green, blue and alpha, each of which should range from
0 (none of that color) to 1.0 (all of that color). The code above generates an orange color,
then converts it to a CGColor so it can be assigned to a CALayer's borderColor property.

That's enough with the styling, I think. Time to make this into a real game…

www.hackingwithswift.com 153

Guess which flag?
Our current code chooses the first three items in the countries array, and places them into
the three buttons on our view controller. This is fine to begin with, but really we need to
choose random countries each time. There are two ways of doing this:

 • Pick three random numbers, and use those to read the flags from the array.
 • Shuffle up the order of the array, then pick the first three items.

Both approaches are valid, but the former takes a little more work because we need to
ensure that all three numbers are different – it'd be even less fun if all three flags were the
French flag!

The second approach is easy to do, but there's a catch: we're going to use a new iOS library
called GameplayKit. You see, randomness is a complicated thing, and it's easy to write some
code that you think randomises an array perfectly when actually it generates a predictable
sequence. As a result, we're going to use a new library in iOS 9 called GameplayKit that does
all this hard work for us.

Now, you might think, "why would I want to use something called GameplayKit for apps?"
But the simple answer is: because it's there, because all devices have it built right in, and
because it's available in all your projects, whether games or apps. GameplayKit can do a lot
more than just shuffling an array, but we'll get on to that much later.

For now, look at the top of your ViewController.swift file and you'll find a line of code that
says import UIKit. Just before that, add this new line:

import GameplayKit

With that done, we can start using the functionality given to us by GameplayKit. At the start
of the askQuestion() method, just before you call the first setImage() method, add this line
of code:

countries =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(countrie
s) as! [String]

www.hackingwithswift.com 154

That will automatically randomise the order of the countries in the array, meaning that
countries[0], countries[1] and countries[2] will refer to different flags each time the
askQuestion() method is called. To try it out, press Cmd+R to run your program a few times
to see different flags each time.

The next step is to track which answer should be the correct one, and to do that we're going
to create a new property for our view controller called correctAnswer. Put this near the top,
just above var score = 0:

var correctAnswer = 0

This gives us a new integer property that will store whether it's flag 0, 1 or 2 that holds the
correct answer.

To actually choose which should be the right answer requires using GameplayKit again,
because we need to choose a random number for the correct answer. GameplayKit has a
special method for this called nextIntWithUpperBound(), which lets you specify a number
as your "upper bound" – i.e., the cap for the numbers to generate. GameplayKit will then
return a number between 0 and one less than your upper bound, so if you want a number
that could be 0, 1 or 2 you specify an upper bound of 3.

Putting all this together, to generate a random number between 0 and 2 inclusive you need to
put this line just below the three setImage() calls in askQuestion():

correctAnswer =
GKRandomSource.sharedRandom().nextIntWithUpperBound(3)

Now that we have the correct answer, we just need to put its text into the navigation bar. This
can be done by using the title property of our view controller, but we need to add one more
thing: we don't want to write "france" or "uk" in the navigation bar, because it looks ugly. We
could capitalise the first letter, and that would work great for France, Germany, and so on,
but it would look poor for Us and Uk, which should be US and UK.

www.hackingwithswift.com 155

The solution here is simple: uppercase the entire string. This is done using the
uppercaseString property of any string, so all we need to do is read the string out from the
countries array at the position of correctAnswer, then uppercase it. Add this to the end of
the askQuestion() method, just after correctAnswer is set:

title = countries[correctAnswer].uppercaseString

With that done, you can run the game and it's now almost playable: you'll get three different
flags each time, and the flag the player needs to tap on will have its name shown at the top.

Your game so far: three different flags, with one correct answer shown at the top.

Of course, there's one piece missing: the user can tap on the flag buttons, but it doesn't
actually do anything. Let's fix that…

www.hackingwithswift.com 156

From outlets to actions
I said we'd return to Interface Builder, and now the time has come: we're going to connect
the "tap" action of our UIButtons to some code. So, select Main.storyboard, then change to
the assistant editor so you can see the code alongside the layout.

Warning: please read the following text very carefully. In my haste, I screw this up all the
time, and I don't want it to confuse you!

Select the first button, then Ctrl+drag from it down to the space in your code immediately
after the end of the askQuestion() method. If you're doing it correctly, you should see a
tooltip saying, "Insert Outlet, Action, or Outlet Collection." When you let go, you'll see the
same popup you normally see when creating outlets, but here's the catch: don't choose
outlet.

Creating an action in the Xcode assistant editor is very similar to creating an outlet.

That's right: where it says "Connection: Outlet" at the top of the popup, I want you to change
that to be Action. If you choose Outlet here (which I do all too often because I'm in a rush),

www.hackingwithswift.com 157

you'll make problems for yourself!

When you choose Action rather than Outlet, the popup changes a little. You'll still get asked
for a name, but now you'll see an Event field, and the Type field has changed from UIButton
to AnyObject. Please change Type back to UIButton, then enter buttonTapped for the
name, and click Connect.

Here's what Xcode will write for you:

@IBAction func buttonTapped(sender: UIButton) {

}

…and again, notice the gray circle with a ring around it on the left, signifying this has a
connection in Interface Builder.

Before we look at what this is doing, I want you to do make two more connections. This time
it's a bit different, because we're connecting the other two flag buttons to the same
buttonTapped() method. To do that, select each of the remaining two buttons, then Ctrl-drag
onto the buttonTapped() method that was just created. The whole method will turn blue
signifying that it's going to be connected, so you can just let go to make it happen. If the
method flashes after you let go, it means the connection was made.

So, what do we have? Well, we have a single method called buttonTapped(), which is
connected to all three UIButtons. The event used for the attachment is called
TouchUpInside, which is the iOS way of saying, "the user touched this button, then released
their finger while they were still over it" – i.e., the button was tapped.

Again, Xcode has inserted an attribute to the start of this line so it knows that this is relevant
to Interface Builder, and this time it's @IBAction. @IBAction is similar to @IBOutlet, but
goes the other way: @IBOutlet is a way of connecting code to storyboard layouts, and
@IBAction is a way of making storyboard layouts trigger code.

This method takes one parameter, called sender. It's of type UIButton because we know
that's what will be calling the method. And this is important: all three buttons are calling the
same method, so it's important we know which button was tapped so we can judge whether
the answer was correct.

www.hackingwithswift.com 158

the answer was correct.

But how do we know whether the correct button was tapped? Right now, all the buttons look
the same, but behind the scenes all views have a special identifying number that we can set,
called its Tag. This can be any number you want, so we're going to give our buttons the
numbers 0, 1 and 2. This isn't a coincidence: our code is already set to put flags 0, 1 and 2
into those buttons, so if we give them the same tags we know exactly what flag was tapped.

Select the second flag (not the first one!), then look in the attributes inspector (Alt+Cmd+4)
for the input box marked Tag. You'll need to scroll down, because UIButtons have lots of
properties to work with! Once you find it (it's about two-thirds of the way down, just above
the color and alpha properties), make sure it's set to 1.

Setting a tag in Interface Builder is a quick and easy way to distinguish your views.

Now choose the third flag and set its tag to be 2. We don't need to change the tag of the first
flag because 0 is the default.

We're done with Interface Builder for now, so go back to the standard editor and select
ViewController.swift – it's time to finish up by filling in the contents of the buttonTapped()

www.hackingwithswift.com 159

method.

This method needs to do three things:

1. Check whether the answer was correct.
2. Adjust the player's score up or down.
3. Show a message telling them what their new score is.

The first task is quite simple, because each button has a tag matching its position in the
array, and we stored the position of the correct answer in the correctAnswer variable. So,
the answer is correct if sender.tag is equal to correctAnswer.

The second task is also simple, because you've already met the += operator that adds to a
value. We'll be using that and its counterpart, -=, to add or subtract score as needed.

The third task is more complicated, so we're going to come to it in a minute. Suffice to say it
introduces a new data type that will show a message window to the user with a title and their
current score.

Put this code into the buttonTapped() method:

var title: String

if sender.tag == correctAnswer {

 title = "Correct"

 score += 1

} else {

 title = "Wrong"

 score -= 1

}

There are two new things here:

1. We're using the == operator. This is the equality operator, and checks if the value on the

www.hackingwithswift.com 160

left matches the value on the right. In this, it will be true if the tag of the button that was
tapped equals the correctAnswer variable we saved in askQuestion().
2. We have an else statement. When you write any if condition, you open a brace (curly
bracket), write some code, then close the brace, and that code will be executed if the
condition evaluates to true. But you can also give Swift some code that will be executed if
the condition evaluates to false, and that's the "else" block. Here, we set one title if the
answer was correct, and a different title if it was wrong.

Now for the tough bit: we're going to use a new data type called UIAlertController(). This is
new in iOS 8, and is used to show an alert with options to the user. To make this work you're
going to need to learn three new things, so let's cover them up front before piecing them all
together.

The first thing to learn is called string interpolation. This is a Swift feature that lets you put
variables and constants directly inside strings, and it will replace them with their current value
when the code is executed. Right now, we have an integer variable called score, so we could
put that into a string like this:

let mytext = "Your score is \(score)."

If the score was 10, that would read "Your score is 10". As you can see, you just write \(, then
your variable name, then a closing) and you're done. Swift can do all sorts of string
interpolation, but we'll leave it there for now.

The second thing to learn is called a closure. This is a special kind of code block that can be
used like a variable – Swift literally takes a copy of the block of code so that it can be called
later. Swift also copies anything referenced inside the closure, so you need to be careful how
you use them. We're going to be using closures extensively later, but for now we're going to
take two shortcuts.

That's all the upfront learning done, so let's take a look at the actual code. Enter this just
before the end of the buttonTapped() method:

let ac = UIAlertController(title: title, message: "Your score is \
(score).", preferredStyle: .Alert)

ac.addAction(UIAlertAction(title: "Continue", style: .Default,

www.hackingwithswift.com 161

handler: askQuestion))

presentViewController(ac, animated: true, completion: nil)

The title variable was set in our if statement to be either "correct" or "wrong", and you've
already learned about string interpolation, so the first new thing there is the .Alert parameter
being used for preferredStyle. If you remember using .Normal for UIButton's setImage()
method, you should recognise this is as an enum, or enumeration.

In the case of UIAlertController(), there are two kinds of style: .Alert, which pops up a
message box over the center of the screen, and .ActionSheet, which slides options up from
the bottom. They are similar, but Apple recommends you use .Alert when telling users about
a situation change, and .ActionSheet when asking them to choose from a set of options.

The second line uses the UIAlertAction data type to add a button to the alert that says
"Continue", and gives it the style "Default". There are three possible
styles: .Default, .Cancel, and .Destructive. What these look like depends on iOS, but it's
important you use them appropriately because they provide subtle hints to users.

The sting in the tail is at the end of that line: handler: askQuestion. The handler parameter
is looking for a closure, which is some code that it can execute when the button is tapped.
You can write custom code in there if you want, but in our case we want the game to
continue when the button is tapped, so we pass in askQuestion so that iOS will call our
askQuestion() method.

Warning: We must use askQuestion and not askQuestion(). If you use the former, it means
"here's the name of the method to run," but if you use the latter it means "run the
askQuestion() method now, and it will tell you the name of the method to run."

There are many good reasons to use closures, but in the example here just passing in
askQuestion() is a neat shortcut – although it does break something that we'll need to fix in
a moment.

The final line calls presentViewController(), which takes three parameters: a view controller
to present, whether to animate the presentation, and another closure that should be
executed when the presentation animation has finished. We send our UIAlertController for
the first parameter, true for the second (animation is always nice!), and take a different
shortcut for the closure: we give it nil. This means "do nothing," and you'll be using it a lot

www.hackingwithswift.com 162

with closures!

Before the code completes, there's a problem, and Xcode is probably telling you what it is:
"UIAlertAction! is not a subtype of ()." This is a good example of Swift's terrible error
messages, and it's something I'm afraid you'll have to get used to. What it means to say is
that using a method for this closure is fine, but Swift wants the method to accept a
UIAlertAction parameter saying which UIAlertAction was tapped.

To make this problem go away, we need to change the way the askQuestion() method is
defined. So, scroll up and change askQuestion() from this:

func askQuestion() {

…to this:

func askQuestion(action: UIAlertAction!) {

That will fix the UIAlertAction error. However, it will introduce another problem: when the app
first runs, we call askQuestion() inside viewDidLoad(), and we don't pass it a parameter.
There are two ways to fix this:

1. When using askQuestion() in viewDidLoad(), we could send it the parameter nil to mean
"there is no UIAlertAction for this."
2. We could redefine askQuestion() so that the action has a default parameter of nil,
meaning that if it isn't specified it automatically becomes nil.

There's no right or wrong answer here, so I'll show you both and you can choose. If you want
to go with the first option, change the askQuestion() call in viewDidLoad() to this:

askQuestion(nil)

And if you want to go with the second option, change the askQuestion() method definition

www.hackingwithswift.com 163

to this:

func askQuestion(action: UIAlertAction! = nil) {

Now, go ahead and run your program in the simulator, because it's done!

Tapping buttons now works - you see whether you were right or wrong.

www.hackingwithswift.com 164

Wrap up
This is another relatively simple project, but it's given you the chance to go over some
concepts in a little more detail, while also cramming in a few more concepts alongside.
Going over things again in a different way is always helpful to learning, so I hope you don't
view this game (or any of the games we'll make in this series!) as a waste of time.

Yes, in this project we revisited Interface Builder, Auto Layout, outlets and other things, but at
the same time you've learned about @2x and @3x images, asset catalogs, integers, doubles,
floats, operators (+= and -=), UIButton, enums, CALayer, UIColor, random numbers,
actions, string interpolation, UIAlertController, and more. And you have a finished game too!

If you feel like working on this app some more, see if you can figure out how to place a
UILabel onto the view controller and connect it via an outlet, then show the player's score in
there rather than in a UIAlertController. You'll need to use your label's text property along
with string interpolation to make it work. Good luck!

www.hackingwithswift.com 165

Project 3
Social Media
Let users share to Facebook and Twitter by modifying
project 1.

www.hackingwithswift.com 166

About technique projects
As you should know, this series follows the order app, game, technique. Project 1 was an
app letting users browse images on their phone, project 2 was a game that lets players
guess flags, so now it's time for the first technique project.

The goal with technique projects is to pick out one iOS technology and focus on it in depth.
Some will be easy, some others not so much, but I promise to try to keep them as short as
possible because I know you want to focus on making real things.

This first technique project is going to be really simple, because we're going to modify
project 1 to do something it doesn't currently do: allow users to share images with their
friends.

www.hackingwithswift.com 167

Activity View Controllers
Sharing things using iOS uses a standard, powerful component that other apps can plug
into. As a result, it should be your first port of call when adding sharing to an app. This
component is called UIActivityViewController: you tell it what kind of data you want to
share, and it figures out how best to share it.

As we're working with images, UIActivityViewController will automatically gives us
functionality to share by iMessage, by email and by Twitter and Facebook, as well as saving
the image to the photo library, assigning it to contact, printing it out via AirPrint, and more. It
even hooks into AirDrop and the iOS 8 extensions system so that other apps can read the
image straight from us.

Best of all, it takes just a handful of lines of code to make it all work. But before we touch
UIActivityViewController, we first need to give users a way to trigger sharing, and the way
we're going to use is to add a bar button item.

Project 1, if you recall, used a UINavigationController to let users move between two
screens. By default, a UINavigationController has a bar across the top, called a
UINavigationBar, and as developers we can add buttons to this navigation bar that call our
methods.

Let's create one of those buttons now. First, take a copy of your existing Project1 folder (the
whole thing), and rename it to be Project3. Now launch it in Xcode, open the file
DetailViewController.swift, and find the viewDidLoad() method. It's mostly empty right now –
it just calls super.viewDidLoad() then configureView(). Directly beneath configureView(), I
want you to add this code:

navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Action, target: self, action:
"shareTapped")

This is easily split into two parts: on the left we're assigning to the rightBarButtonItem of
our view controller's navigationItem. This is navigation item is used by the navigation bar so
that it can show relevant information. In this case, we're setting the right bar button item,
which is a button that appears on the right of the navigation bar when this view controller is
visible.

www.hackingwithswift.com 168

On the right we create a new instance of the UIBarButtonItem data type, setting it up with
three parameters: a system item, a target, and an action. The system item we specify
is .Action, but you can type UIBarButtonSystemItem. to have code completion tell you the
many other options available. The .Action system item displays an arrow coming out of a
box, signalling the user can do something when it's tapped.

The target and action parameters go hand in hand, because combined they tell the
UIBarButtonItem what method should be called. The action parameter is saying "when
you're tapped, call the shareTapped() method," and the target parameter tells the button
that the method belongs to the current view controller – self.

If you don't like the look of the various system bar button items available, you can create with
one with your own title or image instead. However, it's generally preferred to use the system
items where possible because users already know what they do.

With the bar button created, it's time to create the shareTapped() method. Are you ready for
this huge, complicated amount of code? Here goes! Put this just after the
viewWillDisappear() method:

func shareTapped() {

 let vc = UIActivityViewController(activityItems:
[detailImageView.image!], applicationActivities: [])

 vc.popoverPresentationController?.barButtonItem =
navigationItem.rightBarButtonItem

 presentViewController(vc, animated: true, completion: nil)

}

That's it. With those three lines of code, shareTapped() can send photos via AirDrop, post to
Twitter, and much more. You have to admit, iOS can be pretty amazing sometimes!

The third line is old; we already learned about presentViewController() in project 2.
However, lines 1 and 2 are new, so let me explain what they do: line 1 creates a
UIActivityViewController, which is the iOS method of sharing content with other apps and
services, and line 2 tells iOS where the activity view controller should be anchored – where it
should appear from.

www.hackingwithswift.com 169

On iPhone, activity view controllers automatically take up the full screen, but on iPad they
appear as a popover that allows the user to see what they were working on below. This line
of code tells iOS to anchor the activity view controller to the right bar button item (our share
button), but this only has an effect on iPad – on iPhone it's ignored.

Let's focus on how activity view controllers are created. As you can see in the code, you
pass in two items: an array of items you want to share, and an array of any of your own app's
services you want to make sure are in the list. We're passing an empty array into the second
parameter, because our app doesn't have any services to offer. But if you were to extend this
app to have something like "Other pictures like this", for example, then you would include
that functionality here.

So, the real focus is on the first parameter: we're passing in [detailImageView.image!]. If
you recall, the image was being displayed in a UIImageView called detailImageView, and
UIImageView has an optional property called image, which holds a UIImage. But it's
optional, so there may be an image or there may not. And UIActivityViewController doesn't
want maybe or maybe not, it wants facts.

Fortunately, we know for a fact that our image view has an image, because we set it! In fact,
that's the whole point of this view controller. So we use detailImageView.image! with that
exclamation mark on the end to force unwrap the optional. That then gets put into an array
by itself, and send to UIActivityViewController.

And… that's it. No, really. We're done: your app now supports sharing. If you want to try
pushing your skills further, try modifying shareTapped() so that it shows a message if no
image was selected. This is only possible on iPad, but it's worth catching.

www.hackingwithswift.com 170

UIActivityViewController lets your users share, print, save and more – all in just two lines of
code!

www.hackingwithswift.com 171

Twitter and Facebook
OK, so I would feel guilty if I didn't spend a little more time with you showing you other ways
to share things, in particular there's built-in support for Facebook and Twitter sharing in iOS
and both are quite easy to use.

iOS includes a framework called "Social", which is designed to post to social networks like
Facebook and Twitter. We can use both of these in our app to share the image the user is
looking at, and it has the added benefit that the user is immediately prompted to enter their
tweet / Facebook post – there's no initial view controller there asking them how they want to
share.

Happily, using the Social framework to post to social media is also straightforward, and has
the advantage of simple method calls that are self-describing. In fact, I'm just going to go
ahead and show you the code, and see what you think:

let vc = SLComposeViewController(forServiceType:
SLServiceTypeFacebook)

vc.setInitialText("Look at this great picture!")

vc.addImage(detailImageView.image!)

vc.addURL(NSURL(string: "http://www.photolib.noaa.gov/nssl"))

presentViewController(vc, animated: true, completion: nil)

Apart from the SLComposeViewController component, which as you can see is created
with the Facebook service type, the only other new thing in there is NSURL. This is a new
data type, and one that might seem a little redundant at first: it stores and processes URLs
like www.yoursite.com.

Now, clearly to you and me a URL is a text string, so it seems strange to have a dedicated
class when a plain old string would do. However, iOS uses URLs for more things than just
websites. For example, you can get a file URL to a local file, or you can get a URL to a
document securely stored in iCloud. And even if it were just about website URLs, even then
there's things like "is it HTTP or HTTPS?" and "is there a username and password in the
URL?"

We're going to use NSURL again in the next project, but right now its use is quite simple:

www.hackingwithswift.com 172

we're attaching the URL to the National Severe Storm Laboratory so that people can browse
there for more photos. The NSURL(string:) method converts the string "http://
www.photolib.noaa.gov/nssl" into a full NSURL instance, which can then be passed to
addURL().

Now that code is in place, you will find it doesn't actually compile. This is because the Social
framework is separate from the default iOS frameworks, so it isn't included as standard. If
you want to import the Social framework (and you will want to if you ever want your code to
compile again!), just scroll to the top of the view controller and look for the line import UIKit.
Now put this line directly above:

import Social

UIKit is the name for Apple's iOS development framework, so this includes both UIKit and
the Social framework.

Finally, if you want to use Twitter instead, just specify SLServiceTypeTwitter for the service
type; the rest of the code stays the same.

www.hackingwithswift.com 173

If you want to share to a particular service, such as Facebook and Twitter, you should use the
Social framework.

www.hackingwithswift.com 174

Wrap up
This was a deliberately short technique project taking an existing app and making it better. I
hope you didn't get too bored, and hope even more that some of the new material sunk in
because we covered UIBarButtonItem, UIActivityViewController, the Social framework,
and NSURL.

I hope you can see how trivial it is to add social media to your apps, and it can make a huge
difference to helping spread the word about your work once your apps are on the App Store.
I hope this project has also shown you how easy it is to go back to previous projects and
improve them with only a little extra effort.

www.hackingwithswift.com 175

Project 4
Easy Browser
Embed Web Kit and learn about delegation, KVO, classes
and UIToolbar.

www.hackingwithswift.com 176

Setting up
In this project you're going to build on your new knowledge of UIBarButtonItem,
UIAlertController and NSURL by producing a simple web browser app. Yes, I realise this is
another easy project, but learning is as much about tackling new challenges as going over
what you've already learned.

To sweeten the deal, I'm going to use this opportunity to teach you lots of new things:
WKWebView (Apple's extraordinary web widget), UIToolbar (a toolbar component that holds
UIBarButtonItems), UIProgessView, delegation, classes and structs, key-value observing,
and how to create your views in code. Plus, this is the last easy app project, so enjoy it while
it lasts!

To get started, create a new Xcode project using the Single View Application template, and
call it Project4. Choose iPhone for the device, and make sure Swift is selected for the
language, then save the project on your desktop. Open up Main.storyboard, select the view
controller, and choose Editor > Embed In > Navigation Controller – that's our storyboard
finished.

www.hackingwithswift.com 177

Creating a simple browser
In projects 1 and 2, we used Interface Builder for a lot of layout work, but here our layout will
be so simple we can do the entire thing in code. You see, before we were adding buttons and
images to our view, but in this project the web view is going to take up all the space so it
might as well be the view controller's main view.

So far, we've been using the viewDidLoad() method to configure our view once its layout
has loaded. This time we need to override the actual loading of the view – we don't want that
empty thing on the storyboard, we want our own code. It will still be placed inside the
navigation controller, but the rest is up to us.

Open ViewController.swift for editing, and before viewDidLoad() put this:

override func loadView() {

 webView = WKWebView()

 webView.navigationDelegate = self

 view = webView

}

It isn't at all necessary to put loadView() before viewDidLoad() – you could put it anywhere
between class ViewController: UIViewController { down to the last closing brace in the file.
But I do encourage you to structure your methods in an organised way, and because
loadView() gets called before viewDidLoad() it makes sense to position the code above it
too.

Anyway, there are only three things we care about, because by now you should understand
why we need to use the override keyword. (Hint: it's because there's a default
implementation, which is to load the layout from the storyboard!) First, we create a new
instance of Apple's WKWebView web browser component and assign it to a variable called
webView. Third, we make our view (the root view of the view controller) that web view.

Yes, I missed out the second line, and that's because it introduces new concept: delegation.
Delegation is what's called a programming pattern – a way of writing code – and it's used
extensively in iOS. And for good reason: it's easy to understand, easy to use, and extremely

www.hackingwithswift.com 178

flexible.

A delegate is one thing acting in place of another, effectively answering questions and
responding to events on its behalf. In our example, we're using WKWebView: Apple's
powerful, flexible and efficient web renderer. But as smart as WKWebView is, it doesn't know
(or care!) how our application wants to behave, because that's our custom code.

The delegation solution is brilliant: we can tell WKWebView that we want to be told when
something interesting happens. In our code, we're setting the web view's
navigationDelegate property to self, which means "when any web page navigation
happens, please tell me."

When you do this, two things happen:

1. You must conform to the protocol. This is a fancy way of saying, "if you're telling me you
can handle being my delegate, here are the methods you need to implement." In the case of
navigationDelegate, all these methods are optional, meaning that we don't need to
implement any methods.
2. Any methods you do implement will now be given control over the WKWebView's
behavior. Any you don't implement will use the default behavior of WKWebView.

Before we get any further, you may have noticed that your code doesn't actually compile.
There are three reasons, but all three take just seconds to fix.

Reason #1: Swift doesn't know what WKWebView is. As you can see, it doesn't start with
"UI" so WKWebView is not part of UIKit. As a result, we need to import a new framework
before we can use it. The "WK" in WKWebView stands for WebKit, so go to the top of your
file and modify it to this:

import UIKit

import WebKit

Reason #2: We haven't declared a webView property, and yet we're assigning to it. To fix
this, go to the line before our loadView() method and add this:

var webView: WKWebView!

www.hackingwithswift.com 179

var webView: WKWebView!

That declares an implicitly unwrapped optional WKWebView instance called webView. I'll
explain one more time just so we're clear: that ! at the end of WKWebView is needed
because the property starts out as nil before being set later on.

Reason #3: When you set any delegate, you need to conform to the protocol. Yes, all the
navigationDelegate protocol methods are optional, but we Swift doesn't know that yet. All it
knows is that we're promising we're a suitable delegate for the web view, and yet haven't
implemented the protocol.

The fix for this is simple, but I'm going to hijack it to introduce something else the same time,
because this is an opportune moment. First, the fix: find this line:

class ViewController: UIViewController {

…and change it to this:

class ViewController: UIViewController, WKNavigationDelegate {

That's the fix. But what I want to discuss is the class bit, because I've been using words like
"data type", "component" and "instance" so far, without really being clear – and I promise
you there are developers out there that are absolutely seething as a result. Hello, haters!

There are two types of complex data types in Swift: structures ("structs") and classes. They
are extremely similar in Swift, and really there are only two differences likely to matter to you
at this stage, or indeed any stage over the next six months or so.

The first difference is that one class can inherit from another. We already talked about this in
project 1, where our view controller inherited from UIViewController. This class inheritance
means you get to build on all the amazing power when you inherit from UIViewController,
and add your own customisations on top.

www.hackingwithswift.com 180

The second difference is that when you pass a struct into a method, a copy gets passed in.
This means any changes you make in the method won't affect the struct outside of the
method. On the other hand, when you pass an instance of a class into a method, it's passed
by reference, meaning that the object inside the method is the same one outside the method;
any changes you make will stay.

In terms of which is which: Int, Double, Float, String and Array are all structs,
UIViewController and any UIView are all classes. In practice, this means that whenever you
pass an array into a method, it gets copied. That might sound grossly inefficient, particularly
if the array contains a huge amount of data, but don't fret about it: Swift will avoid any
performance penalty as best it can using a technique called copy on write.

Back to our code: all this is important, because I want you to understand exactly what the
line of code does. Here it is again:

class ViewController: UIViewController, WKNavigationDelegate {

As you can see, the line kicks off with "class", showing that we're declaring a new class here.
The line ends with an opening brace, and everything from that opening brace to the closing
brace at the end of the file form part of our class. The next part, ViewController, is the name
of our class. Not a great name in a big project, but for a Single View Application template
project it's fine.

The interesting stuff comes next: there's a colon, followed by UIViewController, then a
comma and WKNavigationDelegate. If you're feeling fancy, this part is called a type
inheritance clause, but what it really means is that this is the definition of what the new
ViewController class is made of: it inherits from UIViewController (the first item in the list),
and implements the WKNavigationDelegate protocol.

The order here really is important: the parent class (superclass) comes first, then all protocols
implemented come next, all separated by commas. We're saying that we conform to only
one protocol here (WKNavigationDelegate) but you can specify as many as you need to.

So, the complete meaning of this line is "create a new subclass of UIViewController called
ViewController, and tell the compiler that we promise we're safe to use as a
WKNavigationDelegate."

www.hackingwithswift.com 181

This program is almost doing something useful, so before you run it let's add three more
lines. Please place these in the viewDidLoad() method, just after the super call:

let url = NSURL(string: "https://www.hackingwithswift.com")!

webView.loadRequest(NSURLRequest(URL: url))

webView.allowsBackForwardNavigationGestures = true

The first line creates a new NSURL, as you saw in the previous project. I'm using
hackingwithswift.com as an example website, but please change it to something you like.
Warning: you need to ensure you use https:// for your websites, because iOS 9 does
not like apps sending or receiving data insecurely. If this is something you want to
override, click here to read about App Transport Security in iOS 9.

The second line does two things: it creates a new NSURLRequest object from that NSURL,
and gives it to our web view to load.

Now, this probably seems like pointless obfuscation from Apple, but WKWebViews don't
load websites from strings like www.hackingwithswift.com, or even from an NSURL made
out of those strings. You need to turn the string into an NSURL, then put the NSURL into an
NSURLRequest, and WKWebView will load that. Fortunately it's not hard to do!

Warning: Your URL must be complete, and valid, in order for this process to work. That
means including the https:// part.

The third line enables a property on the web view that allows users to swipe from the left or
right edge to move backward or forward in their web browsing. This is a feature from the
Safari browser that many users rely on, so it's nice to keep it around.

Press Cmd+R to run your app now, and you should be able to view your website. Step one
done!

www.hackingwithswift.com 182

Your Action.js file needs to be in the Copy Bundle Resources build phase of your extension.

www.hackingwithswift.com 183

Choosing a website
We're going to lock this app down so that it opens websites selected by the user. The first
step to doing this is to give the user the option to choose from one of our selected websites,
and that means adding a button to the navigation bar.

Somewhere in viewDidLoad() (but always after it has called super.viewDidLoad()), add this:

navigationItem.rightBarButtonItem = UIBarButtonItem(title: "Open",
style: .Plain, target: self, action: "openTapped")

We did exactly this in the previous project, except here we're using a custom title for our bar
button rather than a system icon. It called the openTapped() method, which doesn't exist,
when the button is tapped, so let's add that now. Put this method below viewDidLoad():

func openTapped() {

 let ac = UIAlertController(title: "Open page…", message: nil,
preferredStyle: .ActionSheet)

 ac.addAction(UIAlertAction(title: "apple.com", style: .Default,
handler: openPage))

 ac.addAction(UIAlertAction(title: "hackingwithswift.com",
style: .Default, handler: openPage))

 ac.addAction(UIAlertAction(title: "Cancel", style: .Cancel,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

Warning: if you did not set your app to be targeted for iPhone at the beginning of this
chapter, the above code will not work correctly. Yes, I know I told you to set iPhone, but a lot
of people skip over things in their rush to get ahead. If you chose iPad or Universal, you will
need to add ac.popoverPresentationController?.barButtonItem =
self.navigationItem.rightBarButtonItem to the openTapped() method before presenting the
alert controller.

www.hackingwithswift.com 184

We used the UIAlertController class in project 2, but here it's slightly different for three
reason:

1. We're using nil for the message, because this alert doesn't need one.
2. We're using the preferredStyle of .ActionSheet because we're prompting the user for
more information.
3. We're adding a dedicated Cancel button using style .Cancel. It has a handler of nil which
will just hide the alert controller.

Both our website buttons point to the openPage() method, which, again, doesn't exist yet.
This is going to be very similar to how we loaded the web page before, but now you will at
least see why the handler method of UIAlertAction takes a parameter telling you which
action was selected!

Add this method directly beneath the openTapped() method you just made:

func openPage(action: UIAlertAction!) {

 let url = NSURL(string: "https://" + action.title!)!

 webView.loadRequest(NSURLRequest(URL: url))

}

This method takes one parameter, which is the UIAlertAction object that was selected by
the user. Obviously it won't be called if Cancel was tapped, because that had a nil handler
rather than openPage.

What the method does is use the title property of the action (apple.com,
hackingwithswift.com), put "https://" in front of it to satisfy App Transport Security, then
construct an NSURL out of it. It then wraps that inside an NSURLRequest, and gives it to
the web view to load. All you need to do is make sure the websites in the UIAlertController
are correct, and this method will load anything.

You can go ahead and test the app now, but there's one small change we can add to make
the whole experience more pleasant: setting the title in the navigation bar. Now, we are the
web view's navigation delegate, which means we will be told when any interesting navigation
happens, such as when the web page has finished loading. We're going to use this to set the
navigation bar title.

www.hackingwithswift.com 185

navigation bar title.

As soon as we told Swift that our ViewController class conformed to the
WKNavigationDelegate protocol, Xcode updated its code completion system to support all
the WKNavigationDelegate methods that can be called. As a result, if you go below the
openPage() method and start typing "web" you'll see a list of all the WKNavigationDelegate
methods we can use.

Scroll through the list of options until you see didFinishNavigation and press return to have
Xcode fill in the method for you. Now modify it to this:

func webView(webView: WKWebView, didFinishNavigation navigation:
WKNavigation!) {

 title = webView.title

}

All this method does it update our view controller's title property to be the title of the web
view, which will automatically be set to the page title of the web page that was most recently
loaded.

Press Cmd+R now to run the app, and you'll see things are starting to come together: your
initial web page will load, and when the load finishes you'll see its page title in the navigation
bar.

www.hackingwithswift.com 186

Using a UIAlertController is an easy way to let users choose which website to visit.

www.hackingwithswift.com 187

Monitoring page loads
Now is a great time to meet two new UIView subclasses: UIToolbar and UIProgressView.
UIToolbar holds and shows a collection of UIBarButtonItem objects that the user can tap
on. We already saw how each view controller has a rightBarButton item, so a UIToolbar is
like having a whole bar of these items. UIProgressView is a colored bar that shows how far
a task is through its work, sometimes called a "progress bar."

The way we're going to use UIToolbar is quite simple: all view controllers automatically come
with a toolbarItems array that automatically gets read in when the view controller is active
inside a UINavigationController.

This is very similar to the way rightBarButtonItem is shown only when the view controller is
active. All we need to do is set the array, then tell our navigation controller to show its
toolbar, and it will do the rest of the work for us.

We're going to create two UIBarButtonItems at first, although one is special because it's a
flexible space. This is a unique UIBarButtonItem type that acts like a spring, pushing other
buttons to one side until all the space is used.

In viewDidLoad(), put this new code directly below where we set the rightBarButtonItem:

let spacer = UIBarButtonItem(barButtonSystemItem: .FlexibleSpace,
target: nil, action: nil)

let refresh = UIBarButtonItem(barButtonSystemItem: .Refresh, target:
self, action: "refreshTapped")

toolbarItems = [spacer, refresh]

navigationController?.toolbarHidden = false

The first line is new, or at least part of it is: we're creating a new bar button item using the
special system item type .FlexibleSpace, which creates a flexible space. It doesn't need a
target or action because it can't be tapped. The second line you've seen before, although
now we're calling the refreshTapped() method.

The last two lines are new: the first puts an array containing the flexible space and the refresh

www.hackingwithswift.com 188

button, then sets it to be our view controller's toolbarItems array. The second sets the
navigation controller's toolbarHidden property to be false, show the toolbar will be shown –
and its items will be loaded from our current view.

That code will compile and run, and you'll see the refresh button neatly aligned to the right –
that's the effect of the flexible space automatically taking up as much room as it can on the
left. But if you tap it you'll see an immediate crash.

Back in Xcode, you might even notice a long crash log being printed near the bottom of the
screen – just scroll to the top and read from there, because most of the rest of the text isn't
helpful right now. You should see something like this:

[Project4.ViewController refreshTapped]: unrecognized selector sent
to instance

A "selector" is a fancy way of saying "method." Well, that's not strictly true – it's a bit cleverer
than that. But it's not something that Swift has much use for, so as far as you're concerned it
means method. So this error message says, "I tried to call refreshTapped(), but couldn't find
it" – and it's right! Let's add this new method just before the closing brace of our class:

func refreshTapped() {

 webView.reload()

}

It's not complicated, as you can see: WKWebView has a reload() method that we can call,
and it just reloads the web page. In fact, it's so simple to do that we could easily remove this
method entirely and have our refresh UIBarButtonItem call the web view directly! Change
the definition of the refresh button to be this:

let refresh = UIBarButtonItem(barButtonSystemItem: .Refresh, target:
webView, action: "reload")

www.hackingwithswift.com 189

Having webView for the target and "reload" for the action means that when the bar button is
tapped webView.reload() is called. Easy!

The next step is going to be to add a UIProgressView to our toolbar, which will show how
far the page is through loading. However, this requires two new pieces of information:

 • You can't just add random UIView subclasses to a UIToolbar, or to the
rightBarButtonItem property. Instead, you need to wrap them in a special
UIBarButtonItem, and use that instead.
 • Although WKWebView tells us how much of the page has loaded using its
estimatedProgress property, the WKNavigationDelegate system doesn't tell us when this
value has changed. So, we're going to ask iOS to tell us using a powerful technique called
key-value observing, or KVO.

First, let's create the progress view and place it inside the bar button item. Begin by
declaring the property at the top of the ViewController class next to the existing
WKWebView property:

var progressView: UIProgressView!

Now place this code directly before the let spacer = line in viewDidLoad():

progressView = UIProgressView(progressViewStyle: .Default)

progressView.sizeToFit()

let progressButton = UIBarButtonItem(customView: progressView)

All three of those lines are new, so let's go over them:

1. The first line creates a new UIProgressView instance, giving it the default style. There is
an alternative style called .Bar, which doesn't draw an unfilled line to show the extent of the
progress view, but the default style looks best here.
2. The second line tells the progress view set its layout size so that it fits its contents fully.
3. The last line creates a new UIBarButtonItem using the customView parameter, which is
where we wrap up our UIProgressView in a UIBarButtonItem so that it can go into our

www.hackingwithswift.com 190

toolbar.

With the new progressButton item created, we can put it into our toolbar items anywhere
we want it. The existing spacer will automatically make itself smaller to give space to the
progress button, so I'm going to modify my toolbarItems array to this:

toolbarItems = [progressButton, spacer, refresh]

That is, progress view first, then a space in the center, then the refresh button on the right.

If you run the app now, you'll just see a thin gray line for our progress view – that's because
it's default value is 0, so there's nothing colored in. Ideally we want to set this to match our
webView's estimatedProgress value, which is a number from 0 to 1, but
WKNavigationDelegate doesn't tell us when this value has changed.

Apple's solution to this is huge. Apple's solution is powerful. And, best of all, Apple's solution
is almost everywhere in its toolkits, so once you learn how it works you can apply it
elsewhere. It's called key-value observing (KVO), and it effectively lets you say, "please tell
me when the property X of object Y gets changed by anyone at any time."

We're going to use KVO to watch the estimatedProgress property, and I hope you'll agree
that it's extremely easy. First, we add ourselves as an observer of the property on the web
view by adding this to viewDidLoad():

webView.addObserver(self, forKeyPath: "estimatedProgress",
options: .New, context: nil)

The addObserver() method takes four parameters: who the observer is (we're the observer,
so we use self), what property we want to observe (we want the estimatedProgress
property), which value we want (we want the value that was just set, so we want the new
one), and a context value.

forKeyPath and context bear a little more explanation. forKeyPath isn't named forProperty
because it's not just about entering a property name. You can actually specify a path: one
property inside another, inside another, and so on. More advanced key paths can even add

www.hackingwithswift.com 191

functionality, such as averaging all elements in an array!

context is easier: if you provide a unique value, that same context value gets sent back to
you when you get your notification that the value has changed. This allows you to check the
context to make sure it was your observer that was called. There are some corner cases
where specifying (and checking) a context is required to avoid bugs, but you won't reach
them during any of this series.

Warning: in more complex applications, all calls to addObserver() should be matched with a
call to removeObserver() when you're finished observing – for example, when you're done
with the view controller.

Once you have registered as an observer using KVO, you must implement a method called
observeValueForKeyPath(). This tells you when an observed value has changed, so add
this method now:

override func observeValueForKeyPath(keyPath: String?, ofObject
object: AnyObject?, change: [String : AnyObject]?, context:
UnsafeMutablePointer<Void>) {

 if keyPath == "estimatedProgress" {

 progressView.progress = Float(webView.estimatedProgress)

 }

}

As you can see it's telling us which key path was changed, and it also sends us back the
context we registered earlier so you can check whether this callback is for you or not.

In this project, all we care about is whether the keyPath parameter is set to
estimatedProgress – that is, if the estimatedProgress value of the web view has changed.
And if it has, we set the progress property of our progress view to the new
estimatedProgress value.

Minor note: estimatedProgress is a Double, which as you should remember is one way of
representing decimal numbers like 0.5 or 0.55555. Unhelpfully, UIProgressView's progress
property is a Float, which is another (lower-precision) way of representing decimal numbers.
Swift doesn't let you put a Double into a Float, so we need to create a new Float from the

www.hackingwithswift.com 192

Double.

If you run your project now, you'll see the progress view fills up with blue as the page loads.

www.hackingwithswift.com 193

Refactoring for the win
Our app has a fatal flaw, and there are two ways to fix it: double up on code, or refactor.
Cunningly, the first option is nearly always the easiest, and yet counter-intuitively also the
hardest.

The flaw is this: we let users select from a list of websites, but once they are on that website
they can get pretty much anywhere else they want just by following links. Wouldn't it be nice
if we could check every link that was followed so that we can make sure it's on our safe list?

One solution – doubling up on code – would have us writing the list of accessible websites
twice: once in the UIAlertController and once when we're checking the link. This is
extremely easy to write, but it can be a trap: you now have two lists of websites, and it's
down to you to keep them both up to date. And if you find a bug in your duplicated code, will
you remember to fix it in the other place too?

The second solution is called refactoring, and it's effectively a rewrite of the code. The end
result should do the same thing, though. The purpose of the rewrite is to make it more
efficient, make it easier to read, reduce its complexity, and to make it more flexible. This last
use is what we'll be shooting for: we want to refactor our code so there's a shared array of
allowed websites.

Up where we declared our two properties webView and progressView, add this:

var websites = ["apple.com", "hackingwithswift.com"]

That's an array containing the websites we want the user to be able to visit.

With that array, we can modify the web view's initial web page so that it's not hard-coded. In
viewDidLoad(), change the initial web page to this:

let url = NSURL(string: "https://" + websites[0])!

webView.loadRequest(NSURLRequest(URL: url))

www.hackingwithswift.com 194

So far, so easy. The next change is to make our UIAlertController use the websites for its list
of UIAlertActions. Go down to the openTapped() method and replace these two lines:

ac.addAction(UIAlertAction(title: "apple.com", style: .Default,
handler: openPage))

ac.addAction(UIAlertAction(title: "hackingwithswift.com",
style: .Default, handler: openPage))

…with this loop:

for website in websites {

 ac.addAction(UIAlertAction(title: website, style: .Default,
handler: openPage))

}

That will add one UIAlertAction object for each item in our array. Again, not too complicated.

The final change is something new, and it belongs to the WKNavigationDelegate protocol. If
you find space for a new method and start typing "web" you'll see the list of WKWebView-
related code completion options. Look for the one called decidePolicyForNavigationAction
and let Xcode fill in the method for you.

This delegate callback allows us to decide whether we want to allow navigation to happen or
not every time something happens. We can check which part of the page started the
navigation, we can see whether it was triggered by a link being clicked or a form being
submitted, or, in our case, we can check the URL to see whether we like it.

Now that we've implemented this method, it expects a response: should we load the page or
should we not? When this method is called, you get passed in a parameter called
decisionHandler. This actually holds a function, which means if you "call" the parameter,
you're actually calling the function.

If your brain has just turned to soup, let me try to clarify. In project 2 I talked about closures:
chunks of code that you can pass into a function like a variable and have executed at a later
date. This decisionHandler is also a closure, except it's the other way around – rather than

www.hackingwithswift.com 195

date. This decisionHandler is also a closure, except it's the other way around – rather than
giving someone else a chunk of code to execute, you're being given it and are required to
execute it.

And make no mistake: you are required to do something with that decisionHandler closure.
That might make sound an extremely complicated way of returning a value from a method,
and that's true – but it's also underestimating the power a little! Having this decisionHandler
variable/function means you can show some user interface to the user "Do you really want to
load this page?" and call the closure when you have an answer.

So, we need to evaluate the URL to see whether it's in our safe list, then call the
decisionHandler with a negative or positive answer. Here's the code for the method:

func webView(webView: WKWebView, decidePolicyForNavigationAction
navigationAction: WKNavigationAction, decisionHandler:
(WKNavigationActionPolicy) -> Void) {

 let url = navigationAction.request.URL

 if let host = url!.host {

 for website in websites {

 if host.rangeOfString(website) != nil {

 decisionHandler(.Allow)

 return

 }

 }

 }

 decisionHandler(.Cancel)

}

There are some easy bits, but they are outweighed by the hard bits so let's go through every
line in detail to make sure:

www.hackingwithswift.com 196

1. First, we set the constant url to be equal to the NSURL of the navigation. This is just to
make the code clearer.
2. Second, we use if/let syntax to unwrap the value of the optional url.host. Remember I said
that NSURL does a lot of work for you in parsing URLs properly? Well, here's a good
example: this line says, "if there is a host for this URL, pull it out" – and by "host" it means
"website domain" like apple.com. NB: we need to unwrap this carefully because not all URLs
have hosts.
3. Third, we loop through all sites in our safe list, placing the name of the site in the website
variable.
4. Fourth, we use the rangeOfString() String method to see whether each safe website
exists somewhere in the host name.
5. Fifth, if the website was found (if rangeOfString() is not nil) then we call the decision
handler with a positive response: allow loading.
6. Sixth, if the website was found, after calling the decisionHandler we use the return
statement. This means "exit the method now."
7. Last, if there is no host set, or if we've gone through all the loop and found nothing, we call
the decision handler with a negative response: cancel loading.

The rangeOfString() method can take quite a few parameters, however all but the first are
optional so the above usage is fine. To use it, call rangeOfString() on one string, giving it
another string as a parameter, and it will tell you where it was found, or nil if it wasn't found
at all.

You've already met the hasPrefix() method in project 1, but hasPrefix() isn't suitable here
because our safe site name could appear anywhere in the URL. For example, slashdot.org
redirects to m.slashdot.org for mobile devices, and hasPrefix() would fail that test.

The return statement is new, but it's one you'll be using a lot from now on. It exits the
method immediately, executing no further code. If you said your method returns a value,
you'll use the return statement to return that value.

Your project is complete: press Cmd+R to run the finished app, and enjoy!

www.hackingwithswift.com 197

Wrap up
Another project done, another huge pile of things learned. You should be starting to get into
the swing of things by now, but don't let yourself become immune to your success. In this
tutorial alone you've learned about loadView(), WKWebView, delegation, classes and
structs, NSURLRequest, UIToolbar, UIProgressView, KVO and more, so you should be
proud of your fantastic accomplishments!

There is a lot of scope for improvement with this project, so where you start is down to you. I
would suggest at the very least that you investigate changing the initial view controller to a
table view like in project 1, where users can go choose their website from a list rather than
just having the first in the array loaded up front.

Once you have completed project 5, you might like to return here to add in the option to load
the list of websites from a file, rather than having them hard-coded in an array.

www.hackingwithswift.com 198

Project 5
Word Scramble
Create an anagram game while learning about closures
and booleans.

www.hackingwithswift.com 199

Setting up
Projects 1 to 4 were all fairly easy, because my goal was to teach you as much about Swift
without scaring you away, while also trying to make something useful. But now that you're
hopefully starting to become familiar with the core tools of iOS development, it's time to
change up a gear and tackle something a bit meatier.

In this project you're going to learn how to make a word game that deals with anagrams, but
as per usual I'll be hijacking it as a method to teach you more about iOS development. This
time around we're going back to the table views as seen in project 1, but you're also going to
learn how to load text from files, how to ask for user input in UIAlertController, and get a
little more insight to how closures work.

In Xcode, create a new Master-Detail Application called Project5. Select iPhone for your
target, then click Next to save it somewhere. Right-click on DetailViewController.swift in the
project navigator (the pane on the left showing all your files; Cmd+1 shows it), then choose
Delete and click "Move to Trash" when prompted.

Doing this will cause quite a few errors to appear in your project, but it's easily fixed – we just
need to delete quite a bit of Apple's template! First, open the AppDelegate.swift file, and look
for this code near the top of the file:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {

 // Override point for customization after application launch.

 let splitViewController = self.window!.rootViewController as!
UISplitViewController

 let navigationController =
splitViewController.viewControllers[splitViewController.viewControlle
rs.count-1] as! UINavigationController

navigationController.topViewController!.navigationItem.leftBarButtonI
tem = splitViewController.displayModeButtonItem()

 splitViewController.delegate = self

 return true

}

www.hackingwithswift.com 200

Please delete everything in the body of that method except return true, like this:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {

 return true

}

Staying in that same file, scroll to the bottom to find this method with an extremely long
signature:

func splitViewController(splitViewController: UISplitViewController,
collapseSecondaryViewController
secondaryViewController:UIViewController, ontoPrimaryViewController
primaryViewController:UIViewController) -> Bool {

Please delete that whole method.

Next, open the MasterViewController.swift file, and delete everything except
super.viewDidLoad() from the viewDidLoad() method, then delete the viewWillAppear(),
insertNewObject() and prepareForSegue() methods entirely. Finally, find the
tableView(_:canEditRowAtIndexPath:) and
tableView(_:commitEditingStyle:forRowAtIndexPath:) methods and delete those too.

The last code change is to find and delete this property near the top of the class:

var detailViewController: DetailViewController? = nil

That's all the code cleaned up, but we need to do a little Interface Builder surgery before
we're complete. As you saw back in project 1, Apple's Master-Detail Application template
sets up a split view controller plus two navigation controllers, as well as a table view

www.hackingwithswift.com 201

controller and a regular view controller with a detail label – this is all rather overkill for our
simple application, so we're going to delete 3/5ths of that to make our whole app simpler.

So, open Main.storyboard in Interface Builder. Now select and delete the Split View
Controller (the one on the far left with a dark gray background color), then delete the bottom
navigation controller and its associated view controller. You should be left with just two
things: a navigation controller, and, to its right, a table view controller.

Apple had it set up so that the split view controller was the initial view controller, which is
what gets shown when the application launches. We just deleted that, so we need to pick a
new initial view controller instead. To do that, select the remaining navigation controller, go to
the Attributes Inspector (Alt+Cmd+4), and select the "Is Initial View Controller" checkbox
that's about half way down the list of options. If it's worked, you should see an arrow appear
to the left of the navigation controller.

The finished Interface Builder layout should look like the screenshot below:

We've turned Apple's five view controllers into just two, which is much easier to manage.

The project is now so small that you might wander why we didn't just start from scratch! Still,
there's a fair amount remaining, and deleting stuff can be quite cathartic. Even better: your
project is now a clean table view project, ready for customisation – let's do this!

(PS: Is it faster to start with a Single View application? Possibly, but possibly not; at least this
way you get some experience in cleaning up Apple's templates. Plus, deleting stuff is fun!)

www.hackingwithswift.com 202

www.hackingwithswift.com 203

Reading from disk
We're going to make an anagram game, where the user is asked to make words out of a
larger word. We're going to put together a list of possible starter words for the game, and
that list will be stored in a separate file. But how we get the text from the file into the app?
Well, it turns out that Swift's String data type makes it a cinch – thanks, Apple!

If you haven't already downloaded the assets for this project from hackingwithswift.com,
please do so now. In the Content folder you'll find the file start.txt. Please drag that into your
Xcode project, making sure that "Copy items if needed" is checked.

The start.txt file contains over 12,000 eight-letter words we can use for our game, all stored
one word per line. We need to turn that into an array of words we can play with. Behind the
scenes, those line breaks are marked with a special line break character that is usually
expressed as "\n". So, we need to load that word list into a string, then split it into an array
by breaking up wherever we see \n.

First, go to the start of your class and make a new array. There will be an existing one there
from Apple's template, so put this alongside:

var allWords = [String]()

While you're there, you might as well change Apple's array to be [String] rather than
[AnyObject], because we'll only ever be storing strings in there. You'll need to adjust the
table view's cellForRowAtIndexPath method from this:

let object = objects[indexPath.row] as NSDate

cell.textLabel!.text = object.description

…to this:

let object = objects[indexPath.row]

cell.textLabel!.text = object

www.hackingwithswift.com 204

We did this in project 1 too, so hopefully it's not too hard. This is a result of the objects array
no longer containing AnyObject, but just strings.

Second, loading our array. This is done in three parts: finding the path to our start.txt file,
loading the contents of that file, then splitting it into an array.

Finding a path to a file is something you'll do a lot, because even though you know the file is
called "start.txt" you don't know where it might be on the filesystem. So, we use a built-in
method of NSBundle to find it: pathForResource(). This takes as its parameters the name of
the file and its path extension, and returns a String? – i.e., you either get the path back or
you get nil.

Loading a file into a string is also something you'll need to get familiar with, and again there's
an easy way to do it: when you create an String instance, you can ask it to create itself from
the contents of a file at a particular path. You can also provide it with parameters to tell you
the text encoding that was used, but for this project we don't care.

Finally, we need to split our single string into an array of strings based on wherever we find a
line break (\n). This is as simple as another method call on String:
componentsSeparatedByString(). Tell it what string you want to use as a separator (for us,
that's \n), and you'll get back an array.

Before we get onto the code, there are two things you should know: pathForResource() and
creating an String from the contents of a file both return String?, which means we need to
check and unwrap the optional using if/let syntax.

OK, time for some code. Put this into viewDidLoad(), after the super call:

if let startWordsPath =
NSBundle.mainBundle().pathForResource("start", ofType: "txt") {

 if let startWords = try? String(contentsOfFile: startWordsPath,
usedEncoding: nil) {

 allWords = startWords.componentsSeparatedByString("\n")

 }

} else {

 allWords = ["silkworm"]

www.hackingwithswift.com 205

 allWords = ["silkworm"]

}

If you look carefully, there's a new keyword in there: try?. You already saw try! previously,
and really we could use that here too because we're loading a file from our app's bundle so
any failure is likely to be catastrophic. However, this way I have a chance to teach you
something new: try? means "call this code, and if it throws an error just send me back nil
instead." This means the code you call will always work, but you need to unwrap the result
carefully.

As you can see, that code carefully checks for and unwraps the contents of our start file,
then converts it to an array. When it has finished, allWords will contain 12,000+ strings ready
for us to use in our game.

To prove that everything is working before we continue, let's create a new method called
startGame(). This will be called every time we want to generate a new word for the player to
work with:

func startGame() {

 allWords =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(allWords
) as! [String]

 title = allWords[0]

 objects.removeAll(keepCapacity: true)

 tableView.reloadData()

}

Note the first line there is what shuffles the words arrow. We used this is in project 2, so you
should remember that you need to import the GameplayKit framework in order for that to
work.

Line 2 sets our view controller's title to be the first word in the array, once it has been
shuffled. This will be the word the player has to find.

www.hackingwithswift.com 206

Line 3 removes all values from the objects array. This array was created for us by the Xcode
template, and we'll be using it to store the player's answers so far. We aren't adding anything
to it right now, so removeAll() won't do anything just yet.

Line 4 is the interesting part: it calls the reloadData() method of tableView. That table view
was declared up near the… hey, wait a minute! Where's that table view come from? Well, we
certainly didn't make it. Instead, it's made for us because – dramatic drum roll –
MasterViewController doesn't inherit from UIViewController.

Yes, I know I said UIViewController is used for all the screens in your app, and it is, just
sometimes not directly. In this case, MasterViewController inherits from
UITableViewController, and UITableViewController inherits from UIViewController.
There's an inheritance chain, with each component addings its own functionality.

Don't fear: most of your view controllers will inherit either directly from UIViewController or
will go through UITableViewController first. It's just that table views are so pervasive in iOS
that Apple took the opportunity to bake in some extra behavior for developers.

So what does UITableViewController do that UIViewController doesn't? Well, it comes with
a full-screen table, for starters. When the view is shown, UITableViewController
automatically flashes the scrollbars of the table so users know they can scroll, and if the
keyboard appears then UITableViewController automatically adjusts itself so its content
doesn't go beneath the keyboard.

Anyway, UITableViewController is what we are based on for MasterViewController, and
that's where our tableView comes from. Calling reloadData() will cause the table view to
check how many rows it has and reload them all.

Our table view doesn't have any rows yet, so this won't do anything. However, the method is
ready to be used, and allows us to check we've loaded all the data correctly, so add this just
before the end of viewDidLoad():

startGame()

Now press Cmd+R to run the app, and you ought to see an eight-letter word at the top,
ready for play to begin.

www.hackingwithswift.com 207

Our game so far is less than impressive, but trust me: it's all going to come together shortly!

www.hackingwithswift.com 208

Pick a word, any word
This game will prompt the user to enter a word that can be made from the eight-letter prompt
word. For example, if the eight-letter word is "agencies", the user could enter "cease." We're
going to solve this with UIAlertController, because it's a nice fit, and also gives me the
chance to introduce some new teaching. I'm all about ulterior motives!

Add this code to viewDidLoad(), just after the call to super:

navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Add, target: self, action:
"promptForAnswer")

That creates a new UIBarButtonItem using the "add" system item, and configured it to run a
method called promptForAnswer() when tapped. This method is going to show a
UIAlertController with space for the user to enter an answer, and when the user clicks
Submit to that alert controller the answer is checked to make sure it's valid.

Before I give you the code, let me explain what you need to know.

You see, we're about to use a closure, and things get a little complicated. As a reminder,
these are chunks of code that can be treated like a variable – we can send the closure
somewhere, where it gets stored away and executed later. To make this work, Swift takes a
copy of the code and captures any objects it references, so it can use them later.

But there's a problem: what if the closure references the view controller? Then what could
happen is a strong reference cycle: the view controller owns an object that owns a closure
that owns the view controller, and nothing could ever be destroyed.

I'm going to try (and likely fail!) to give you a metaphorical example, so please bear with me.
Imagine if you built two cleaning robots, red and blue. You told the red robot, "don't stop
cleaning until the blue robot stops," and you told the blue robot "don't stop cleaning until the
red robot stops." When would they stop cleaning? Never, because neither will make the first
move.

This is the problem we are facing with a strong reference cycle: object A owns object B, and
object B owns a closure that referenced object A. And when closures are created, they

www.hackingwithswift.com 209

capture everything they use, thus object B owns object A.

Strong reference cycles used to be hard to find, but you'll be glad to know Swift makes them
trivial. In fact, Swift makes it so easy that you will use its solution even when you're not sure
if there's a cycle simply because you might as well.

So, please brace yourself: we're about to take our first look at actual closures. The syntax will
hurt. And when you finally understand it, you'll come across examples online that make your
brain hurt all over again.

Ready? Here's the promptForAnswer() method:

func promptForAnswer() {

 let ac = UIAlertController(title: "Enter answer", message: nil,
preferredStyle: .Alert)

 ac.addTextFieldWithConfigurationHandler(nil)

 let submitAction = UIAlertAction(title: "Submit", style: .Default)
{ [unowned self, ac] (action: UIAlertAction!) in

 let answer = ac.textFields![0]

 self.submitAnswer(answer.text!)

 }

 ac.addAction(submitAction)

 presentViewController(ac, animated: true, completion: nil)

}

That one method introduces quite a few new things, but before we look at them let's
eliminate the easy stuff.

 • Creating a new UIAlertController: we did that in project 2.
 • addTextFieldWithConfigurationHandler() just adds an editable text field to the

www.hackingwithswift.com 210

UIAlertController. We could do more with it, but it's enough for now.
 • addAction() is used to add a UIAlertAction to a UIAlertController. We used this in project
2 also.
 • presentViewController is also from project 2. Clearly project 2 was brilliant!

That leaves the tricky stuff: creating submitAction. These handful of lines of code
demonstrate no fewer than five new things to learn, all of which are important. I'm going to
sort them easiest first, starting with UITextField.

You've already seen UILabel: it's a simple UIView subclass that shows a string of uneditable
text on the screen. UITextField is similar, except it's editable. We added a single text field to
the UIAlertController using its addTextFieldWithConfigurationHandler() method, and we
now read out the value that was inserted.

Next up is something called trailing closure syntax. I know, I know: you haven't even learned
about regular closures yet, and you're already having to learn about trailing closures! Well,
they are related, and trailing closures aren't hard, so give it a chance.

Here's part of a line of code from project 2:

UIAlertAction(title: "Continue", style: .Default, handler:
askQuestion)

This is from a similar situation: we're using UIAlertController and UIAlertAction to add
buttons that the user can tap on. Back then, we used a separate method (askQuestion()) to
avoid having to explain closures too early, but you can see that I'm passing askQuestion to
the handler parameter of the UIAlertAction.

Closures can be thought of as a bit like anonymous functions. That is, rather than passing
the name of a function to execute, we're just passing a lump of code. So we could
conceptually rewrite that line to be this:

UIAlertAction(title: "Continue", style: .Default, handler: { CLOSURE
CODE HERE })

www.hackingwithswift.com 211

But that has one critical problem: it's ugly! If you're executing lots of code inside the closure,
it looks strange to have a one-line function call taking a 10-line parameter.

So, Swift has a solution, called trailing closure syntax. Any time you are calling a method that
expects a closure as its final parameter – and there are many of them – you can eliminate
that final parameter entirely, and pass it inside braces instead. This is optional and automatic,
and would turn our conceptual code into this:

UIAlertAction(title: "Continue", style: .Default) {

 CLOSURE CODE HERE

}

Everything from the opening brace to the close is part of the closure, and is passed into the
UIAlertAction creation as its last parameter. Easy!

Next, (action: UIAlertAction!) in. If you remember project 2, we had to modify the
askQuestion() method so that it accepted a UIAlertAction parameter saying what button
was tapped, like this:

func askQuestion(action: UIAlertAction!) {

We had no choice but to do that, because the handler parameter for UIAlertAction expects
a method that takes itself as a parameter. And that's what's happening here: we're giving the
UIAlertAction some code to execute when it is tapped, and it wants to know that that code
accepts a parameter of type UIAlertAction.

The in keyword is important: everything before that describes the closure; everything after
that is the closure. So (action: UIAlertAction!) in means that it accepts one parameter in, of
type UIAlertAction.

I used this way of writing the closure because it's so similar to that used in project 2.
However, Swift knows what kind of closure this needs to be, so we could simplify it a little:
from this…

www.hackingwithswift.com 212

(action: UIAlertAction!) in

…to this:

action in

In our current project, we could simplify this even further: we don't make any reference to the
action parameter inside the closure, which means we don't need to give it a name at all. In
Swift, to leave a parameter unnamed you just use an underscore character, like this:

_ in

Fourth and fifth are going to be tackled together: unowned and self..

Swift "captures" any constants and variables that are used in a closure, based on the values
of the closure's surrounding context. That is, if you create an integer, a string, an array and
another class outside of the closure, then use them inside the closure, Swift captures them.

This is important, because the closure references the variables, and might even change
them. But I haven't said yet what "capture" actually means, and that's because it depends
what kind of data you're using. Fortunately, Swift hides it all away so you don't have to worry
about it…

…except for those strong reference cycles I mentioned. Those you need to worry about.
That's where objects can't even be destroyed because they all hold tightly on to each other –
known as strong referencing.

Swift's solution is to let you declare that some variables aren't held onto quite so tightly. It's a
two-step process, and it's so easy you'll find yourself doing it for everything just in case.

First, you must tell Swift what variables you don't want strong references for. This is done in
one of two ways: unowned or weak. These are somewhat equivalent to implicitly unwrapped

www.hackingwithswift.com 213

optionals (unowned) and regular optionals (weak): a weakly owned reference might be nil, so
you need to unwrap it; an unowned reference is one you're certifying cannot be nil and so
doesn't need to be unwrapped, however you'll hit a problem if you were wrong.

In our code we use this: [unowned self, ac]. That declares self (the current view controller)
and ac (our UIAlertController) to be captured as unowned references inside the closure. It
means the closure can use them, but won't create a strong reference cycle because we've
made it clear the closure doesn't own either of them.

But that's not enough for Swift. Inside our method we're calling the submitAnswer() method
of our view controller. We haven't created it yet, but you should be able to see it's going to
take the answer the user entered and try it out in the game.

This submitAnswer() method is external to the closures current context, so when you're
writing it you might not realise that calling submitAnswer() implicitly requires that self be
captured by the closure. That is, the closure can't call submitAnswer() if it doesn't capture
the view controller.

We've already declared that self is unowned by the closure, but Swift wants us to be
absolutely sure we know what we're doing: every call to a method or property of the current
view controller must prefixed with "self.", as in self.submitAnswer().

In project 1, I told you there were two trains of thought regarding use of self, and said, "The
first group of people never like to use self. unless it's required, because when it's required
it's actually important and meaningful, so using it in places where it isn't required can
confuse matters."

Implicit capture of self in closures is that place when using self is required and meaningful:
Swift won't let you avoid it here. By restricting your use of self to closures, you can easily
check your code doesn't have any reference cycles by searching for "self" – there ought not
to be too many to look through!

www.hackingwithswift.com 214

You can add multiple text fields to an alert controller, which is perfect for accepting quick user
input.

www.hackingwithswift.com 215

Prepare for submission
OK, you can breathe again: we're done with closures for now. I know that wasn't easy, but
once you understand basic closures you really have come a long in your Swift adventure.

We're going to do some much easier coding now, because believe it or not we're not that far
from making this game actually work!

First, let's make your code compile again, because right now it's calling self.submitAnswer()
and we haven't made that method yet. So, add this new method somewhere in the class:

func submitAnswer(answer: String) {

}

That's right, it's empty – it's enough to make the code compile cleanly so we can carry on.

We have now gone over the structure of a closure: trailing closure syntax, unowned self, a
parameter being passed in, then the need for self. to make capturing clear. We haven't really
talked about the actual content of our closure, because there isn't a lot to it:

let answer = ac.textFields![0]

self.submitAnswer(answer.text!)

The first line force unwraps the array of text fields (it's optional because there might not be
any; we can force unwrap because we know we added one), then tells Swift to treat it as a
UITextField. The second line pulls out the text from the text field and passes it to our (all-
new-albeit-empty) submitAnswer() method.

This method needs to check whether the player's word can be made from the given letters. It
needs to check whether the word has been used already, because obviously we don't want
duplicate words. It also needs to check whether the word is actually a valid English word,
because otherwise the user can just type in nonsense.

If all three of those checks pass, submitAnswer() needs to add the word to the objects

www.hackingwithswift.com 216

array, then insert a new row in the table view. We could just use the table view's reloadData()
method to force a full reload, but that's not very efficient when we're changing just one row.

Here's our first pass at filling in the submitAnswer() method:

func submitAnswer(answer: String) {

 let lowerAnswer = answer.lowercaseString

 if wordIsPossible(lowerAnswer) {

 if wordIsOriginal(lowerAnswer) {

 if wordIsReal(lowerAnswer) {

 objects.insert(answer, atIndex: 0)

 let indexPath = NSIndexPath(forRow: 0, inSection: 0)

 tableView.insertRowsAtIndexPaths([indexPath],
withRowAnimation: .Automatic)

 }

 }

 }

}

Ignore the wordIsPossible(), wordIsOriginal() and wordIsReal() methods for now – let's
focus on the rest of the code first.

If a user types "cease" as a word that can be made out of our started word "agencies", it's
clear that is correct because there is one "c", two "e"s, one "a" and one "s". But what if they
type "Cease"? Now it has a capital C, and "agencies" doesn't have a capital C. Yes, that's
right: strings are case-sensitive, which means Cease is not cease is not CeasE is not CeAsE.

The solution to this is quite simple: all the starter words are lowercase, so when we check the
player's answer we immediately lowercase it using its lowercaseString property. This is
stored in the lowerAnswer constant because we want to use it several times.

www.hackingwithswift.com 217

We then have three if statements, one inside another. These are called nested statements,
because you nest one inside the other. Only if all three statements are true (the word is
possible, the word hasn't been used yet, and the word is a real word), does the main block of
code execute.

Once we know the word is good, we do three things: insert the new word into our objects
array at index 0. This means "add it to the start of the array," and means that the newest
words will appear at the top of the table view.

The next two things are related: we insert a new row into the table view. Given that the table
view gets all its data from the objects array, this might seem strange. After all, we just
inserted the word into the objects array, so why do we need to insert anything into the table
view?

The answer is animation. Like I said, we could just call the reloadData() method and have
the table do a full reload of all rows, but it means a lot of extra work for one small change,
and also causes a jump – the word wasn't there, and now it is.

This can be hard for users to track visually, so using insertRowsAtIndexPaths() lets us tell
the table view that a new row has been placed at a specific place in the array so that it can
animate the new cell appearing. Adding one cell is also significantly easier than having to
reload everything, as you might imagine!

There are two quirks here that require a little more detail. First, NSIndexPath is something
we looked at briefly in project 1, as it contains a section and a row for every item in your
table. As with project 1 we aren't using sections here, but the row number should equal the
position we added the item in the array – position 0, in this case.

Second, the withRowAnimation parameter lets you specify how the row should be
animated in. Whenever you're adding and removing things from a table, the .Automatic
value means "do whatever is the standard system animation for this change." In this case, it
means "slide the new row in from the top."

Your code won't compile yet, because we still have three missing methods that need to be
done. Add these three beneath the submitAnswer() method to get everything working again:

func wordIsPossible(word: String) -> Bool {

 return true

www.hackingwithswift.com 218

 return true

}

func wordIsOriginal(word: String) -> Bool {

 return true

}

func wordIsReal(word: String) -> Bool {

 return true

}

We'll look at what that does shortly, then fill it out with lots of real code. But for now, press
Cmd+R to play back what you have – you should be able to tap the + button and enter
words into the alert.

www.hackingwithswift.com 219

Returning values
None of our custom methods have returned values so far. We used the return keyword
briefly in project 4 to exit the web view's decidePolicyForNavigationAction method early,
but it didn't send any data back. So, let's take things another step forward.

As I said, the return keyword exits a method at any time it's used. If you use return by itself,
it exits the method and does nothing else. But if you use return with a value, it sends that
value back to whatever called the method.

Before you can send a value back, you need to tell Swift that you expect to return a value.
Swift will automatically check that a value is returned and it's of the right data type, so this is
important. We just put in stubs (empty methods that do nothing) for three new methods, each
of which returns a value. Let's take a look at one in more detail:

func wordIsOriginal(word: String) -> Bool {

 return true

}

The method is called wordIsOriginal(), and it takes one parameter that's a string. But before
the opening brace there's something new: -> Bool. This tells Swift that the method will return
a boolean value, which is the name for a value that can be either true or false.

The body of the method has just one line of code: return true. This is how the return
statement is used to send a value back to its caller: we're returning true from this method, so
the caller can use this method inside an if statement to check for true or false.

This method can have as much code as it needs in order to evaluate fully whether the word
has been used or not, including calling any other methods it needs. We're going to change it
so that it calls another method, which will check whether our objects array already contains
the word that was provided. Replace its current return true code with this:

return !objects.contains(word)

www.hackingwithswift.com 220

There are two new things here. First, contains() is a method that checks whether the array
specified in parameter 1 (objects) contains the value specified in parameter 2 (word). If it
does contain the value, contains() returns true; if not, it returns false. Second, the ! symbol.
You've seen this before as the way to force unwrap optional variables, but here it's
something different: it means not.

The difference is small but important: when used before a variable or constant, ! means "not"
or "opposite". So if contains() returns true, ! flips it around to make it false, and vice versa.
When used after a variable or constant, ! means "force unwrap this optional variable."

This is used because our method is called wordIsOriginal(), and should return true if the
word has never been used before. If we had used return objects.contains(word), then it
would do the opposite: it would return true if the word had been used and false otherwise.
So, by using ! we're flipping it around so that the method returns true if the word is new.

That's one method down. Next is the wordIsPossible(), which also takes a string as its only
parameter and returns a Bool – true or false. This one is more complicated, but I've tried to
make the algorithm as simple as possible.

How can we be sure that "cease" can be made from "agencies", using each letter only once?
The solution I've adopted is to loop through every letter in the player's answer, seeing
whether it exists in the eight-letter start word we are playing with. If it does exist, we remove
the letter from the start word, then continue the loop. So, if we try to use a letter twice, it will
exist the first time, but then get removed so it doesn't exist the next time, and the check will
fail.

You already met the rangeOfString() method in project 4, so this should be straightforward:

func wordIsPossible(word: String) -> Bool {

 var tempWord = title!.lowercaseString

 for letter in word.characters {

 if let pos = tempWord.rangeOfString(String(letter)) {

 tempWord.removeAtIndex(pos.startIndex)

 } else {

 return false

www.hackingwithswift.com 221

 return false

 }

 }

 return true

}

Our usage of rangeOfString() is a little different than from project 4. Remember,
rangeOfString() returns an optional position of where the item was found – meaning that it
might be nil. So, we wrap the call into an if/let to safely unwrap the optional.

The usage is also different because we use String(letter) rather than just letter. This is
because our for loop is used on a string, and it pulls out every letter in the string as a new
data type called Character – i.e., a single letter. rangeOfString() expects a string, not a
character, so we need to create a string from the character using String(letter).

If the letter was found in the string, we use removeAtIndex() to remove the used letter from
the tempWord variable. This is why we need the tempWord variable at all: because we'll be
removing letters from it so we can check again the next time the loop goes around.

The method ends with return true, because this line is reached only if every letter in the
user's word was found in the start word no more than once. If any letter isn't found, or is
used more than possible, one of the return false lines would have been hit, so by this point
we're sure the word is good.

Important: we have told Swift that we are returning a boolean value from this method, and it
will check every possible outcome of the code to make sure a boolean value is returned no
matter what.

Time for the final method. Replace the current wordIsReal() method with this:

func wordIsReal(word: String) -> Bool {

 let checker = UITextChecker()

 let range = NSMakeRange(0, word.characters.count)

 let misspelledRange = checker.rangeOfMisspelledWordInString(word,

www.hackingwithswift.com 222

range: range, startingAt: 0, wrap: false, language: "en")

 return misspelledRange.location == NSNotFound

}

There's a new class here, called UITextChecker. This is an iOS class that is designed to spot
spelling errors, which makes it perfect for knowing if a given word is real or not. We're
creating a new instance of the class and putting it into the checker constant for later.

There's a new function call here too, called NSMakeRange(). This is used to make a string
range, which is a value that holds a start position and a length. We want to examine the
whole string, so we use 0 for the start position and the string's length for the length.

Next, we call the rangeOfMisspelledWordInString() method of our UITextChecker
instance. This wants five parameters, but we only care about the first two and the last one:
the first parameter is our string, word, the second is our range to scan (the whole string), and
the last is the language we should be checking with, where en selects English.

Parameters three and four aren't useful here, but for the sake of completeness: parameter
three selects a point in the range where the text checker should start scanning, and
parameter four lets us set whether the UITextChecker should start at the beginning of the
range if no misspelled words were found starting from parameter three. Neat, but not helpful
here.

Calling rangeOfMisspelledWordInString() returns an NSRange structure, which tells us
where the misspelling was found. But what we care about was whether any misspelling was
found, and if nothing was found our NSRange will have the special location NSNotFound.
Usually location would tell you where the misspelling started, but NSNotFound is telling us
the word is spelled correctly – i.e., it's a valid word.

Here the return statement is used in a new way: as part of an operation involving ==. This is
a very common way to code, and what happens is that == returns true or false depending on
whether misspelledRange.location is equal to NSNotFound That true or false is then given
to return as the return value for the method.

We could have written that same line across multiple lines, but it's not common:

www.hackingwithswift.com 223

if misspelledRange.location == NSNotFound {

 return true

} else {

 return false

}

That completes the third of our missing methods, so the project is almost complete. Run it
now and give it a thorough test!

www.hackingwithswift.com 224

Or else what?
There remains one problem to fix with our code, and it's quite a tedious problem. If the word
is possible and original and real, we add it to the list of found words then insert it into the
table view. But what if the word isn't possible? Or if it's possible but not original? In this
case, we reject the word and don't say why, so the user gets no feedback.

So, the final part of our project is to give users feedback when they make an invalid move.
This is tedious because it's just adding else statements to all the if statements in
submitAnswer(), each time configuring a message to show to users.

Here's the adjusted method:

func submitAnswer(answer: String) {

 let lowerAnswer = answer.lowercaseString

 let errorTitle: String

 let errorMessage: String

 if wordIsPossible(lowerAnswer) {

 if wordIsOriginal(lowerAnswer) {

 if wordIsReal(lowerAnswer) {

 objects.insert(answer, atIndex: 0)

 let indexPath = NSIndexPath(forRow: 0, inSection: 0)

 tableView.insertRowsAtIndexPaths([indexPath],
withRowAnimation: .Automatic)

 return

 } else {

 errorTitle = "Word not recognised"

 errorMessage = "You can't just make them up, you know!"

 }

 } else {

www.hackingwithswift.com 225

 } else {

 errorTitle = "Word used already"

 errorMessage = "Be more original!"

 }

 } else {

 errorTitle = "Word not possible"

 errorMessage = "You can't spell that word from '\
(title!.lowercaseString)'!"

 }

 let ac = UIAlertController(title: errorTitle, message:
errorMessage, preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

}

As you can see, every if statement now has a matching else statement so that the user gets
appropriate feedback. All the elses are effectively the same (albeit with changing text): set
the values for errorTitle and errorMessage to something useful for the user. The only
interesting exception is the last one, where we use string interpolation (remember project 2?)
to show the view controller's title as a lowercase string.

If the user enters a valid answer, a call to return forces Swift to exit the method immediately
once the table has been updated. This is helpful, because at the end of the method there is
code to create a new UIAlertController with the error title and message that was set, add an
OK button with a nil handler (i.e., just dismiss the alert), then show the alert. So, this error will
only be shown if something went wrong.

This demonstrates one important tip about Swift constants: both errorTitle and
errorMessage were declared as constants, which means their value cannot be changed
once set. I didn't give either of them an initial value, and that's OK – Swift lets you do this as
long as you do provide a value before the constants are read, and also as long as you don't
try to change the value again later on.

www.hackingwithswift.com 226

Other than that, your project is done. Go and play!

www.hackingwithswift.com 227

Wrap up
You've made it this far, so your Swift learning really is starting to come together, and I hope
this project has shown you that you can make some pretty advanced things with your
knowledge.

In this project, you learned a little bit more about UITableView: how to reload their data and
how to insert rows. You also learned how to add text fields to UIAlertController so that you
can accept user input. But you also learned some serious core stuff: more about Swift
strings, closures, method return values, booleans, NSRange, and more. These are things
you're going to use in dozens of projects over your Swift coding career, and things we'll be
returning to again and again in this series.

You may already have plans for how you'd like to improve this game, but if not here are four
ideas to get you started:

1. Disallow answers that are shorter than three letters. The easiest way to accomplish this is
to put a check into wordIsReal() that returns false if the word length is under three letters.
2. Refactor all the else statements we just added so that they call a new method called
showErrorMessage(). This should accept an error message and a title, and do all the
UIAlertController work from there.
3. Disallow answers that are just the start word. Right now, if the start word is "agencies" the
user can just submit "agencies" as an answer, which is too easy – stop them from doing that.
4. Fix our start.txt loading code. If we the pathForResource() call returns nil we load an
array containing one word: silkworm. But what if pathForResource() succeeds, but creating
an NSString using contentsOfFile fails? Then the array is empty! Make a new
loadDefaultWords() method that can be used for both failures.

www.hackingwithswift.com 228

Project 6
Auto Layout
Get to grips with Auto Layout using practical examples and
code.

www.hackingwithswift.com 229

Setting up
In this technique project you're going to learn more about Auto Layout, the powerful and
expressive way iOS lets you design your layouts. We used it in project 2 to make sure our
flag buttons were positioned correctly, but that project has a problem: if you rotate your
device, the flags don't fit on the screen!

So, we're first going to fix project 2 so that it demonstrates more advanced Auto Layout
techniques (while also making the flags stay on the screen correctly!), then take a look at
ways you can use Auto Layout in code.

First: take a copy of project 2, call it project6a, then open it in Xcode. All set? Then let's
begin…

www.hackingwithswift.com 230

Advanced Auto Layout
When you run the project, it looks fine in portrait, but is unplayable on landscape because
some of the buttons are hidden. You have two options: either disable landscape mode, or
make your layout work across both orientations.

Disabling orientations isn't a great solution, but sometimes it's the right solution. Most
games, for example, fix their orientation because it just doesn't make sense to support both.
If you want to do this, press Cmd+1 to show the project navigator on the left of your Xcode
window, select your project (it's the first item in the pane), then to the right of where you just
clicked will appear another pane showing "PROJECT" and "TARGETS", along with some
more information in the center.

Please note: This project and targets list can be hidden by clicking the disclosure button in
the top-left of the project editor (directly beneath the icon with four squares), and you may
find yours is already hidden. I strongly recommend you show this list – hiding it will only
make things harder to find, so please make sure it's visible!

In the picture below you can see the project editor, with the device orientations at the
bottom. This is the collapsed view of projects and targets, so there's a dropdown arrow at
the top that says "Project2" (just above where it says Identity in bold), and to the left of that is
the button to show the projects and targets list.

www.hackingwithswift.com 231

Use the project editor to set the device orientations you want to support.

This view is called the project editor, and contains a huge number of options that affect the
way your app works. You'll be using this a lot in the future, so remember how to get here!
Select Project 2 under TARGETS, then choose the General tab, and scroll down until you see
four checkboxes called Device Orientation. You can select only the ones you want to
support.

You'll need to support selective orientations in some later projects, but for now let's take the
smart solution: add extra rules to Auto Layout so it can make the layout work great in
landscape mode.

Open Main.storyboard in Interface Builder, select the bottom flag, then Ctrl-drag from the flag
to the white space directly below the flag – in the view controller itself. The direction you drag
is important, so please drag straight down.

When you release your mouse button, a popup will appear that includes the option "Bottom
Space to Bottom Layout Guide" – please select that. This creates a new Auto Layout
constraint that the bottom of the flag must be at least X points away from the bottom of the

www.hackingwithswift.com 232

constraint that the bottom of the flag must be at least X points away from the bottom of the
view controller, where X is equal to whatever space there is in there now.

Although this is a valid rule, it will screw up your layout because we now have a complete set
of exact vertical rules: the top flag should be 36 points from the top, the second 30 from the
first, the third 30 from the second, and the third X away from the bottom. It's 140 for me, but
yours might be different.

Because we've told Auto Layout exactly how big all the spaces should be, it will add them up
and divide the remaining space among the three flags however it thinks best. That is, the
flags must now be stretched vertically in order to fill the space, which is almost certainly what
we don't want.

Instead, we're going to tell Auto Layout where there is some flexibility, and that's in the new
bottom rule we just created. The bottom flag doesn't need to be 140 points away from the
bottom layout guide – it just needs to be some distance away, so that it doesn't touch the
edge. If there is more space, great, Auto Layout should use it, but all we care about is the
minimum.

Select the third flag to see its list of constraints drawn in blue, then (carefully!) select the
bottom constraint we just added. In the utilities view on the right, choose the attributes
inspector (Alt+Cmd+4), and you should see Relation set to Equal and Constant set to 140 (or
some other value, depending on your layout).

What you need to do is change Equal to be "Greater Than or Equal", then change the
Constant value to be 20. This sets the rule "make it at least 20, but you can make it more to
fill up space." The layout won't change visually while you're doing this, because the end
result is the same. But at least now that Auto Layout knows it has some flexibility beyond just
stretching the flags!

Our problem is still not fixed, though: in landscape, and iPhone 4s has just 320 points of
space to work with, so Auto Layout is going to make our flags fit by squashing one or maybe
even two of them. Squashed flags aren't good, and having uneven sizes of flags isn't good
either, so we're going to add some more rules.

Select the second button, then Ctrl-drag to the first button. When given the list of options,
choose Equal Heights. Now do the same from the third button to the second button. This
rule ensures that at all times the three flags have the same height, so Auto Layout can no
longer squash one button to make it all fit and instead has to squash all three equally.

www.hackingwithswift.com 233

That fixes part of the problem, but in some respects it has made things worse. Rather than
having one squashed flag, we now have three! But with one more rule, we can stop the flags
from being squashed ever. Select the first button, then Ctrl-drag a little bit upwards – but
stay within the button! When you release your mouse button, you'll see the option "Aspect
Ratio", so please choose it.

The Aspect Ratio constraint solves the squashing once and for all: it means that if Auto
Layout is forced to reduce the height of the flag, it will reduce its width by the same
proportion, meaning that the flag will always look correct. Add the Aspect Ratio constraint to
the other two flags, and run your app again. It should work great in portrait and landscape, all
thanks to Auto Layout!

www.hackingwithswift.com 234

Auto Layout in code
Create a new Single View Application project in Xcode, name it Project6b and set its target to
be iPhone. We're going to create some views by hand, then position them using Auto Layout.
Put this into your viewDidLoad() method:

override func viewDidLoad() {

 super.viewDidLoad()

 let label1 = UILabel()

 label1.translatesAutoresizingMaskIntoConstraints = false

 label1.backgroundColor = UIColor.redColor()

 label1.text = "THESE"

 let label2 = UILabel()

 label2.translatesAutoresizingMaskIntoConstraints = false

 label2.backgroundColor = UIColor.cyanColor()

 label2.text = "ARE"

 let label3 = UILabel()

 label3.translatesAutoresizingMaskIntoConstraints = false

 label3.backgroundColor = UIColor.yellowColor()

 label3.text = "SOME"

 let label4 = UILabel()

 label4.translatesAutoresizingMaskIntoConstraints = false

 label4.backgroundColor = UIColor.greenColor()

 label4.text = "AWESOME"

 let label5 = UILabel()

 label5.translatesAutoresizingMaskIntoConstraints = false

 label5.backgroundColor = UIColor.orangeColor()

www.hackingwithswift.com 235

 label5.backgroundColor = UIColor.orangeColor()

 label5.text = "LABELS"

 view.addSubview(label1)

 view.addSubview(label2)

 view.addSubview(label3)

 view.addSubview(label4)

 view.addSubview(label5)

}

Put to one side what that code does for a moment, please add this method somewhere after
viewDidLoad():

override func prefersStatusBarHidden() -> Bool {

 return true

}

That tells iOS we don't want to show the iOS status bar on this view controller – that's the bit
that tells you what time it is.

OK, back to viewDidLoad(): all that code creates five UILabel objects, each with unique text
and a unique background color. All five views then get added to the view belonging to our
view controller by using view.addSubview(). We also set the property
translatesAutoresizingMaskIntoConstraints to be false on each label, because by default
iOS generates Auto Layout constraints for you based on a view's size and position. We'll be
doing it by hand, so we need to disable this feature.

If you run the app now, you'll see seem some colorful labels at the top, overlapping so it
looks like it says "LABELS ME". That's because our labels are placed in their default position
(at the top-left of the screen) and are all sized to fit their content.

We're going to do is add some constraints that say each label should start at the left edge of
its superview, and end at the right edge. We're going to do this using a technique called Auto

www.hackingwithswift.com 236

Layout Visual Format Language (VFL), which is kind of like a way of drawing the layout you
want with a series of keyboard symbols.

Before we do that, we need to create a dictionary of the views we want to lay out. This is a
new data type, but it's quite easy to understand. You've already met arrays, which hold
values that can be read using their order, for example myArray[0] reads the first item from
the array. Rather than making you use numbers, dictionaries let you specify any object as the
access method (known as the "key"), for example you could read out via a string:
myDictionary["name"].

The reason this is needed for VFL will become clear shortly, but first here's the dictionary you
need to add below the last call to addSubview():

let viewsDictionary = ["label1": label1, "label2": label2, "label3":
label3, "label4": label4, "label5": label5]

That creates a dictionary with strings (the keys) and our UILabels as its values (the values).
So, to get access to label1, we can now use viewsDictionary["label1"]. This might seem
redundant, but wait just a moment longer: it's time for some Visual Format Language!

Add these lines directly below the viewsDictionary that was just created:

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[label1]|", options: [], metrics: nil, views: viewsDictionary))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[label2]|", options: [], metrics: nil, views: viewsDictionary))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[label3]|", options: [], metrics: nil, views: viewsDictionary))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[label4]|", options: [], metrics: nil, views: viewsDictionary))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[label5]|", options: [], metrics: nil, views: viewsDictionary))

That's a lot of code, but actually it's just the same thing five times over. As a result, we could

www.hackingwithswift.com 237

easily rewrite those fix in a loop, like this:

for label in viewsDictionary.keys {

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[\(label)]|", options: [], metrics: nil, views: viewsDictionary))

}

Note that we're using string interpolation to put the key ("label1", etc) into the VFL.

Let's eliminate the easy stuff, then focus on what remains.

 • view.addConstraints(): this adds an array of constraints to our view controller's view. This
array is used rather than a single constraint because VFL can generate multiple constraints at
a time.
 • NSLayoutConstraint.constraintsWithVisualFormat() is the Auto Layout method that
converts VFL into an array of constraints. It accepts lots of parameters, but the important
ones are the first and last.
 • We pass [] (an empty array) for the options parameter and nil for the metrics parameter.
You can use these options to customise the meaning of the VFL, but for now we don't care.

That's the easy stuff. So, let's look at the Visual Format Language itself: "H:|[label1]|". As
you can see it's a string, and that string describes how we want the layout to look. That VFL
gets converted into Auto Layout constraints, then added to the view.

The H: parts means that we're defining a horizontal layout; we'll do a vertical layout soon.
The pipe symbol, |, means "the edge of the view." We're adding these constraints to the main
view inside our view controller, so this effectively means "the edge of the view controller."
Finally, we have [label1], which is a visual way of saying "put label1 here". Imagine the
brackets, [and], are the edges of the view.

So, "H:|[label1]|" means "horizontally, I want my label1 to go edge to edge in my view." But
there's a hiccup: what is "label1"? Sure, we know what it is because it's the name of our
variable, but variable names are just things for humans to read and write – the variable
names aren't actually saved and used when the program runs.

www.hackingwithswift.com 238

This is where our viewsDictionary dictionary comes in: we used strings for the key and
UILabels for the value, then set "label1" to be our label. This dictionary gets passed in along
with the VFL, and gets used by iOS to look up the names from the VFL. So when it sees
[label1], it looks in our dictionary for the "label1" key and uses its value to generate the Auto
Layout constraints.

That's the entire VFL line explained: each of our labels should stretch edge-to-edge in our
view. If you run the program now, that's sort of what you'll see, although it highlights our
second problem: we don't have a vertical layout in place, so although all the labels sit edge-
to-edge in the view, they all overlap.

We're going to fix this with another set of constraints, but this time it's just one (long) line.

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:|[label1]-[label2]-[label3]-[label4]-[label5]", options: [],
metrics: nil, views: viewsDictionary))

That's identical to the previous five, except for the VFL part. This time we're specifying V:,
meaning that these constraints are vertical. And we have multiple views inside the VFL, so
lots of constraints will be generated. The new thing in the VFL this time is the - symbol,
which means "space". It's 10 points by default, but you can customise it.

Note that our vertical VFL doesn't have a pipe at the end, so we're not forcing the last label
to stretch all the way to the edge of our view. This will leave whitespace after the last label,
which is what we want right now.

If you run your program now, you'll see all five labels stretching edge-to-edge horizontally,
then spaced neatly vertically. It would have taken quite a lot of Ctrl-dragging in Interface
Builder to make this same layout, so I hope you can appreciate how powerful VFL is!

www.hackingwithswift.com 239

Sizes, metrics and priorities
We have a working layout now, but it's quite basic: the labels aren't very high, and without a
rule regarding the bottom of the last label it's possible the views might be pushed off the
bottom edge.

To begin to fix this problem, we're going to add a constraint for the bottom edge saying that
the bottom of our last label must be at least 10 points away from the bottom of the view
controller's view. We're also going to tell Auto Layout that we want each of the five labels to
be 88 points high. Replace the previous vertical constraints with this:

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:|[label1(==88)]-[label2(==88)]-[label3(==88)]-[label4(==88)]-
[label5(==88)]-(>=10)-|", options: [], metrics: nil, views:
viewsDictionary))

The difference here is that we now have numbers inside parentheses: (==88) for the labels,
and (>=10) for the space to the bottom. Note that when specifying the size of a space, you
need to use the - before and after the size: a simple space, -, becomes -(>=10)-.

We are specifying two kinds of size here: == and >=. The first means "exactly equal" and the
second "greater than or equal to." So, our labels will be forced to be an exact size, and we
ensure that there's some space at the bottom while also making it flexible – it will definitely
be at least 10 points, but could be 100 or more depending on the situation.

Actually, wait a minute. I didn't want 88 points for the label size, I meant 80 points. Go ahead
and change all the labels to 80 points high.

Whoa there! It looks like you just received an email from your IT director: he thinks 80 points
is a silly size for the labels; they need to be 64 points, because all good sizes are a power of
2.

And now it looks like your designer and IT director are having a fight about the right size. A
few punches later, they decide to split the difference and go for a number in the middle: 72.
So please go ahead and make the labels all 72 points high.

Bored yet? You ought to be. And yet this is the kind of pixel-pushing it's easy to fall into,

www.hackingwithswift.com 240

particularly if your app is being designed by committee.

Auto Layout has a solution, and it's called metrics. All these calls to
constraintsWithVisualFormat() have been sent nil for their metrics parameter, but that's
about to change. You see, you can give VFL a set of sizes with names, then use those sizes
in the VFL rather than hard-coding numbers. For example, we wanted our label height to be
88, so we could create a metrics dictionary like this:

let metrics = ["labelHeight": 88]

Then, whenever we had previously written ==88, we can now just write labelHeight. So,
change your current vertical constraints to be this:

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:|[label1(labelHeight)]-[label2(labelHeight)]-[label3(labelHeight)]-
[label4(labelHeight)]-[label5(labelHeight)]->=10-|", options: [],
metrics: ["labelHeight": 88], views: viewsDictionary))

So when your designer / manager / inner-pedant decides that 88 points is wrong and you
want some other number, you can change it change in one place to have everything update.

Before we're done, we're going to make one more change that makes the whole user
interface much better, because right now it's still imperfect. To be more specific, we're
forcing all labels to be a particular height, then adding constraints to the top and bottom.
This still works fine in portrait, but in landscape you're unlikely to have enough room to
satisfy all the constraints.

With our current configuration, you'll see this message when the app is rotated to landscape:
"Unable to simultaneously satisfy constraints." This means your constraints simply don't
work given how much screen space there is, and that's where priority comes in. You can give
any layout constraint a priority, and Auto Layout will do its best to make it work.

Constraint priority is a value between 1 and 1000, where 1000 means "this is absolutely
required" and anything less is optional. By default, all constraints you have are priority 1000,
so Auto Layout will fail to find a solution in our current layout. But if we make the height

www.hackingwithswift.com 241

optional – even as high as priority 999 – it means Auto Layout can find a solution to our
layout: shrink the labels to make them fit.

It's important to understand that Auto Layout doesn't just discard rules it can't meet – it still
does its best to meet them. So in our case, if we make our 88-point height optional, Auto
Layout might make them 78 or some other number. That is, it will still do its best to make
them as close to 88 as possible. TL;DR: constraints are evaluated from highest priority down
to lowest, but all are taken into account.

So, we're going to make the label height have priority 999 (i.e., very important, but not
required). But we're also going to make one other change, which is to tell Auto Layout that
we want all the labels to have the same height. This is important, because if all of them have
optional heights using labelHeight, Auto Layout might solve the layout by shrinking one label
and making another 88.

From its point of view it has at least managed to make some of the labels 88, so it's probably
quite pleased with itself, but it makes our user interface look uneven. So, we're going to
make the first label use labelHeight at a priority of 999, then have the other labels adopt the
same height as the first label. Here's the new VFL line:

"V:|[label1(labelHeight@999)]-[label2(label1)]-[label3(label1)]-
[label4(label1)]-[label5(label1)]->=10-|"

It's the @999 that assigns priority to a given constraint, and using (label1) for the sizes of the
other labels is what tells Auto Layout to make them the same height.

That's it: your Auto Layout configuration is complete, and the app can now be run safely in
portrait and landscape.

www.hackingwithswift.com 242

Wrap up
There are two types of iOS developer in the world: those who use Auto Layout, and fools. It
has bit of a steep learning curve (and we didn't even use the hard way of adding
constraints!), but it's an extremely expressive way of creating great layouts that adapt
themselves automatically to whatever device they find themselves running on – now and in
the future.

Most people recommend you do as much as you can inside Interface Builder, and with good
reason – you can drag lines about until you're happy, you get an instant preview of how it all
looks, and it will warn you if there's a problem (and help you fix it.) But, as you've seen,
creating constraints in code is remarkably easy thanks to the Visual Format language, so you
might find yourself mixing the two to get the best results.

www.hackingwithswift.com 243

Project 7
Whitehouse Petitions
Make an app to parse Whitehouse petitions using JSON
and a tab bar.

www.hackingwithswift.com 244

Setting up
This project will take a data feed from a website and parse it into useful information for users.
As per usual, this is just a way of teaching you some new iOS development techniques, but
let's face it – you already have two apps and two games under your belt, so you're starting to
build up a pretty good library of work!

This time, you'll be learning about UITabBarController, NSData, and more. You'll also be
using a data format called JSON, which is a popular way to send and receive data online. It's
not easy to find interesting JSON feeds that are freely available, but the option we'll be going
for is the "We the people" Whitehouse petitions in the US, where Americans can submit
requests for action, and others can vote on it.

Some are entirely frivolous ("We want the US to build a Death Star"), but it has good, clean
JSON that's open for everyone to read, which makes it perfect. Lots to learn, and lots to do,
so let's get started: create a new project in Xcode by choosing the Master-Detail Application
template. Now name it Project7, set its target to be iPad, and save it somewhere.

www.hackingwithswift.com 245

Creating the basic UI
The Master-Detail application template gives us a lot of stuff we don't need, but rather than
delete it we're just going to modify it as needed. For the user interface we need to make only
a handful of changes, so please open Main.storyboard in Interface Builder.

In your storyboard, you'll see there are two navigation controllers: one at the top that
connects to a table view on its right, and another at the bottom that connects to a view
saying "Detail view content goes here" on its right. Choose the top one, then choose Editor >
Embed In > Tab Bar Controller. Like UINavigationController, UITabBarController is a
common element in iOS user interface design. A tab bar is that strip of icons across the
bottom that shows various screens, and it appears in the App Store, in the music app, in the
phone app, and more.

Interface Builder can embed a view controller directly inside a tab bar controller with one menu
click.

Behind the scenes, UITabBarController manages an array of view controllers that the user
can choose between. You can do often do most of the work inside Interface Builder, but not
in this project. We're going to use one tab to show recent petitions, and another to show

www.hackingwithswift.com 246

popular petitions, which is the same thing really – all that's changing is the data source.

Doing everything inside the storyboard would mean duplicating our view controllers, which is
A Bad Idea, so instead we're just going to design one of them in the storyboard then create a
duplicate of it using code.

Now that our navigation controller is inside a tab bar controller, it will have acquired a gray
strip along its bottom in Interface Builder. If you click that now, it will select a new type of
object called a UITabBarItem, which is the icon and text used to represent a view controller
in the tab bar. In the attributes inspector (Alt+Cmd+4) change System Item from "Custom" to
"Most Recent".

One important thing about UITabBarItem is that when you set its system item, it assigns
both an icon and some text for the title of the tab. If you try to change the text to your own
text, the icon will be removed and you need to provide your own. This is because Apple has
trained users to associate certain icons with certain information, and they don't want you
using those icons incorrectly!

Select the navigation controller itself (just click where it says Navigation Controller in big
letters in the center of the view controller), then press Alt+Cmd+3 to select the identity
inspector. We haven't been here before, because it's not used that frequently. However, here
I want you to type "NavController" in the text box to the right of where it says, "Storyboard
ID". We'll be needing that soon enough!

In the picture below you can see how the identity inspector should look when configured for
your navigation controller. You'll be using this inspector in later projects to give views a
custom class by changing the first of these four text boxes.

www.hackingwithswift.com 247

Use the identity inspector to configure your navigation controller with a storyboard identifier.

The other change we're going to make to the storyboard is in the table view controller. Click
once where it says "Title" (just below where it says Prototype Cells), and in the attributes
inspector you'll some options for the cell. You'll know when you have it right because it will
say "Table View Cell" at the top of the attributes inspector. Change the style from "Basic" to
"Subtitle", which adds an extra line of text underneath the title.

Changing the table view cell style from Basic to Subtitle adds a second line of text we can

www.hackingwithswift.com 248

Changing the table view cell style from Basic to Subtitle adds a second line of text we can
customize.

We're done with Interface Builder, so please open the file MasterViewController.swift so we
can make a few basic changes. First, delete the insertNewObject() method entirely, delete
everything from viewDidLoad() except the call to super.viewDidLoad(), delete the table
view's commitEditingStyle and canEditRowAtIndexPath methods, and finally delete the
as! NSDate text from the prepareForSegue() and cellForRowAtIndexPath methods – not
the whole line, just the bit that says as! NSDate.

Step one is now complete: we have a basic user interface in place, and we've cleaned the
unwanted cruft out of the Xcode template. Now for some real code…

www.hackingwithswift.com 249

Parsing JSON
JSON – short for JavaScript Object Notation – is a way of describing data. It's not the easiest
to read yourself, but it's compact and easy to parse for computers, which makes it popular
online where bandwidth is at a premium.

In project 6 you learned about using dictionaries with Auto Layout, and in this project we're
going to use dictionaries more extensively. What's more, we're going to put dictionaries
inside an array to make an array of dictionaries, which should keep our data in order.

You declare a dictionary using square brackets, then entering its key type, a colon, and its
value type. For example, a dictionary that used strings for its keys and UILabels for its values
would be declared like this:

var labels = [String: UILabel]()

And as you'll recall, you declare arrays just by putting the data type in brackets, like this:

var strings = [String]()

Putting these two together, we want to make an array of dictionaries, with each dictionary
holding a string for its key and another string for its value. So, it looks like this:

var objects = [[String: String]]()

Put that in place of the current objects definition at the top of MasterViewController.swift – it
holds AnyObject right now, which won't do the job.

It's now time to parse some JSON, which means to process it and examine its contents. This
isn't easy in Swift, so a number of helper libraries have appeared that do a lot of the heavy
lifting for you. We're going to use one of them now: download the files for this project from
GitHub then look for a file called SwiftyJSON.swift. Add that your project, making sure "Copy

www.hackingwithswift.com 250

items if needed" is checked.

SwiftyJSON lets us read through JSON in an extremely intuitive way: you can effectively treat
almost everything as a dictionary, so if you know there's a value called "information" that
contains another value called "name", which in turns contains another value called
"firstName", you can use json["information"]["name"]["firstName"] to get the data, then
ask for it as a Swift value by using the string property.

Before we do the parsing, here is a tiny slice of the actual JSON you'll be receiving:

{

 "metadata":{

 "responseInfo":{

 "status":200,

 "developerMessage":"OK",

 }

 },

 "results":[

 {

 "title":"Legal immigrants should get freedom before
undocumented immigrants – moral, just and fair",

 "body":"I am petitioning President Obama's Administration to
take a humane view of the plight of legal immigrants. Specifically,
legal immigrants in Employment Based (EB) category. I believe, such
immigrants were short changed in the recently announced reforms via
Executive Action (EA), which was otherwise long due and a welcome
announcement.",

 "issues":[

 {

 "id":"28",

 "name":"Human Rights"

 },

 {

 "id":"29",

 "name":"Immigration"

www.hackingwithswift.com 251

 "name":"Immigration"

 }

],

 "signatureThreshold":100000,

 "signatureCount":267,

 "signaturesNeeded":99733,

 },

 {

 "title":"National database for police shootings.",

 "body":"There is no reliable national data on how many people
are shot by police officers each year. In signing this petition, I am
urging the President to bring an end to this absence of visibility by
creating a federally controlled, publicly accessible database of
officer-involved shootings.",

 "issues":[

 {

 "id":"28",

 "name":"Human Rights"

 }

],

 "signatureThreshold":100000,

 "signatureCount":17453,

 "signaturesNeeded":82547,

 }

]

}

You'll actually be getting between 2000-3000 lines of that stuff, all containing petitions from
US citizens about all sorts of political things. It doesn't really matter (to us) what the petitions
are, we just care about the data structure. In particular:

1. There's a metadata value, which contains a responseInfo value, which in turn contains a

www.hackingwithswift.com 252

status value. Status 200 is what internet developers use for "everything is OK."
2. There's a results value, which contains a series of petitions.
3. Each petition contains a title, a body, some issues it relates to, plus some signature
information.
4. JSON has strings and integers too. Notice how the strings are all wrapped in quotes,
whereas the integers aren't.

Now that you have a basic understanding of the JSON we'll be working with, it's time to
write some code. We're going to update the viewDidLoad() method for
MasterViewController so that it downloads the data from the Whitehouse petitions server,
converts it to a SwiftyJSON object, and checks that the status value is equal to 200.

To make this happen, we're going to use NSURL alongside a new NS class called NSData.
This is a class designed to hold data in any form, which might be a string, it might be an
image, or it might be something else entirely. You already saw that NSString can be created
using contentsOfFile to load data from disk. Well, NSData (and NSString) can be created
using contentsOfURL, which downloads data from a URL (specified using NSURL) and
makes it available to you.

Here's the new viewDidLoad method:

override func viewDidLoad() {

 super.viewDidLoad()

 let urlString = "https://api.whitehouse.gov/v1/petitions.json?
limit=100"

 if let url = NSURL(string: urlString) {

 if let data = try? NSData(contentsOfURL: url, options: []) {

 let json = JSON(data: data)

 if json["metadata"]["responseInfo"]["status"].intValue == 200 {

 // we're OK to parse!

 }

 }

www.hackingwithswift.com 253

 }

 }

}

Let's focus on the new stuff:

 • urlString points to the Whitehouse.gov server, accessing the petitions system.
 • We use if/let to make sure the NSURL is valid, rather than force unwrapping it. Later on
you can return to this to add more URLs, so it's good play it safe.
 • We create a new NSData object using its contentsOfURL method. This returns the
content from an NSURL, which is all we need – hence why we're using [] for options. This
might throw an error (i.e., if the internet connection was down), so we also need to use try?.
 • If the NSData object was created successfully, we create a new JSON object from it. This
is a SwiftyJSON structure.
 • Finally, we have our first bit of JSON parsing: if there is a "metadata" value and it contains
a "responseInfo" value that contains a "status" value, return it as an integer, then compare it
to 200.
 • The "we're OK to parse!" line starts with //, which begins a comment line in Swift.
Comment lines are ignored by the compiler; we write them as notes to ourselves.

The reason SwiftyJSON is so good at JSON parsing is because it has optionality built into its
core. If any of "metadata", "responseInfo" or "status" don't exist, this call will return 0 for the
status – we don't need to check them all individually. If you're reading a string value,
SwiftyJSON will return either the string it found, or if it didn't exist then an empty string.

This code isn't perfect, in fact far from it. In fact, by downloading data from the internet in
viewDidLoad() our app will lock up until all the data has been transferred. There are
solutions to this, but to avoid complexity they won't be covered until project 9.

For now, we want to focus on our JSON parsing. We already have an objects array that is
ready to accept dictionaries of data. We want to parse that JSON into dictionaries, with each
dictionary having three values: the title of the petition, its body text, and how many
signatures it has. Once that's done, we need to tell our table view to reload itself.

Are you ready? Because this code is shockingly simple given how much work it's doing:

func parseJSON(json: JSON) {

www.hackingwithswift.com 254

func parseJSON(json: JSON) {

 for result in json["results"].arrayValue {

 let title = result["title"].stringValue

 let body = result["body"].stringValue

 let sigs = result["signatureCount"].stringValue

 let obj = ["title": title, "body": body, "sigs": sigs]

 objects.append(obj)

 }

 tableView.reloadData()

}

Place that method just underneath viewDidLoad() method, then replace the existing // we're
OK to parse! line in viewDidLoad() with this:

parseJSON(json)

The parseJSON() method reads the "results" array from the JSON object it gets passed. If
you look back at the JSON snippet I showed you, that results array contains all the petitions
ready to read. When you use arrayValue with SwiftyJSON, you either get back an array of
objects or an empty array, so we use the return value in our loop.

For each result in the results array, we read out three values: its title, its body, and its
signature count, with all three of them being requested as strings. The signature count is
actually a number when it comes in the JSON, but SwiftyJSON converts it for us so we can
put it inside our dictionary where all the keys and values are strings.

Each time we're accessing an item in our result value using stringValue, we will either get its
value back or an empty string. Regardless, we'll have something, so we construct a new
dictionary from all three values then use objects.append() to place the new dictionary into
our array.

Once all the results have been parsed, we tell the table view to reload, and the code is

www.hackingwithswift.com 255

complete.

Well, the could would have been complete if the Whitehouse actually used good HTTPS.
Even though the URL we're hitting starts with https://api.whitehouse.gov, the form of
HTTPS is so weak at the time of writing that iOS 9 doesn't trust it. So, if you try running this
code you'll get an error: "NSURLSession/NSURLConnection HTTP load failed
(kCFStreamErrorDomainSSL, -9802)".

The solution here is to have the Whitehouse upgrade to more secure HTTPS. Failing that, we
can ask iOS to allow an exception for this insecure domain by customizing its App Transport
Security Settings. This is an annoyance, and I wouldn't show it to you unless it was strictly
necessary, but I'm afraid there's no other choice.

So: look in the project navigator for a file called Info.plist. Right-click on it, and choose Open
As > Source Code. It should end like this:

</dict>

</plist>

Just before that, I'd like you to paste this:

<key>NSAppTransportSecurity</key>

<dict>

 <key>NSExceptionDomains</key>

 <dict>

 <key>whitehouse.gov</key>

 <dict>

 <key>NSIncludesSubdomains</key>

 <true/>

 <key>NSThirdPartyExceptionAllowsInsecureHTTPLoads</key>

 <true/>

 </dict>

 </dict>

www.hackingwithswift.com 256

 </dict>

</dict>

That adds an App Transport Security exception that means iOS won't refuse to work with the
Whitehouse's weak certification.

Because the Whitehouse APIs don't use sufficient security, you need to add an App Transport
Security exception.

You can run the program now, although it's not optimal: you'll see some strangely formatted
text in the rows. This is because the built-in Xcode project has the following in the table
view's cellForRowAtIndexPath method inside MasterViewController.swift:

cell.textLabel!.text = object.description

The text label for the cell expects a string, not a dictionary, but Xcode's default template
code uses object.description to ask the object to describe itself in string format. For

www.hackingwithswift.com 257

dictionaries, this prints out a nicely formatted key/value layout that shows you what the
dictionary contains.

We want to modify this so that it prints out the title value of our dictionary, but we also want
to use the subtitle text label that got added when we changed the cell type from "Basic" to
"Subtitle" in the storyboard. To do that, change the current line (the one above) to this:

cell.textLabel!.text = object["title"]

cell.detailTextLabel!.text = object["body"]

We set the title, body and sigs keys in the dictionary, and now we can read them out to
configure our cell correctly.

If you run the app now, you'll see things are starting to come together quite nicely – every
table row now shows the petition title, and beneath it shows the first few words of the
petition's body. The subtitle automatically shows "…" at the end when there isn't enough
room for all the text, but it's enough to give the user a flavor of what's going on.

www.hackingwithswift.com 258

Rendering a petition
After all the JSON parsing, it's time for something easy: we need to update the
DetailViewController class so that it can draw the petition content in a nice way. The easiest
way for rendering complex content from the web is nearly always to use a WKWebView, and
we're going to use the same technique from project 4 to modify DetailViewController so it
has a web view.

Replace all the DetailViewController code with this:

import UIKit

import WebKit

class DetailViewController: UIViewController {

 var webView: WKWebView!

 var detailItem: [String: String]!

 override func loadView() {

 webView = WKWebView()

 view = webView

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 }

}

This is almost identical to the code from project 4, but you'll notice I've added a detailItem
property that will contains our dictionary of data.

That was the easy bit. The hard bit is that we can't just drop the petition text into the web
view, because it will probably look tiny. Instead, we need to wrap it in some HTML, which is a

www.hackingwithswift.com 259

whole other language with its own rules and its own complexities.

Now, this series isn't called "Hacking with HTML," so I don't intend to go into much detail
here. However, I will say that the HTML we're going to use tells iOS that the page fits mobile
devices, and that we want the font size to be 150% of the standard font size. All that HTML
will be combined with the body value from our dictionary, then sent to the web view.

Place this in viewDidLoad(), directly beneath the call to super.viewDidLoad():

guard detailItem != nil else { return }

if let body = detailItem["body"] {

 var html = "<html>"

 html += "<head>"

 html += "<meta name=\"viewport\" content=\"width=device-width,
initial-scale=1\">"

 html += "<style> body { font-size: 150%; } </style>"

 html += "</head>"

 html += "<body>"

 html += body

 html += "</body>"

 html += "</html>"

 webView.loadHTMLString(html, baseURL: nil)

}

There's a new Swift statement in there that is important: guard. This is used to create an
"early return," which means you set your code up so that it exits immediately if critical data is
missing. In our case, we don't want this code to run if detailItem isn't set, so guard will run
return is detailItem is set to nil.

I've tried to make the HTML as clear as possible, but if you don't care for HTML don't worry
about it. What matters is that there's a Swift string called html that contains everything
needed to show the page, and that's passed in to the web view's loadHTMLString() method

www.hackingwithswift.com 260

so that it gets loaded. This is different to the way we were loading HTML before, because we
aren't using a website here, just some custom HTML.

That's it for the detail view controller, it really is that simple. Go ahead and run the project
now by pressing Cmd+R or clicking play, then tap on a row to see more detail about each
petition.

www.hackingwithswift.com 261

Finishing touches
Before this project is finished, we're going to make two changes. First, we're going to add
another tab to the UITabBarController that will show popular petitions, and second we're
going to make our NSData loading code a little more resilient by adding error messages.

As I said previously, we can't really put the second tab into our storyboard because both
tabs will host a MasterViewController and doing so would require me to duplicate the view
controllers in the storyboard. You can do that if you want, but please don't – it's a
maintenance nightmare!

Instead, we're going to leave our current storyboard configuration alone, then create the
second view controller using code. This isn't something you've done before, but it's not hard
and we already took the first step, as you'll see.

Open the file AppDelegate.swift. This has been in all our projects so far, but it's not one
we've had to work with until now. Look for the didFinishLaunching method, which should
be at the top of the file. This gets called by iOS when the app is ready to be run, and we're
going to hijack it to insert a second MasterViewController into our tab bar.

It should already have some default Apple code in there, but we're going to add some more
just before the return true line:

let tabBarController = splitViewController.viewControllers[0] as!
UITabBarController

let storyboard = UIStoryboard(name: "Main", bundle: nil)

let vc =
storyboard.instantiateViewControllerWithIdentifier("NavController")
as! UINavigationController

vc.tabBarItem = UITabBarItem(tabBarSystemItem: .TopRated, tag: 1)

tabBarController.viewControllers?.append(vc)

Every line of that is new, so let's dig in deeper:

www.hackingwithswift.com 262

 • Our storyboard automatically creates a window in which all our view controllers are shown.
This window needs to know what its initial view controller is, and that gets set to its
rootViewController property. This is all handled by our storyboard.
 • In the Master-Detail Application template, the root view controller is the
UISplitViewController, which itself has a property called viewControllers. This stores two
items: the first is the view controller on the left (our table view) and the second is the view
controller on the right (our detail view).
 • We need to create a new MasterViewController by hand, which first means getting a
reference to our Main.storyboard file. This is done using the UIStoryboard class, as shown.
You don't need to provide a bundle, because nil means "use the current app bundle."
 • We create our view controller using the extraordinarily long method
instantiateViewControllerWithIdentifier(), passing in the storyboard ID of the view
controller we want. Earlier we set our navigation controller to have the storyboard ID of
"NavController", so we use pass that in and typecast the result to be a
UINavigationController.
 • We create a new UITabBarItem object for the new view controller, giving it the "Top Rated"
icon and the tag 1. That tag is important, but not just yet.
 • We add the new view controller to our tab bar controller's viewControllers array, which will
cause it to appear in the tab bar.

So, the code creates a duplicate MasterViewController wrapped inside a navigation
controller, gives it a new tab bar item to distinguish it from the existing tab, then adds it to the
list of visible tabs. This lets us use the same class for both tabs without having to duplicate
things in the storyboard.

The reason we gave a tag of 1 to the new UITabBarItem is because it's an easy way to
identify it. Remember, both tabs contain a MasterViewController, which means the same
code is executed. Right now that means both will download the same JSON feed, which
makes having two tabs pointless. But if you modify urlString in MasterViewController's
viewDidLoad() method to this, it will work much better:

let urlString: String

if navigationController?.tabBarItem.tag == 0 {

 urlString = "https://api.whitehouse.gov/v1/petitions.json?
limit=100"

} else {

www.hackingwithswift.com 263

} else {

 urlString = "https://api.whitehouse.gov/v1/petitions.json?
signatureCountFloor=10000&limit=100"

}

That adjusts the code so that the first instance of MasterViewController loads the original
JSON, and the second loads only petitions that have at least 10,000 signatures.

The project is almost done, but we're going to make one last change. Our current loading
code isn't very resilient: we have lots of if statements checking that things are working
correctly, but no else statements showing an error message if there's a problem. This is
easily fixed by adding a new showError() method that creates a UIAlertController showing
a general failure message:

func showError() {

 let ac = UIAlertController(title: "Loading error", message: "There
was a problem loading the feed; please check your connection and try
again.", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

}

You can now adjust the JSON downloading and parsing code to call this error method
everywhere a condition fails, like this:

if let url = NSURL(string: urlString) {

 if let data = try? NSData(contentsOfURL: url, options: []) {

 let json = JSON(data: data)

 if json["metadata"]["responseInfo"]["status"].intValue == 200 {

 parseJSON(json)

 } else {

 showError()

www.hackingwithswift.com 264

 showError()

 }

 } else {

 showError()

 }

} else {

 showError()

}

Now that error messages are shown when the app hits problems, we're done!

www.hackingwithswift.com 265

Wrap up
As your Swift skill increases, I hope you're starting to feel the balance of these projects move
away from explaining the basics and toward presenting and dissecting code. Working with
JSON is something you're going to be doing time and time again in your Swift career, and
you've cracked it in about an hour of work – while also learning about NSData,
UITabBarController, and more. Not bad!

If you're looking to extend this project some more, you might like to look at the original API
documentation – it's at https://petitions.whitehouse.gov/developers and contains lots of
options. If you add more view controllers to the tab bar, you'll find you can add up to five
before you start seeing a "More" button. This More tab hides all the view controllers that
don't fit into the tab bar, and it's handled for you automatically by iOS.

www.hackingwithswift.com 266

Project 8
7 Swifty Words
Build a word-guessing game and master strings once and
for all.

www.hackingwithswift.com 267

Setting up
This is the final game you'll be making with UIKit; every game after this one will use Apple's
SpriteKit library for high-performance 2D drawing. To make this last UIKit effort count, we're
going to have a fairly complicated user interface so you can go out with a bang. We're also
going to mix in some great new Swift techniques, including property observers, searching
through arrays, modulo, array enumeration, ranges and more!

Of course, you're probably wondering what kind of game we're going to make, and I have
some bad news for you: it's another word game. But there's good news too: it's a pretty darn
awesome word game, based on the popular indie game 7 Little Words. This will also be our
first game exclusively targeting iPad, and you'll soon see why – we're using a lot of space in
our user interface!

So, go ahead and create a new Single View Application project in Xcode, this time selecting
iPad for your device, then save it somewhere. Now go to the project editor and deselect
Portrait and Upside Down orientations.

What's that? You don't know where the project editor is? I'm sure I told you to remember
where the project editor was! OK, here's how to find it, one last time, quoted from project 6:

Press Cmd+1 to show the project navigator on the left of your Xcode window, select your
project (it's the first item in the pane), then to the right of where you just clicked will appear
another pane showing "PROJECT" and "TARGETS", along with some more information in the
center. The left pane can be hidden by clicking the disclosure button in the top-left of the
project editor, but hiding it will only make things harder to find, so please make sure it's
visible!This view is called the project editor, and contains a huge number of options that affect
the way your app works. You'll be using this a lot in the future, so remember how to get here!
Select Project 2 under TARGETS, then choose the General tab, and scroll down until you see
four checkboxes called Device Orientation. You can select only the ones you want to support.

www.hackingwithswift.com 268

Buttons... buttons everywhere.
Our user interface for this game is going to have two large UILabels, one small UILabel, one
large UITextField, twenty (count 'em!) big UIButtons, then two small UIButtons. This is
probably the most complicated user interface we're going to make in this entire series, so
don't worry if it takes you 20 minutes or so to put together – the end result is definitely worth
it!

The picture below shows how your finished layout should look if you've followed all the
instructions. If you're seeing something slightly different, that's OK. If you're seeing
something very different, you should probably try again!

Your finished layout should look like this.

Our game is designed for iPads, and specifically for iPads in landscape orientation. Using a
square Interface Builder canvas is great for when you want to support a variety of devices
where things resize, but here we want one single design with lots of things on. So, we're
going to make the canvas the exact right size: go to the file inspector (Alt+Cmd+1) and
deselect the checkbox that says, "Use Size Classes".

www.hackingwithswift.com 269

You'll be asked what size class data you want to keep, so select iPad then choose Disable
Size Classes. Now select your view controller, go to the attributes inspector, then change
Orientation from "Inferred" to "Landscape". This gives us a canvas that shaped and sized
exactly correctly for an iPad screen, so we're all set to go!

Let's start with the twenty big buttons, because you need to follow my instructions carefully
and once these are placed you'll be able to see the big plan.

What you need to do is place twenty UIButtons in a grid that's five across and four down.
The top-left button should be at X:200 and Y:470. All buttons should be 120 wide and 60
high; each column should be 130 points apart, and each row should be 60 points apart. That
ought to be enough for you to make the entire grid, but for the sake of clarity, this means
that:

 • The second button on the top row should be at X:330 Y:470.
 • The third button on the top row should be at X:460 Y:470. (and so on)
 • The first button on the second row should be at X:200 Y:530.
 •
The second button on the second row should be at X:330 Y:530. (and so on)

Once you've placed all the buttons, click and drag over them so they are all selected, then
tap your left cursor key eight times to move every button eight points to the left. On the
eighth tap, you should see a long, blue, vertical line appear in the center of the button group,
which is telling you the buttons are centered horizontally, so these buttons are placed
correctly.

With the buttons still selected, go to the attributes inspector and change Type to be
"Custom" and Tag to be 1001. The first one disables an Apple animation that will otherwise
cause problems later, and the second change sets the tag for all the buttons simultaneously.
You should also click the small T button next to the button font, and in the popover that
appears make sure the size is set to 36.

When designing this, I gave these buttons the text WWW because that's the largest string
they'll need to hold. You should also give them a text color; I chose a shade of blue similar to
the iOS default.

Now create two more buttons, both 75 wide and 44 high. Place the first at X:425 Y:390 and
give it the title SUBMIT, and place the second at X:525 Y:390 and give it the title CLEAR.

www.hackingwithswift.com 270

That's all the buttons we'll need for the game.

Place a text field and make it 535 wide by 80 high, then position it at X: 245 Y: 315. You'll find
that you can't resize the text field's height by default, and that's because it has a rounded
rectangle border around it that must be an exact size. To change the height you must make
the textfield bordlerless: in the identity inspector, choose the first of the four options next to
Border Style, then you can adjust the height freely.

Give this text field the placeholder text "Tap letters to guess", then give it a nice and big font
size – 44 points ought to do. Finally, make its text aligned to the center rather than the left, so
everything lines up neatly.

Now create two labels. Make the first one 400 wide by 280 high, with position X:255 Y:20,
then give it the text "Clues". Make the second one 165 wide by 280 high, and position it at X:
605 Y:20, then give it the text "Answers". Both of these should be given font size 24, but
where it says "Number of lines" set the value to be 0 – that means "let this text go over as
many lines as it needs."

Finally, create one last label of width 170 and height 40, at X:830 and Y:20. Set this to have
text alignment right and the text "Score: 0".

That's the layout complete. If you've played any games like 7 Little Words before, you'll
already know exactly how the user interface functions. If not, we'll show seven clues in the
label marked "Clues", and each of those clues can be spelled by tapping the letters in the
buttons. When a user has spelled the word they want, they click Submit to try it out, and if
the answer is correct they'll see it in the Answers label. Otherwise, that answers label just
shows the number of letters in the correct answer.

Before you exit Interface Builder, switch to the assistant editor and create four outlets: one
for the clue label (call it cluesLabel), one for the Answers label (call it answersLabel), one for
the text field (call it currentAnswer) and one for the score (call it scoreLabel). Please also
create two actions: one from the submit button (call it submitTapped()) and one from the
clear button (call it clearTapped()).

That's it! That's the most complicated storyboard you'll make in any project in this entire
series. Fortunately, from here on the rest is all coding and lots of fun, so let's get onto the
best bit…

www.hackingwithswift.com 271

Loading a level
This game asks players to spell seven words out of various letter groups, and each word
comes with a clue for them to guess. It's important that the total number of letter groups
adds up to 20, as that's how many buttons you have. I created the first level for you, and it
looks like this:

HA|UNT|ED: Ghosts in residence

LE|PRO|SY: A Biblical skin disease

TW|ITT|ER: Short but sweet online chirping

OLI|VER: Has a Dickensian twist

ELI|ZAB|ETH: Head of state, British style

SA|FA|RI: The zoological web

POR|TL|AND: Hipster heartland

As you can see, I've used the pipe symbol to split up my letter groups, meaning that one
button will have "HA", another "UNT", and another "ED". There's then a colon and a space,
followed by a simple clue. This level is in the files for this project you should download from
GitHub. You should copy level1.txt into your Xcode project as you have done before.

Our first task will be to load the level and configure all the buttons to show a letter group.
We're going to need three arrays to handle this: one to store all the buttons, one to store the
buttons that are currently being used to spell an answer, and one for all the possible
solutions. Further, we need two integers: one to hold the player's score, which will start at 0
but obviously change during play, and one to hold the current level.

So, declare these properties just below the current @IBOutlets from Interface Builder:

var letterButtons = [UIButton]()

var activatedButtons = [UIButton]()

var solutions = [String]()

var score = 0

var level = 1

www.hackingwithswift.com 272

var level = 1

Now, you'll notice we don't have any @IBOutlet references to any of our buttons, and that's
entirely intentional: it wouldn't be very smart to create an @IBOutlet for every button.
Interface Builder does have a solution to this, called Outlet Collections, which are effectively
an IBOutlet array, but even that solution requires you to Ctrl-drag from every button and quite
frankly I don't think you have the patience after spending so much time in Interface Builder!

As a result, we're going to take a simple shortcut. And this shortcut will also deal with calling
methods when any of the buttons are tapped, so all in all it's a clean and easy solution. The
shortcut is this: all our buttons have the tag 1001, so we can loop through all the views inside
our view controller, and modify them only if they have tag 1001. Add this code to your
viewDidLoad() method beneath the call to super:

for subview in view.subviews where subview.tag == 1001 {

 let btn = subview as! UIButton

 letterButtons.append(btn)

 btn.addTarget(self, action: "letterTapped:",
forControlEvents: .TouchUpInside)

}

As you can see, view.subviews is an array containing all the UIViews that are currently
placed in our view controller, which is all the buttons and labels, plus that text field. I've used
a more enhanced version of a regular for loop that adds a where condition so that the only
items inside the loop are subviews with that tag. If we find a view with tag 1001, we typecast
it as a UIButton then append it to our buttons array.

We also take this opportunity to use a new method, called addTarget(). This is the code
version of Ctrl-dragging in a storyboard and it lets us attach a method to the button click.
You should remember .TouchUpInside from all the button actions you have made, because
that's the event that means the button was tapped.

But there is a curiosity: the action is letterTapped:, with a colon on the end. That's not a typo
– it's meaningful. And what it means is that it will call the letterTapped() method that takes
exactly one parameter. Yes, I know it's a bit strange, but that colon really does mean "it takes

www.hackingwithswift.com 273

exactly one parameter. Yes, I know it's a bit strange, but that colon really does mean "it takes
one parameter."

The parameter that gets sent will be the button that is clicked, which is perfect for us
because we can read the letter group on the button and use it to spell words. But more on
that later – for now, we want to finish loading the level.

We're going to isolate level loading into a single level, called loadLevel(). This needs to do
two things: load and parse our level text file in the format I showed you earlier, then randomly
assign letter groups to buttons. In project 5 you already learned how to create Strings using
contentsOfFile to load files from disk, and we'll be using that to load our level. In that same
project you learned how to use componentsSeparatedByString() to split up a string into an
array, and we'll use that too.

We'll also need to use the array shuffling code from the GameplayKit framework that we've
used before. But: there are some new things to learn, honest! First, we'll be using the
enumerate() method to loop over an array. We haven't used this before, but it's helpful
because it passes you each object from an array as part of your loop, as well as that object's
position in the array. You're also going to meet the characters.count property of strings,
which returns how many letters are in that string.

There's also a new string method to learn, called
stringByReplacingOccurrencesOfString(). This lets you specify two parameters, and
replaces all instances of the first parameter with the second parameter. We'll be using this to
convert "HA|UNT|ED" into HAUNTED so we have a list of all our solutions.

Before I show you the code, watch out for how I use the method's three variables:
clueString will store all the level's clues, solutionString will store how many letters each
answer is (in the same position as the clues), and letterBits is an array to store all letter
groups: HA, UNT, ED, and so on.

Here's the loadLevel() method:

func loadLevel() {

 var clueString = ""

 var solutionString = ""

 var letterBits = [String]()

www.hackingwithswift.com 274

 if let levelFilePath = NSBundle.mainBundle().pathForResource("level
\(level)", ofType: "txt") {

 if let levelContents = try? String(contentsOfFile: levelFilePath,
usedEncoding: nil) {

 var lines = levelContents.componentsSeparatedByString("\n")

 lines =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(lines)
as! [String]

 for (index, line) in lines.enumerate() {

 let parts = line.componentsSeparatedByString(": ")

 let answer = parts[0]

 let clue = parts[1]

 clueString += "\(index + 1). \(clue)\n"

 let solutionWord =
answer.stringByReplacingOccurrencesOfString("|", withString: "")

 solutionString += "\(solutionWord.characters.count) letters
\n"

 solutions.append(solutionWord)

 let bits = answer.componentsSeparatedByString("|")

 letterBits += bits

 }

 }

 }

 // Now configure the buttons and labels

}

www.hackingwithswift.com 275

If you read all that and it made sense first time, great! You can skip over the next few
paragraphs and jump to the bit the bold text "All done!". If you read it and only some made
sense, these next few paragraphs are for you.

First, the method uses pathForResource() and String's contentsOfFile to find and load the
level string from the disk. String interpolation is used to combine "level" with our current level
number, making "level1.txt". The text is then split into an array by breaking on the \n
character (that's line break, remember), then shuffled so that the game is a little different
each time.

Our loop uses the enumerate() method to go through each item in the lines array. This is
different to how we normally loop through an array, but enumerate() is helpful here because
it tells us where each item was in the array so we can use that information in our clue string.
In the code above, enumerate() will place the item into the line variable and its position into
the index variable.

We already split the text up into lines based on finding \n, but now we split each line up
based on finding : , because each line has a colon and a space separating its letter groups
from its clue. We put the first part of the split line into answer and the second part into clue,
for easier referencing later.

Now, here's something new: you've already seen how string interpolation can turn level\
(level) into "level1" because the level variable is set to 1, but here we're adding to the
clueString variable using \(index + 1). Yes, we're actually doing basic math in our string
interpolation. This is needed because the array indexes start from 0, which looks strange to
players, so we add 1 to make it count from 1 to 7.

Next comes our new string method call, stringByReplacingOccurrencesOfString(). We're
asking it to replace all instances of | with an empty string, so HA|UNT|ED will become
HAUNTED. We then use characters.count to get the length of our string then use that in
combination with string interpolation to add to our solutions string.

Finally, we make yet another call to componentsSeparatedByString() to turn the string "HA|
UNT|ED" into an array of three elements, then add all three to our letterBits array

All done!Time for some more code: our current loadLevel() method ends with a comment
saying // Now configure the buttons and labels, and we're going to fill that in with the final
part of the method. This needs to set the cluesLabel and answersLabel text, shuffle up our
buttons and letter groups, then assign letter groups to buttons.

www.hackingwithswift.com 276

Before I show you the actual code, there's a new string method to introduce, and it's another
long one: stringByTrimmingCharactersInSet() removes any letters you specify from the
start and end of a string. It's most frequently used with the
parameter .whitespaceAndNewlineCharacterSet(), which trims spaces, tabs and line
breaks, and we need exactly that here because our clue string and solutions string will both
end up with an extra line break.

Put this code where the comment was:

cluesLabel.text =
clueString.stringByTrimmingCharactersInSet(.whitespaceAndNewlineChara
cterSet())

answersLabel.text =
solutionString.stringByTrimmingCharactersInSet(.whitespaceAndNewlineC
haracterSet())

letterBits =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(letterBi
ts) as! [String]

letterButtons =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(letterBu
ttons) as! [UIButton]

if letterBits.count == letterButtons.count {

 for i in 0 ..< letterBits.count {

 letterButtons[i].setTitle(letterBits[i], forState: .Normal)

 }

}

That code uses yet another type of loop, and this time it's a range: for i in 0 ..<
letterButtons.count means "count from 0 up to but not including the number of buttons."
This is useful because we have as many items in our letterBits array as our letterButtons
array. Looping from 0 to 19 (inclusive) means we can use the i variable to set a button to a
letter group.

www.hackingwithswift.com 277

The ..< operator is called the "half-open range operator" because it does not include the
upper limit. Instead, it counts to one below. There's a closed range operator, ..., which
includes the upper limit, but we don't want that here because an array of 20 items will have
numbers 0 to 19.

Before you run your program, make sure you add a call to loadLevel() in your viewDidLoad()
method. Once that's done, you should be able to see all the buttons and clues configured
correctly. Now all that's left is to let the player, well, play.

www.hackingwithswift.com 278

It's play time!
We need to add three more methods to our view controller in order to finish this game: one to
handle letter buttons being tapped, another to handle the current word being cleared, and a
third to handle the current word being submitted. The first two are extremely easy, so let's
get those done so we can get onto the serious stuff.

First, we already used the addTarget() method in viewDidLoad() to make all our letter
buttons call the method letterTapped(), and you should remember that actually had to
specify letterTapped: because we want to receive the button that was tapped as a
parameter for our method. Add this method now somewhere in your code:

func letterTapped(btn: UIButton) {

 currentAnswer.text = currentAnswer.text! + btn.titleLabel!.text!

 activatedButtons.append(btn)

 btn.hidden = true

}

That does three things: gets the text from the title label of the button that was tapped and
appends it to the current text of the answer text field, then appends the button to the
activatedButtons array, and finally hides the button. We need to force unwrap both the title
label and its text, because both might not exist – and yet we know they do.

The activatedButtons array is being used to hold all buttons that the player has tapped
before submitting their answer. This is important because we're hiding each button as it is
tapped, so when the user taps "Clear" we need to know which buttons are currently in use
so we can re-show them. You already created an empty @IBAction method for clear being
tapped, so fill it in like this:

@IBAction func clearTapped(sender: AnyObject) {

 currentAnswer.text = ""

 for btn in activatedButtons {

 btn.hidden = false

www.hackingwithswift.com 279

 btn.hidden = false

 }

 activatedButtons.removeAll()

}

As you can see, this method removes the text from the current answer text field, unhides all
the activated buttons, then removes all the items from the activatedButtons array.

That just leaves one final method, and you already created its stub: the submitTapped()
method for when the player taps the submit button.

This method will use another new function called indexOf(), which searches through an array
for an item and, if it finds it, tells you its position. The return value is optional so that in
situations where nothing is found you won't get a value back, so we need to unwrap its
return value carefully.

If the user gets an answer correct, we're going to change the answers label so that rather
than saying "7 LETTERS" it says "HAUNTED", so they know which ones they have solved
already. The way we're going to do this is delightfully simple: indexOf() will tell us which
solution matched their word, and that we can use that position to find the matching clue text.
All we need to do is split the answer label text up by \n, replace the line at the solution
position with the solution itself, then re-join the clues label back together.

You've already learned how to use componentsSeparatedByString() to split text into an
array, and now it's time to meet its counterpart: joinWithSeparator(). This makes an array
into a single string, with each array element separated by the string specified in its
parameter.

Once that's done, we clear the current answer text field and add one to the score. If the
score is evenly divisible by 7, we know they have found all seven words so we're going to
show a UIAlertController that will prompt the user to go to the next level.

The "evenly divisible" task is easy to do in Swift (and indeed any sensible programming
language) thanks to a dedicated modulo operator: %. Modulo is division with remainder, so
10 % 3 means "tell me what number remains when you divide 10 evenly into 3 parts". 3 goes

www.hackingwithswift.com 280

into 10 three times (making nine), with remainder 1, so 10 % 3 is 1, 11 % 3 is 2, and 12 % 3
is 0 – i.e., 12 divides perfectly into 3 with no remainder. If score % 7 is 0, we know they have
answered all seven words correctly.

That's all the parts explained, so here's the final submitTapped() method:

@IBAction func submitTapped(sender: AnyObject) {

 if let solutionPosition = solutions.indexOf(currentAnswer.text!) {

 activatedButtons.removeAll()

 var splitClues =
answersLabel.text!.componentsSeparatedByString("\n")

 splitClues[solutionPosition] = currentAnswer.text!

 answersLabel.text = splitClues.joinWithSeparator("\n")

 currentAnswer.text = ""

 score += 1

 if score % 7 == 0 {

 let ac = UIAlertController(title: "Well done!", message: "Are
you ready for the next level?", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "Let's go!", style: .Default,
handler: levelUp))

 presentViewController(ac, animated: true, completion: nil)

 }

 }

}

The levelUp() call in there is just to get you started – there isn't a level up here, because I
only created one level! But if you wanted to make more levels and continue the game, you'd
need a levelUp() method something like this:

www.hackingwithswift.com 281

func levelUp(action: UIAlertAction!) {

 level += 1

 solutions.removeAll(keepCapacity: true)

 loadLevel()

 for btn in letterButtons {

 btn.hidden = false

 }

}

As you can see, that code clears out the existing solutions array before refilling it inside
loadLevel(). Then of course you'd need to create level2.txt, level3.txt and so on. To get you
started, I've made an example level2.txt for you inside the Content folder – try adding that to
the project and see what you think. Any further levels are for you to do – just make sure
there's a total of 20 letter groups each time!

www.hackingwithswift.com 282

Property observers
There's one last thing to cover before this project is done, and it's really small and really
easy: property observers.

Right now we have a property called score that is set to 0 when the game is created and
increments by one whenever an answer is found. But we don't do anything with that score,
so our score label is never updated.

One solution to this problem is to use something like scoreLabel.text = "Score: \(score)"
whenever the score value is changed, and that's perfectly fine to begin with. But what
happens if you're changing the score from several places? You need to keep all the code
synchronised, which is unpleasant.

Swift has a simple and classy solution called property observers, and it lets you execute
code whenever a property has changed. To make them work, you need to declare your data
type explicitly (in our case we need an Int), then use either didSet to execute code when a
property has just been set, or willSet to execute code before a property has been set.

In our case, we want to add a property observer to our score property so that we update the
score label whenever the score value was changed. So, change your score property to this:

var score: Int = 0 {

 didSet {

 scoreLabel.text = "Score: \(score)"

 }

}

Note that when you use a property observer like this, you need to explicitly declare its type
otherwise Swift will complain.

Using this method, any time score is changed by anyone, our score label will be updated.
That's it, the project is done!

www.hackingwithswift.com 283

Wrap up
Yes, it took quite a lot of storyboard work to get this project going, but I hope it has shown
you that you can make some great games using just the UIKit tools you already know.

Of course, at the same time as making another game, you've made several steps forward in
your iOS development quest, this time learning about addTarget(), enumerate(),
countElements(), find(), join(), stringByReplacingOccurrencesOfString(), property
observers, range operators and the difference between Swift strings and NSString.

Looking at that list, it should be clear that you are increasingly dealing with specific bits of
code (i.e., functions like find()) when you're developing UIKit projects. This is because you're
starting to build up a great repertoire of code, so there is simply less to teach. That's not to
say there isn't a lot of new things still to come – in fact, the next few projects all introduce
several big new things – but it does mean your knowledge is starting to mature.

If you're looking to improve this project, see if you can make it deduct points if the player
makes an incorrect guess - this is just a matter of extending the submitAnswer() method so
that if find() failed to find the guess then you remove points.

www.hackingwithswift.com 284

Project 9
Grand Central Dispatch
Learn how to run complex tasks in the background with
GCD.

www.hackingwithswift.com 285

Setting up
In this technique project we're going to return to project 7 to solve a critical problem using
one of the most important Apple frameworks available: Grand Central Dispatch, or GCD. I
already mentioned the problem to you, but here's a recap from project 7:

By downloading data from the internet in viewDidLoad() our app will lock up until all the data
has been transferred. There are solutions to this, but to avoid complexity they won't be
covered until project 9.We're going to solve this problem by using GCD, which will allow us to
fetch the data without locking up the user interface. But be warned: even though GCD might
seem easy at first, it opens up a new raft of problems, so be careful!

If you want to keep your previous work for reference, take a copy of project 7 now and call it
project 9. Otherwise, just modify it in place.

www.hackingwithswift.com 286

Why is locking the UI bad?
The answer is two-fold. First, we used NSData's contentsOfURL to download data from the
internet, which is what's known as a blocking call. That is, it blocks execution of any further
code in the method until it has connected to the server and fully downloaded all the data.

Second, behind the scenes your app actually executes multiple sets of instructions at the
same time, which allows it to take advantage of having two CPU cores, or even three as in
the iPad Air 2. Each CPU can be doing something independently of the others, which hugely
boosts your performance. These code execution processes are called threads, and come
with a number of important provisos:

1. Threads execute the code you give them, they don't just randomly execute a few lines
from viewDidLoad() each. This means by default your own code executes on only one CPU,
because you haven't created threads for other CPUs to work on.
2. All user interface work must occur on the main thread, which is the initial thread your
program is created on. If you try to execute code on a different thread, it might work, it might
fail to work, it might cause unexpected results, or it might just crash.
3. You don't get to control when threads execute, or in what order. You create them and give
them to the system to run, and the system handles executing them as best it can.
4. Because you don't control the execution order, you need to be extra vigilant in your code
to ensure only one thread modifies your data at one time.

Points 1 and 2 explain why our call is bad: if all user interface code must run on the main
thread, and we just blocked the main thread by using NSData's contentsOfURL, it causes
the entire program to freeze – the user can touch the screen all they want, but nothing with
happen. When the data finally downloads (or just fails), the program will unfreeze. This is a
terrible experience, particularly when you consider that iPhones are frequently on poor-
quality data connections.

Broadly speaking, if you're accessing any remote resource, you should be doing it on a
background thread – i.e., any thread that is not the main thread. If you're executing any slow
code, you should be doing it on a background thread. If you're executing any code that can
be run in parallel – e.g. adding a filter to 100 photos – you should be doing it on multiple
background threads.

The power of GCD is that it takes away a lot of the hassle of creating and working with
multiple threads, known as multithreading. You don't have to worry about creating and
destroying threads, and you don't have to worry about ensuring you have created the optimal

www.hackingwithswift.com 287

number of threads for the current device. GCD automatically creates threads for you, and
executes your code on them in the most efficient way it can.

To fix our project, you need to learn three new GCD functions, but the most important one is
called dispatch_async() – it means "run the following code asynchronously," i.e. don't block
(stop what I'm doing right now) while it's executing. Yes, that seems simple, but there's a
sting in the tail: you need to use closures. Remember those? They are your best friend. No,
really.

www.hackingwithswift.com 288

GCD 101
We're going to use dispatch_async() twice: once to push some code to a background
thread, then once more to push code back to the main thread. This allows us to do any
heavy lifting away from the user interface where we don't block things, but then update the
user interface safely on the main thread – which is the only place it can be safely updated.

When you call dispatch_async(), you must tell it where you want the code to run. GCD
works with a system of queues, which are much like a real-world queue: they are First In,
First Out (FIFO) blocks of code. What this means is that your GCD calls don't create threads
to run in, they just get assigned to one of the existing threads for GCD to manage.

GCD creates for you a number of queues, and places tasks in those queues depending on
how important you say they are. All are FIFO, meaning that each block of code will be taken
off the queue in the order they were put in, but more than one code block can be executed at
the same time so the finish order isn't guaranteed.

"How important" some code is depends on something called "quality of service", or QoS,
which decides what level of service this code should be given. Obviously at the top of this is
the main queue, which runs on your main thread, and should be used to schedule any work
that must update the user interface immediately even when that means blocking your
program from doing anything else. But there are four background queues that you can use,
each of which has their own QoS level set:

1. User Interactive: this is the highest priority background thread, and should be used when
you want a background thread to do work that is important to keep your user interface
working. This priority will ask the system to dedicate nearly all available CPU time to you to
get the job done as quickly as possible.
2. User Initiated: this should be used to execute tasks requested by the user that they are
now waiting for in order to continue using your app. It's not as important as user interactive
work – i.e., if the user taps on buttons to do other stuff, that could should be executed first –
but it is important because you're keeping the user waiting.
3. The Utility queue: this should be used for long-running tasks that the user is aware of, but
not necessarily desperate for now. If the user has requested something and can happily
leave it running while they do something else with your app, you should use Utility.
4. The Background queue: this is for long-running tasks that the user isn't actively aware of,
or at least doesn't care about its progress or when it completes.

Those QoS queues affect the way the system prioritises your work: User Interactive and User

www.hackingwithswift.com 289

Initiated tasks will be executed as quickly as possible regardless of their effect on battery life,
Utility tasks will be executed with a view to keeping power efficiency as high as possible
without sacrificing too much performance, whereas Background tasks will be executed with
power efficiency as its priority.

GCD automatically balances work so that higher priority queues are given more time than
lower priority ones, even if that means temporarily delaying a background task because a
user interactive task just came in.

Enough talking, time for some action: we're going to use dispatch_async() to make all our
loading code run in the background queue with User Initiated quality of service. It's actually
only two lines of code different:

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED,
0)) { [unowned self] in

…before the code you want to run in the background, then a closing brace at the end.

dispatch_async() takes one parameter, then a closure to execute asynchronously. The
parameter it takes is which queue you want to use, and we're going to use one of two
functions: dispatch_get_global_queue() asks for a queue with a particular quality of service
setting, and dispatch_get_main_queue() will use the main queue.

The dispatch_get_global_queue() also takes parameters, but the second one is always 0 –
Apple has left it there in case they want to make changes in the future, but until you hear
otherwise just put a 0 in there. The first parameter is the name of the queue you want to use,
and in our code that's QOS_CLASS_USER_INITIATED: we want our code to execute quickly
because we know the user is waiting for it.

Because dispatch_async() uses closures, we start with [unowned self] in to avoid strong
reference cycles, but otherwise our loading code is the same as before. To help you place it
correctly, here's how the loading code should look:

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED,
0)) { [unowned self] in

 if let url = NSURL(string: urlString) {

 if let data = try? NSData(contentsOfURL: url, options: []) {

www.hackingwithswift.com 290

 if let data = try? NSData(contentsOfURL: url, options: []) {

 let json = JSON(data: data)

 if json["metadata"]["responseInfo"]["status"].intValue == 200 {

 self.parseJSON(json)

 } else {

 self.showError()

 }

 } else {

 self.showError()

 }

 } else {

 self.showError()

 }

}

Note that because our code is now inside a closure, we need to prefix our method calls with
self. otherwise Swift complains.

If you want to try the other QoS queues, you could also use
QOS_CLASS_USER_INTERACTIVE, QOS_CLASS_UTILITY or
QOS_CLASS_BACKGROUND.

www.hackingwithswift.com 291

Back to the main thread
With this change, our code is both better and worse. It's better because it no longer blocks
the main thread while the JSON downloads from Whitehouse.gov. It's worse because we're
pushing work to the background thread, and any further code called in that work will also be
on the background thread.

So, if the download fails, loadError() will be called on the background thread and its
UIAlertController will be created and shown on the background thread. If the download
succeeds, the JSON will be parsed on the background thread and the table view's
reloadData() will be called on the background thread.

Now, it's OK to parse the JSON there, but it's never OK to do user interface work on the
background thread.

That's so important it bears repeating twice: it's never OK to do user interface work on the
background thread.

If you're on a background thread and want to execute code on the main thread, you need to
call dispatch_async() again, this time using the function dispatch_get_main_queue()
because you want to run on the main thread. There are two ways we could modify our code
to have dispatch_get_main_queue() before every call to showError() and parseJSON(), but
that's both ugly and inefficient.

Instead, it's better to place the dispatch_async() call inside showError(), wrapping up the
whole UIAlertController code, and also inside parseJSON(), but only where the table view is
being reloaded. The actual JSON parsing can happily stay on the background thread.

So, inside the parseJSON() method find this code:

tableView.reloadData()

…and replace it this new code, bearing in mind again the need for [unowned self] in and
self. to keep away strong reference cycles:

dispatch_async(dispatch_get_main_queue()) { [unowned self] in

www.hackingwithswift.com 292

dispatch_async(dispatch_get_main_queue()) { [unowned self] in

 self.tableView.reloadData()

}

And now change the showError() method to this:

func showError() {

 dispatch_async(dispatch_get_main_queue()) { [unowned self] in

 let ac = UIAlertController(title: "Loading error", message:
"There was a problem loading the feed; please check your connection
and try again.", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 self.presentViewController(ac, animated: true, completion: nil)

 }

}

The code is almost identical, it's just a matter of wrapping it up neatly to avoid strong
reference cycles.

At this point, this code is in a good place: we do all the slow work off the main thread, then
push work back to the main thread when we want to do user interface work. This
background/foreground bounce is common, and you'll see it again in later projects.

www.hackingwithswift.com 293

Wrap up
Although I've tried to simplify things as much as possible, GCD still isn't easy. That said, it's
much easier than the alternatives: GCD automatically handles thread creation and
management, automatically balances based on available system resources, and
automatically factors in Quality of Service to ensure your code runs as efficiently as possible.
The alternative is doing all that yourself!

There's a lot more we could cover (not least how to create your own queues!) but really you
have more than enough to be going on with, and certainly more than enough to complete the
rest of this series. We'll be using GCD again, so it might help to keep this reference close to
hand!

www.hackingwithswift.com 294

Project 10
Names to Faces
Get started with UICollectionView and the photo library.

www.hackingwithswift.com 295

Setting up
This is a fun, simple and useful project that will let you create an app to help store names of
people you've met. If you're a frequent traveller, or perhaps just bad at putting names to
faces, this project will be perfect for you.

And yes, you'll be learning lots along the way: this time you'll meet
UICollectionViewController, UIImagePickerController and NSUUID. Plus you'll get to do
more with your old pals CALayer, UIAlertController, NSData and closures. But above all,
you're going to learn how to make a new data type from scratch for the first time.

Create a new Single View Application project in Xcode, call it Project10, set its target to any
device you want, then save it somewhere. This should be second nature to you by now –
you're becoming a veteran!

www.hackingwithswift.com 296

Designing UICollectionView cells
Open Interface Builder with Main.storyboard, then embed the initial view controller inside a
navigation controller. Now, using the object library (Ctrl+Alt+Cmd+3) search for a Collection
View and drag it onto the view controller so that it takes up the full space. Important: don't
choose the one with a yellow icon, because that's a Collection View Controller rather than a
UICollectionView. They are different!

With the collection view selected, go to the size inspector and set Cell Size to have the width
140 and height 180. Now set the section insets for top, bottom, left and right to all be 10.

Collection views are extremely similar to table views, with the exception that they display as
grids rather than as simple rows. But while the display is different, the underlying method
calls are so similar that you would be able to dive right in if it weren't for the fact that we
need to write all the code ourselves this time – there's no collection view template code we
can modify!

Using the assistant editor, create an outlet for the collection view called collectionView, then
return back to the standard editor. Trying to edit a storyboard while you can only see half the
screen isn't easy!

When you create a collection view, you get one initial collection view cell defined for you,
called a prototype. This is the empty square you'll see in the top-left corner. This works the
same as with table views; you'll remember we changed the initial cell in project 7 so that we
could add subtitles.

Select that collection view cell now, then go to the attributes inspector and change its
Background from "Default" (transparent) to white. Now place a UIImageView in there, with X:
10, Y:10, width 120 and height 120. We'll be using this to show pictures of people's faces.

Place a UILabel in there too, with X:10, Y:134, width 120 and height 40. In the attributes
inspector, change the label's font by clicking the T button and choosing "Custom" for font,
"Marker Felt" for family, and "Thin" for style. Give it the font size 16, which is 1 smaller than
the default, then set its alignment to be centered and its number of lines property to be 2.

www.hackingwithswift.com 297

Your collection view cell design should have one image view and one label.

So far this has been fairly usual storyboard work, but now we're going to do two things we've
never done before: assign a delegate from a storyboard, then create a custom class for our
collection view cell. The first is simple: select the collection view (not the cell!) by clicking the
large empty area, then Ctrl-drag from there up to where it says "View Controller" in the
document outline on the left.

When you let go, you'll be asked what kind of connection you want to make, and you'll see
two options you haven't seen before: dataSource and delegate. I want you to select both,
which means you'll need to Ctrl-drag twice.

What you've just done is tell the collection view that your ViewController class (the one
Xcode made for you as part of its template) will provide all the data for the collection view
(it's data source) and will also respond to any interesting events from the collection view (its
delegate). We'll need to return to this some more soon.

Now for something harder: we need to create a custom class for our collection view cell. This
is because our collection view cell has two views that we created – the image view and the
label – and we need a way to manipulate this in code. The shortcut way would be to give

www.hackingwithswift.com 298

label – and we need a way to manipulate this in code. The shortcut way would be to give
them unique tags and give them variables when the app runs, but we're going to do it The
Proper Way this time so you can learn.

Read this carefully, because you'll need to do it a lot from here on. In the project
navigator, the top thing is a blue project icon that says "Project10 / 2 targets". Beneath that is
a yellow folder that also says Project10. Right-click on that and choose "New File…".
Whenever I say to create a new file in later projects, please follow this exact procedure.

In the picture below you can see how adding a new file should look: right-click on the yellow
folder that says Project10 (or whatever you named your project) then look for New File in the
popup menu.

How to add a new file to a project in Xcode.

You'll be asked to choose a template for your new file. From the left, make sure "Source" is
selected under the "iOS" heading, then choose Cocoa Touch Class and click Next. You'll be
asked to fill in two text fields: where it says "Subclass of" you should enter
"UICollectionViewCell", and where it says "Class" enter "PersonCell". Click Next then Create,

www.hackingwithswift.com 299

and Xcode will create a new class called PersonCell that inherits from
UICollectionViewCell.

This new class needs to be able to represent the collection view layout we just defined in
Interface Builder, so it just needs two outlets. Modify the class to this:

@IBOutlet weak var imageView: UIImageView!

@IBOutlet weak var name: UILabel!

Now go back to Interface Builder and select the collection view cell in the document outline.
Select the identity inspector (Cmd+Alt+3) and you'll see next to Class the word
"UICollectionViewCell" in gray text. That's telling us that the cell is its default class type.

We want to use our custom class here, so enter "PersonCell" and hit return. You'll see that
"PersonCell" now appears in the document outline. While you're there, go to the attributes
inspector and give the cell the identifier "Person".

Now that Interface Builder knows that the cell is actually a PersonCell, we can connect its
outlets. Go to the connections inspector (it's the last one, so Alt+Cmd+6) with the cell
selected and you'll see imageView and name in there, both with empty circles to their right.
That empty circle has exactly the same meaning as when you saw it with outlets in code:
there is no connection between the storyboard and code for this outlet.

To make a connection from the connections inspector, just click on the empty circle next to
imageView and drag a line over the view you want to connect. In our case, that means
dragging over the image view in our custom cell. Now connect name to the label, and you're
almost done with the storyboard.

www.hackingwithswift.com 300

You can create and destroy Interface Builder outlets using the connections inspector.

The last thing to do is make sure the collection view stays edge to edge with the view
controller regardless of device. With the collection view selected, click the Pin button, which
is the third of four buttons in the bottom-right corner of the Interface Builder pane.

Deselect "Constrain to margins" then click all four dotted red lines near the top of the popup
and click "Add 4 Constraints." We did this in project 1, but I appreciate that was some time
ago!

Enough storyboarding: time for some code…

www.hackingwithswift.com 301

Data sources and delegates
In project 4 we made ourselves the delegate of a WKWebView's navigation, and as soon as
that happened there were compiler problems. We also had to tell Swift that we conformed to
the WKNavigationDelegate protocol in order to make the code work.

WKNavigationDelegate is a very easy protocol to conform to, because all its methods are
optional. That means you don't need to implement anything, you just need to say that you
conform to the protocol.

When you make your view controller to be the data source and delegate of a collection using
a storyboard, you won't get any compiler problems, but the code won't work. You don't get
any compiler problems because the compiler doesn't check storyboard connections, but the
code won't work because the UICollectionViewDataSource protocol has two non-optional
methods that we need to implement.

The best next step from here is to tell Swift in code that your view controller conforms to the
UICollectionViewDataSource and UICollectionViewDelegate protocols, because that way
it can make sure your code is valid. So, go to ViewController.swift and modify your view
controller's class definition to this:

class ViewController: UIViewController, UICollectionViewDataSource,
UICollectionViewDelegate {

Once you've made this change, you'll see compiler errors because we don't fully conform to
the UICollectionViewDataSource protocol. Specifically, you must tell the collection view
how many items of data it should expect and what each item should contain. To begin with,
let's put together the most basic implementation that allows our code to build cleanly. Add
these two methods:

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {

 return 10

}

func collectionView(collectionView: UICollectionView,

www.hackingwithswift.com 302

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {

 let cell =
collectionView.dequeueReusableCellWithReuseIdentifier("Person",
forIndexPath: indexPath) as! PersonCell

 return cell

}

We haven't looked at any of this code before, so I want to pull it apart in detail before
continuing:

 • collectionView(_:numberOfItemsInSection:) This must return an integer, and tells the
collection view how many items you want to show in its grid. I've returned 10 from this
method, but soon we'll switch to using an array.
 • collectionView(_:cellForItemAtIndexPath:) This must return an object of type
UICollectionViewCell. We already designed a prototype in Interface Builder, and configured
the PersonCell class for it, so we need to create and return one of these.
 • dequeueReusableCellWithReuseIdentifier() This crazy long method name does
something really important: it creates a collection view cell using the reuse identified we
specified, in this case "Person" because that was what we typed into Interface Builder earlier.
But even better, this method will automatically try to reuse collection view cells, so as soon
as a cell scrolls out of view it can be recycled so that we don't have to keep creating new
ones.

Note that we need to typecast our collection view cell as a PersonCell because we'll soon
want to access its imageView and name outlets.

These two new methods both come from the UICollectionViewDataSource protocol, but
both are remarkably similar to the UITableViewDataSource delegate that is the equivalent
for table views – you can go back and open project 1 again to see just how similar!

Press Cmd+R to run your project now, and you'll see the beginning of things start to come
together: the prototype cell you designed in Interface Builder will appear 10 times, and you
can scroll up and down to view them all. As you'll see, you can fit two cells across the
screen, which is what makes the collection view different to the table view. Plus, if you rotate
to landscape you'll see it automatically (and beautifully) animates the movement of cells so
they take up the full width.

www.hackingwithswift.com 303

A UICollectionView filled with our basic cell design.

www.hackingwithswift.com 304

Importing photos
There are lots of events that make up the UICollectionViewDelegate protocol to handle
when the user interacts with a cell, but we'll come back to that later. For now, let's look at
how to import pictures using UIImagePickerController. This new class is designed to let
users select an image from their camera to import into an app. When you first create a
UIImagePickerController, iOS will automatically ask the user whether the app can access
their photos.

First, we need to create a button that lets users add people to the app. This is as simple as
putting the following into the viewDidLoad() method:

navigationItem.leftBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Add, target: self, action:
"addNewPerson")

The addNewPerson() method is where we need to use the UIImagePickerController, but
it's so easy to do I'm just going to show you the code:

func addNewPerson() {

 let picker = UIImagePickerController()

 picker.allowsEditing = true

 picker.delegate = self

 presentViewController(picker, animated: true, completion: nil)

}

There are only two interesting things in there. First, we set the allowsEditing property to be
true, which allows the user to crop the picture they select. Second, when you set self as the
delegate, you'll need to conform not only to the UIImagePickerControllerDelegate
protocol, but also the UINavigationControllerDelegate protocol.

The first of those protocols is useful, telling us when the user either selected a picture or
cancelled the picker. The second, UINavigationControllerDelegate, really is quite pointless

www.hackingwithswift.com 305

here, so don't worry about it beyond just modifying your class declaration to include the
protocol.

When you conform to the UIImagePickerControllerDelegate protocol, you don't need to
add any methods because both are optional. But they aren't really – they are marked optional
for whatever reason, but your code isn't much good unless you implement them! Let's tackle
them individually, starting with imagePickerControllerDidCancel(). Add this to your class:

func imagePickerControllerDidCancel(picker: UIImagePickerController)
{

 dismissViewControllerAnimated(true, completion: nil)

}

So, if the user cancels the image picker, we dismiss it. This is required because the default
UIImagePickerController behaviour is to take up the full screen, so we need to hide it to
return to our view controller.

The much more complicated delegate method is imagePickerController(_,
didFinishPickingMediaWithInfo:), which returns when the user selected an image and it's
being returned to you. This method needs to do several things:

 • Extract the image from the dictionary that is passed as a parameter.
 • Generate a unique filename for it.
 • Convert it to a JPEG, then write that JPEG to disk.
 • Dismiss the view controller.

To make all this work you're going to need to learn a few new things.

First, it's very common for Apple to send you a dictionary of several pieces of information as
a method parameter. This can be hard to work with sometimes because you need to know
the names of the keys in the dictionary in order to be able to pick out the values, but you'll
get the hang of it over time.

This dictionary parameter will contain one of two keys:
UIImagePickerControllerEditedImage (the image that was edited) or
UIImagePickerControllerOriginalImage, and realistically it should only ever be the former

www.hackingwithswift.com 306

unless you change the allowsEditing property.

The problem is, we don't know if these values exist as UIImages, so we can't just extract
them straight into UIImages. Instead, we need to use an optional method of typecasting,
as?, along with if/let syntax. Using this method, we can be sure we always get the right thing
out.

Second, we need to generate a unique filename for every image we import. This is so that we
can copy it to our app's space on the disk without overwriting anything, and if the user ever
deletes the picture from their photo library we still have our copy. We're going to use a new
class for this, called NSUUID, which generates a Universally Unique Identifier and is perfect
for a random filename.

Third, once we have the image, we need to write it to disk. You're going to need to learn two
new pieces of code: UIImageJPEGRepresentation() converts a UIImage to an NSData,
and there's a method on NSData called writeToFile() that, well, writes its data to disk.

Writing information to disk is easy enough, but finding where to put it is tricky. All apps that
are installed have a directory called Documents where you can save private information for
the app, and it's also automatically synchronised with iCloud. The problem is, it's not
obvious how to find that directory, so I have a method I use called getDocumentsDirectory()
that does exactly that – you don't need to understand how it works, but you do need to copy
it into your code.

With all that in mind, here are the new methods:

func imagePickerController(picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject]) {

 var newImage: UIImage

 if let possibleImage = info["UIImagePickerControllerEditedImage"]
as? UIImage {

 newImage = possibleImage

 } else if let possibleImage =
info["UIImagePickerControllerOriginalImage"] as? UIImage {

 newImage = possibleImage

 } else {

www.hackingwithswift.com 307

 } else {

 return

 }

 let imageName = NSUUID().UUIDString

 let imagePath =
getDocumentsDirectory().stringByAppendingPathComponent(imageName)

 if let jpegData = UIImageJPEGRepresentation(newImage, 80) {

 jpegData.writeToFile(imagePath, atomically: true)

 }

 dismissViewControllerAnimated(true, completion: nil)

}

func getDocumentsDirectory() -> NSString {

 let paths =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMa
sk, true)

 let documentsDirectory = paths[0]

 return documentsDirectory

}

Again, it doesn't matter how getDocumentsDirectory() works, but if you're curious: its first
parameter asks for the documents directory, and its second parameter adds that we want
the path to be relative to the user's home directory. This returns an array that nearly always
contains only one thing: the user's documents directory. So, we pull out the first element and
return it.

Now onto the code that matters: as you can see I've declared a newImage variable up front,
then it gets assigned to whichever value in the dictionary has an image. If we can't find an
image for some reason, we exit the method. We then create an NSUUID object, and use its
UUIDString property to extract the unique identifer as a string data type.

www.hackingwithswift.com 308

The code then creates a new constant, imagePath, which takes the string result of
getDocumentsDirectory() and calls a new method on it:
stringByAppendingPathComponent(). This is used when working with file paths, and adds
one string (imageName in our case) to a path, including whatever path separator is used on
the platform.

Now that we have a UIImage containing an image and a path where we want to save it, we
need to convert the UIImage to an NSData object so it can be saved. To do that, we use the
UIImageJPEGRepresentation() function, which takes two parameters: the UIImage to
convert to JPEG and a quality value between 0 and 100.

Once we have an NSData object containing our JPEG data, we just need to unwrap it safely
then write it to the file name we made earlier. That's done using the writeToFile() method,
which takes a filename as its first parameter and a boolean as its second. That second
parameter, "atomically", should generally be true. It means "write to a temporary file first,
then rename it to be the file you asked," which has the benefit that the file doesn't appear to
exist until it has been fully written.

So: users can pick an image, and we'll save it to disk. But this still doesn't do anything – you
won't see the picture in the app, because we aren't doing anything with it beyond writing it to
disk. To fix that, we need to create a custom class to hold custom data…

www.hackingwithswift.com 309

Custom classes
You already created your first custom class when you created the collection view cell. But
this time we're going to do something very simple: we're going to create a class to hold
some data for our app. So far you've seen how we can create arrays of strings by using
[String], but what if we want to hold an array of people?

Well, the solution is to create a custom class. Create a new file (you remember my explicit,
"read this carefully" instructions, right?) and choose Cocoa Touch Class. Click Next and
name the class Person, type NSObject for "Subclass of", then click Next and Create to
create the file.

NSObject is what's called a universal base class for all Cocoa Touch classes. That means all
UIKit classes ultimately come from NSObject, as do all NS objects like NSString. You don't
have to inherit from NSObject in Swift, but you did in Objective C and in fact there are some
behaviors you can only have if you do inherit from it. More on that in project 12, but for now
just make sure you inherit from NSObject.

We're going to add two properties to our class: a name and a photo for every person. So,
add this inside the Person definition:

var name: String

var image: String

When you do that, you'll see errors: "Class 'Person' has no initializers." This is a term I've
skipped over so far, but now is a good time to introduce it: an initializer method is something
that creates instances of a class. You've been using these all along: the contentsOfFile
method for NSString is an initializer, as is UIAlertController(title:message:preferredStyle:).

Swift is telling you that you aren't satisfying one of its core rules: objects of type String can't
be empty. Remember, String! and String? can both be nil, but plain old String can't – it
must have a value. Without an initializer, it means the object will be created and these two
variables won't have values, so you're breaking the rules.

To fix this problem, we need to create an init() method that accepts two parameters, one for
the name and one for the image. We'll then save that to the object so that both variables

www.hackingwithswift.com 310

have a value, and Swift is happy.

Doing this gives you the chance to learn something else: another required usage of the self
keyword. Here's the code:

init(name: String, image: String) {

 self.name = name

 self.image = image

}

As you can see, the method takes two parameters: name and image. These are perfectly
valid parameter names, but also happen to be the same names used by our class. So if we
were to write something like this…

name = name

…then it would be confusing. Are you assigning the parameter to itself? Are we assigning the
class's property to the parameter? To solve this problem, you use self. to clarify which is
which, so self.image = image can only mean one thing: assign the parameter to the class's
property.

Our custom class is done; it's just a dumb data store for now. If you're the curious type, you
might wonder why I used a class here rather than a struct. This question is even more
pressing once you know that structs have an automatic initializer method made for them that
looks exactly like ours. Well, the answer is: you'll have to wait and see. All will become clear
in project 12!

With that custom class done, we can start to make our project much more useful: every time
a picture is imported, we can create a Person object for it and add it to an array to be shown
in the collection view.

So, go back to ViewController.swift, and add this declaration for a new array:

var people = [Person]()

www.hackingwithswift.com 311

var people = [Person]()

Every time we add a new person, we need to create a new Person object with their details.
This is as easy as modifying our initial image picker success method so that it creates a
Person object, adds it to our people array, then reloads the collection view. Put this code
before the call to dismissViewControllerAnimated():

let person = Person(name: "Unknown", image: imageName)

people.append(person)

collectionView.reloadData()

That stores the image name in the Person object and gives them a default name of
"Unknown", before reloading the collection view.

Can you spot the problem? If not, that's OK, but you should be able to spot it if you run the
program.

The problem is that although we've added the new person to our array and reloaded the
collection view, we aren't actually using the people array with the collection view – we just
return 10 for the number of items and create an empty collection view cell for each one! Let's
fix that…

www.hackingwithswift.com 312

Connecting up the people
We need to make three final changes to this project in order to finish: show the correct
number of items, show the correct information inside each cell, then make it so that when
users tap a picture they can set a person's name.

Those methods are all increasingly difficult, so we'll start with the first one. Right now, your
collection view's numberOfItemsInSection method just has return 10 in there, so you'll see
10 items regardless of how many people are in your array. This is easily fixed:

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {

 return people.count

}

Next, we need to update the collection view's cellForItemAtIndexPath method so that it
configures each PersonCell cell to have the correct name and image of the person in that
position in the array. This takes a few steps:

 • Pull out the person from the people array at the correct position.
 • Set the name label to the person's name.
 • Create a UIImage from the person's image filename, adding it to the value from
getDocumentsDirectory() so that we have a full path for the image.

We're also going to use this opportunity to give the image views a border and slightly
rounded corners, then give the whole cell matching rounded corners, to make it all look a bit
more interesting. This is all done using CALayer, so that means we need to convert the
UIColor to a CGColor. Anyway, here's the new code:

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {

 let cell =
collectionView.dequeueReusableCellWithReuseIdentifier("Person",
forIndexPath: indexPath) as! PersonCell

www.hackingwithswift.com 313

 let person = people[indexPath.item]

 cell.name.text = person.name

 let path =
getDocumentsDirectory().stringByAppendingPathComponent(person.image)

 cell.imageView.image = UIImage(contentsOfFile: path)

 cell.imageView.layer.borderColor = UIColor(red: 0, green: 0, blue:
0, alpha: 0.3).CGColor

 cell.imageView.layer.borderWidth = 2

 cell.imageView.layer.cornerRadius = 3

 cell.layer.cornerRadius = 7

 return cell

}

The only new thing in there is setting the cornerRadius property, which rounds the corners
of a CALayer – or in our case the UIView being drawn by the CALayer.

With that done, the app works: you can run it with Cmd+R, import photos, and admire the
way they all appear correctly in the app. But don't get your hopes up, because we're not
done yet – you still can't assign names to people!

For this last part of the project, we're going to recap how to add text fields to a
UIAlertController, just like you did in project 5. All of the code is old, but I'm going to go
over it again to make sure you fully understand.

First, the delegate method we're going to implement is the UICollectionView's
didSelectItemAtIndexPath method, which is triggered when the user taps a cell. This
method needs to pull out the Person object at the array index that was tapped, then show a
UIAlertController asking users to rename the person.

Adding a text field to an alert controller is done with the

www.hackingwithswift.com 314

addTextFieldWithConfigurationHandler() method. We'll also need to add two actions: one
to cancel the alert (with a nil handler), and one to save the change. To save the changes, we
need to add a closure that pulls out the text field value and assigns it to the person's name
property, then we'll also need to reload the collection view to reflect the change.

That's it! The only thing that's new, and it's hardly new at all, is the setting of the name
property. Put this new method into your class:

func collectionView(collectionView: UICollectionView,
didSelectItemAtIndexPath indexPath: NSIndexPath) {

 let person = people[indexPath.item]

 let ac = UIAlertController(title: "Rename person", message: nil,
preferredStyle: .Alert)

 ac.addTextFieldWithConfigurationHandler(nil)

 ac.addAction(UIAlertAction(title: "Cancel", style: .Cancel,
handler: nil))

 ac.addAction(UIAlertAction(title: "OK", style: .Default) { [unowned
self, ac] _ in

 let newName = ac.textFields![0]

 person.name = newName.text!

 self.collectionView.reloadData()

 })

 presentViewController(ac, animated: true, completion: nil)

}

Finally, the project is complete: you can import photos of people, then tap on them to
rename. Well done!

www.hackingwithswift.com 315

Wrap up
UICollectionView and UITableView are the most common ways of showing lots of
information in iOS, and you now know how to use both. You should be able to go back to
project 1 and recognise a lot of very similar code, and that's by intention – Apple has made it
easy to learn both view types by learning either one.

You've also learned another batch of iOS development, this time UIImagePickerController,
NSUUID, custom classes and more. You might not realise it yet, but you have enough
knowledge now to make a huge range of apps!

If you wanted to take this app further you could add a second UIAlertController that is
shown when the user taps a picture, and asks them whether they want to rename the person
or delete them.

You could also try picker.sourceType = .Camera when creating your image picker, which
will tell it to create a new image by taking a photo. This is only available on devices (not on
the simulator!) so you might want to check the return value of
UIImagePickerController.isSourceTypeAvailable() before trying to use it!

Before we finish, you may have spotted one problem with this app: if you quit the app and
relaunch, it hasn't remembered the people you added. Worse, the JPEGs are still stored on
the disk, so your app takes up more and more room without having anything to show for it!

This is quite intentional, and something we'll return to fix in project 12. Before then, let's take
a look at another game…

www.hackingwithswift.com 316

Project 11
Pachinko
Dive into SpriteKit to try your hand at fast 2D games.

www.hackingwithswift.com 317

Setting up
This project is going to feel like a bit of a reset for you, because we're going to go back to
basics. This isn't because I like repeating myself, but instead because you're going to learn a
wholly new technology called SpriteKit.

So far, everything you've made has been based on UIKit, Apple's user interface toolkit for
iOS. We've made several games with it, and it really is very powerful, but even UIKit has its
limits – and fast 2D games aren't its strong suit.

A much better solution is called SpriteKit, and it's Apple's fast and easy toolkit designed
specifically for 2D games. It includes sprites, fonts, physics, particle effects and more, and
it's built into every iOS device. What's not to like?

So, this is going to be a long tutorial because you're going to learn an awful lot. To help keep
you sane, I've tried to make the project as iterative as possible. That means we'll make a
small change and discuss the results, then make another small change and discuss the
results, until the project is finished.

And what are we building? Well, we're going to produce a game similar to pachinko, although
a lot of people know it by the name "Peggle." To get started, create a new project in Xcode
and choose Game. Name it Project11, set it to target iPad, set its Game Technology to be
SpriteKit, then save it somewhere.

Before we start, please configure your project so that it runs only in landscape mode.

Warning: When working with SpriteKit projects, I strongly recommend you use the iPad 2
simulator rather than iPad Air – you'll get much faster frame rates, making it much more
suitable for testing.

www.hackingwithswift.com 318

Falling boxes
The first thing you should do is run your game and see what a default SpriteKit template
game looks like. You should see a large gray window saying "Hello, World!", and when you
tap a spinning spaceship should appear. In the bottom right is a node count (how many
things are on screen right now) and a frame rate. You're aiming for 60 frames per second all
the time, if possible.

From the project navigator, select Images.xcassets, then choose the spaceship image and
and press the delete key. Now go to GameScene.swift, and delete everything inside the
didMoveToView() and touchesBegan() methods (but leave the methods themselves.)

With the template stuff deleted, I'd like you to import the assets for the project. If you haven't
already downloaded the code for this project, please do so now. You should copy the entire
Content folder from the example project into your own, making sure the "Copy items if
needed" box is checked.

Let's kick off this project by ditching the gray background and replacing it with a picture. If
you want to place an image in your game, the class to use is called SKSpriteNode, and it
can load any picture from your app bundle just like UIImage.

To place a background image, we need to load the file called background.jpg, then position it
in the center of the screen. Unlike UIKit, SpriteKit works with the center of objects – i.e., the
point 0,0 refers to the horizontal and vertical center of a node. Also unlike UIKit, SpriteKit's Y
axis starts at the bottom edge, so a higher Y number places a node higher on the screen. To
place the background image in the center of a landscape iPad, we need to place it at the
position X:512, Y:384.

We're going to do two more things, both of which are only needed for this background. First,
we're going to give it the blend mode .Replace. Blend modes determine how a node is
drawn, and SpriteKit gives you many options. The .Replace option means "just draw it,
ignoring any alpha values," which makes it fast for things without gaps such as our
background. We're also going to give the background a zPosition of -1, which in our game
means "draw this behind everything else."

To add any node to the current screen, you use the addChild() method. As you might expect,
SpriteKit doesn't use UIViewController like our UIKit apps have done. Yes, there is a view
controller in your project, but it's there to host your SpriteKit game. The equivalent of screens
in SpriteKit are called scenes.

www.hackingwithswift.com 319

When you add a node to your scene, it becomes part of the node tree. Using addChild() you
can add nodes to other nodes to make a more complicated tree, but in this game we're
going to keep it simple.

Add this code to the didMoveToView() method, which is sort of the equivalent of SpriteKit's
viewDidLoad() method:

let background = SKSpriteNode(imageNamed: "background.jpg")

background.position = CGPoint(x: 512, y: 384)

background.blendMode = .Replace

background.zPosition = -1

addChild(background)

If you run the app now you'll see a dark blue image for the background rather than plain gray
– hardly a massive improvement, but this is just the beginning.

www.hackingwithswift.com 320

The very start of our game just has a large plain background image. Don't worry, it gets more
fun – honest!

Let's do something a bit more interesting, so add this to the touchesBegan() method:

if let touch = touches.first {

 let location = touch.locationInNode(self)

 let box = SKSpriteNode(color: UIColor.redColor(), size:
CGSize(width: 64, height: 64))

 box.position = location

 addChild(box)

}

We haven't used touchesBegan() before, so the first two lines needs to be explained. This
method gets called (in UIKit and SpriteKit) whenever someone startes touching their device.
It's possible they started touching with multiple fingers at the same time, so we get passed a

www.hackingwithswift.com 321

new data type called Set. This is just like an array, except each object can appear only once.

We want to know where the screen was touched, so we use a conditional typecast plus if/let
to pull out any of the screen touches from the touches set, then use its locationInNode()
method to find out where the screen was touched in relation to "self" - i.e., the game scene.
UITouch is a UIKit class that is also used in SpriteKit, and provides information about a
touch such as its position and when it happened.

The third line is also new, but it's still SKSpriteNode. We're just writing some example code
for now, so this line generates a node filled with a color (red) at a size (64x64). The CGSize
struct is new, but also simple: it just holds a width and a height in a single structure.

The code sets the new box's position to be where the tap happened, then adds it to the
scene. No more talk: press Cmd+R to make sure this all works, then tap around the screen to
make boxes appear.

OK, I admit: that's still quite boring. Let's make it even more interesting – are you ready to
see quite how powerful SpriteKit is? Just before setting the position of our new box, add this
line:

box.physicsBody = SKPhysicsBody(rectangleOfSize: CGSize(width: 64,
height: 64))

And just before the end of didMoveToView(), add this:

physicsBody = SKPhysicsBody(edgeLoopFromRect: frame)

The first line of code adds a physics body to the box that is a rectangle of the same size as
the box. The second line of code adds a physics body to the whole scene that is a line on
each edge, effectively acting like a container for the scene.

If you run the scene now, I hope you can't help but be impressed: you can tap on the screen
to create boxes, but now they'll fall to the ground and bounce off. They'll also stack up as
you tap more often, and fall over realistically if your aim isn't spot on.

www.hackingwithswift.com 322

This is the power of SpriteKit: it's so fast and easy to make games that there really is nothing
holding you back. But we're just getting warmed up!

www.hackingwithswift.com 323

Bouncing balls
You're not going to get rich out of red rectangles, so let's use balls instead. Take the box
code out (everything after let location = in touchesBegan()) and replace it with this instead:

let ball = SKSpriteNode(imageNamed: "ballRed")

ball.physicsBody = SKPhysicsBody(circleOfRadius: ball.size.width /
2.0)

ball.physicsBody!.restitution = 0.4

ball.position = location

addChild(ball)

There are two new things there. First, we're using the circleOfRadius initializer for
SKPhysicsBody to add circular physics to this ball, because using rectangles would look
strange. Second, we're giving the ball's physics body a restitution (bounciness) level of 0.4,
where values are from 0 to 1.

(NB: the physics body of a node is optional, because it might not exist. We know it exists
because we just created it, so you'll always see physicsBody! to force unwrap the optional.)

When you run the game now, you'll be able to tap on the screen to drop bouncy balls. It's
fractionally more interesting, but let's face it: this is still a dreadful game.

Easily fixed, though: we're going to add something for the balls to bounce off. In the Content
folder I provided you with is a picture called "bouncer.png", so we're going to place that in
the game now.

Just before the end of the didMoveToView() method, add this:

let bouncer = SKSpriteNode(imageNamed: "bouncer")

bouncer.position = CGPoint(x: 512, y: 0)

bouncer.physicsBody = SKPhysicsBody(circleOfRadius:
bouncer.size.width / 2.0)

bouncer.physicsBody!.dynamic = false

addChild(bouncer)

www.hackingwithswift.com 324

addChild(bouncer)

There's a new data type in there called CGPoint, but, like CGSize, it's very simple: it just
holds X/Y co-ordinates. Remember, SpriteKit's positions start from the center of nodes, so X:
512 Y:0 means "centered horizontally on the bottom edge of the scene."

Also new is the dynamic property of a physics body. When this is true, the object will be
moved by the physics simulator based on gravity and collisions. When it's false (as we're
setting it) the object will still collide with other things, but it won't ever be moved as a result.

Using this code, the bouncer node will be placed on the screen and your balls can collide
with it – but it won't move. Give it a try now.

Adding a bouncer took five lines of code, but our game needs more than one bouncer. In
fact, I want five of them, evenly distributed across the screen. Now, you could just copy and
paste the code five times then change the positions, but I hope you realise there's a better
way: creating a method that does all the work, then calling that method each time we want a
bouncer.

The method code itself is nearly identical to what you just wrote, with the only change being
that we need to position the box at the CGPoint specified as a parameter:

func makeBouncerAt(position: CGPoint) {

 let bouncer = SKSpriteNode(imageNamed: "bouncer")

 bouncer.position = position

 bouncer.physicsBody = SKPhysicsBody(circleOfRadius:
bouncer.size.width / 2.0)

 bouncer.physicsBody!.dynamic = false

 addChild(bouncer)

}

With that method in place, you can place a bouncer in one line of code: just call
makeBouncerAt() with a position, and it will be placed and given a non-dynamic physics
body automatically.

www.hackingwithswift.com 325

body automatically.

To show this off, delete the bouncer code from didMoveToView(), and replace it with this:

makeBouncerAt(CGPoint(x: 0, y: 0))

makeBouncerAt(CGPoint(x: 256, y: 0))

makeBouncerAt(CGPoint(x: 512, y: 0))

makeBouncerAt(CGPoint(x: 768, y: 0))

makeBouncerAt(CGPoint(x: 1024, y: 0))

If you run the game now you'll see five bouncers evenly spread across the screen, and the
balls you drop bounce off any of them. It's still not a game, but we're getting there. Now to
add something between the bouncers…

www.hackingwithswift.com 326

Spinning slots
The purpose of the game will be to drop your balls in such a way that they land in good slots
and not bad ones. We have bouncers in place, but we need to fill the gaps between them
with something so the player knows where to aim.

We'll be filling the gaps with two types of target slots: good ones (colored green) and bad
ones (colored red). As with bouncers, we'll need to place a few of these, which means we
need to make a method. This needs to load the slot base graphic, position it where we said,
then add it to the scene, like this:

func makeSlotAt(position: CGPoint, isGood: Bool) {

 var slotBase: SKSpriteNode

 if isGood {

 slotBase = SKSpriteNode(imageNamed: "slotBaseGood")

 } else {

 slotBase = SKSpriteNode(imageNamed: "slotBaseBad")

 }

 slotBase.position = position

 addChild(slotBase)

}

Unlike makeBouncerAt(), this method has a second parameter – whether the slot is good or
not – and that affects which image gets loaded. But first, we need to call the new method, so
add these lines just before the calls to makeBouncerAt in didMoveToView():

makeSlotAt(CGPoint(x: 128, y: 0), isGood: true)

makeSlotAt(CGPoint(x: 384, y: 0), isGood: false)

makeSlotAt(CGPoint(x: 640, y: 0), isGood: true)

makeSlotAt(CGPoint(x: 896, y:0), isGood: false)

www.hackingwithswift.com 327

The X positions are exactly between the bouncers, so if you run the game now you'll see
bouncer / slot / bouncer / slot and so on.

One of the obvious-but-nice things about using methods to create the bouncers and slots is
that if we want to change the way slots look we only need to change it in one place. For
example, we can make the slot colors look more obvious by adding a glow image behind
them:

func makeSlotAt(position: CGPoint, isGood: Bool) {

 var slotBase: SKSpriteNode

 var slotGlow: SKSpriteNode

 if isGood {

 slotBase = SKSpriteNode(imageNamed: "slotBaseGood")

 slotGlow = SKSpriteNode(imageNamed: "slotGlowGood")

 } else {

 slotBase = SKSpriteNode(imageNamed: "slotBaseBad")

 slotGlow = SKSpriteNode(imageNamed: "slotGlowBad")

 }

 slotBase.position = position

 slotGlow.position = position

 addChild(slotBase)

 addChild(slotGlow)

}

That basically doubles every line of code, changing "Base" to "Glow", but the end result is
quite pleasing and it's clear now which slots are good and which are bad.

We could even make the slots spin slowly by using a new class called SKAction. SpriteKit

www.hackingwithswift.com 328

We could even make the slots spin slowly by using a new class called SKAction. SpriteKit
actions are ridiculously powerful and we're going to do some great things with them in later
projects, but for now we just want the glow to rotate very gently.

Before we look at the code to make this happen, you need to learn a few things up front:

 • Angles are specified in radians, not degrees. This is true in UIKit too. 360 degrees is equal
to the value of 2 x Pi – that is, the mathematical value π. Therefore π radians is equal to 180
degrees.
 • Rather than have you try to memorise it, there is a built-in value of π called M_PI. Problem
is, it has the data type Double, and SpriteKit likes to use the data type CGFloat.
 • Yes CGFloat is yet another way of representing decimal numbers, just like Double and
Float. So, if you want to use M_PI in SpriteKit you need to create a CGFloat out of it. Lovely.
 • When you create an action it will execute once. If you want it to run forever, you create
another action to wrap the first using the repeatActionForever() method, then run that.

Our new code will rotate the node by 90 degrees (available as the constant M_PI_2) over 10
seconds, repeating forever. Put this code just before the end of the makeSlotAt() method:

let spin = SKAction.rotateByAngle(CGFloat(M_PI_2), duration: 10)

let spinForever = SKAction.repeatActionForever(spin)

slotGlow.runAction(spinForever)

If you run the game now, you'll see that the glow spins around very gently. It's a simple
effect, but it makes a big difference.

www.hackingwithswift.com 329

With bouncers and slots now in place, this pachinko game is starting to come together.

www.hackingwithswift.com 330

Collision detection
Just by adding a physics body to the balls and bouncers we already have some collision
detection because the objects bounce off each other. But it's not being detected by us,
which means we can't do anything about it.

In this game, we want the player to win or lose depending on how many green or red slots
they hit, so we need to make a few changes:

1. Add rectangle physics to our slots.
2. Name the slots so we know which is which, then name the balls too.
3. Make our scene the contact delegate of the physics world – this means, "tell us when
contact occurs between two bodies."
4. Create a method that handles contacts and does something appropriate.

The first step is easy enough: add these two lines just before you call addChild() for
slotBase:

slotBase.physicsBody = SKPhysicsBody(rectangleOfSize: slotBase.size)

slotBase.physicsBody!.dynamic = false

The slot base needs to be non-dynamic because we don't want it to move out of the way
when a player ball hits.

The second step is also easy, but bears some explanation. As with UIKit, it's easy enough to
store a variable pointing at specific nodes in your scene for when you want to make
something happen, and there are lots of times when that's the right solution.

But for general use, Apple recommends assigning names to your nodes, then checking the
name to see what node it is. We need to have three names in our code: good slots, bad slots
and balls. This is really easy to do – just modify your makeSlotAt() method so the
SKSpriteNode creation looks like this:

if isGood {

 slotBase = SKSpriteNode(imageNamed: "slotBaseGood")

 slotGlow = SKSpriteNode(imageNamed: "slotGlowGood")

www.hackingwithswift.com 331

 slotGlow = SKSpriteNode(imageNamed: "slotGlowGood")

 slotBase.name = "good"

} else {

 slotBase = SKSpriteNode(imageNamed: "slotBaseBad")

 slotGlow = SKSpriteNode(imageNamed: "slotGlowBad")

 slotBase.name = "bad"

}

Then add this to the code where you create the balls:

ball.name = "ball"

We don't need to name the bouncers, because we don't actually care when their collisions
happen.

Now comes the tricky part, which is setting up our scene to be the contact delegate of the
physics world. The initial change is easy: we just need to conform to the
SKPhysicsContactDelegate protocol then assign the physics world's contactDelegate
property to be our scene. But by default, you still won't get notified when things collide.

What we need to do is change the contactTestBitMask property of our physics objects,
which sets the contact notifications we want to receive. This needs to introduce a whole new
concept – bitmasks – and really it doesn't matter at this point, so we're going to take a
shortcut for now, then return to it in a later project.

Let's set up all the contact delegates and bitmasks now. First, make your class conform to
the SKPhysicsContactDelegate protocol by modifying its definition to this:

class GameScene: SKScene, SKPhysicsContactDelegate {

Then assign the current scene to be the physics world's contact delegate by putting this line
of code in didMoveToView(), just below where we set the scene's physics body:

www.hackingwithswift.com 332

physicsWorld.contactDelegate = self

Now for our shortcut: we're going to tell the slot base node and the all the ball nodes to set
their contactTestBitMask property to be equal to their collisionBitMask. Two bitmasks,
with confusingly similar names but quite different jobs.

The collisionBitMask bitmask means "which nodes should I bump into?" By default, it's set
to everything, which is why our ball are already hitting each other and the bouncers. The
contactTestBitMask bitmask means "which collisions do you want to know about?" and by
default it's set to nothing. So by setting contactTestBitMask to the value of
collisionBitMask we're saying, "tell me about every collision."

This isn't particularly efficient in complicated games, but it will make no difference at all in
this current project. And, like I said, we'll return to this in a later project to explain more. Until
then, add this line just before you set each ball's restitution property:

ball.physicsBody!.contactTestBitMask =
ball.physicsBody!.collisionBitMask

And put this line of code directly before setting the dynamic property of the bouncers in
makeBouncerAt():

bouncer.physicsBody!.contactTestBitMask =
bouncer.physicsBody!.collisionBitMask

Those are all the configuration changes required for us to detect collisions, so now it's time
to write the code that does the hard work.

But first, a little explanation: when contact between two physics bodies occurs, we don't
know what order it will come in. That is, did the ball hit the slot, or did the slot hit the ball? I
know this sounds like pointless philosophising, but it's important because we need to know
which one is the ball!

www.hackingwithswift.com 333

Before looking at the actual contact method, I want to look at two other methods first,
because this is our ultimate goal. The first one, collisionBetweenBall() will be called when a
ball collides with something else. The second one, destroyBall() is going to be called when
we're finished with the ball and want to get rid of it.

Put these new methods into to your code:

func collisionBetweenBall(ball: SKNode, object: SKNode) {

 if object.name == "good" {

 destroyBall(ball)

 } else if object.name == "bad" {

 destroyBall(ball)

 }

}

func destroyBall(ball: SKNode) {

 ball.removeFromParent()

}

The removeFromParent() method removes a node from your node tree. Or, in plain English,
it removes the node from your game.

You might look at that and think it's utterly redundant, because no matter what happens it's
effectively the same as writing this:

func collisionBetweenBall(ball: SKNode, object: SKNode) {

 ball.removeFromParent()

}

But trust me on this: we're going to make these methods do more shortly, so get it right now

www.hackingwithswift.com 334

and it will save refactoring later.

With those two in place, our contact checking method almost writes itself. We'll get told
which two bodies collided, and the contact method needs to determine which one is the ball
so that it can call collisionBetweenBall() with the correct parameters. This is as simple as
checking the names of both properties to see which is the ball, so here's the new method to
do contact checking:

func didBeginContact(contact: SKPhysicsContact) {

 if contact.bodyA.node!.name == "ball" {

 collisionBetweenBall(contact.bodyA.node!, object:
contact.bodyB.node!)

 } else if contact.bodyB.node!.name == "ball" {

 collisionBetweenBall(contact.bodyB.node!, object:
contact.bodyA.node!)

 }

}

If you're particularly observant, you may have noticed that we don't have a special case in
there for when both bodies are balls – i.e., if one ball collides with another. This is because
our collisionBetweenBall() method will ignore that particular case, because it triggers code
only if the other node is named "good" or "bad".

Run the game now and you'll start to see things coming together: you can drop balls on the
bouncers and they will bounce, but if they touch one of the good or bad slots the balls will be
destroyed. It works, but it's boring. Players want to score points so they feel like they
achieved something, even if that "something" is just nudging up a number on a CPU.

www.hackingwithswift.com 335

Scores on the board
To make a score show on the screen we need to do two things: create a score integer that
tracks the value itself, then create a new node type, SKLabelNode, that displays the value to
players.

The SKLabelNode class is somewhat similar to UILabel in that it has a text property, a font,
a position, an alignment, and so on. Plus we can use Swift's string interpolation to set the
text of the label easily, and we're even going to use the property observers you learned about
it project 8 to make the label update itself when the score value changes.

Declare these properties at the top of your class:

var scoreLabel: SKLabelNode!

var score: Int = 0 {

 didSet {

 scoreLabel.text = "Score: \(score)"

 }

}

We're going to use the Chalkduster font, then align the label to the right and position it on the
top-right edge of the scene. Put this code into your didMoveToView() method, just before
the end:

scoreLabel = SKLabelNode(fontNamed: "Chalkduster")

scoreLabel.text = "Score: 0"

scoreLabel.horizontalAlignmentMode = .Right

scoreLabel.position = CGPoint(x: 980, y: 700)

addChild(scoreLabel)

That places the label into the scene, and the property observer automatically updates the

www.hackingwithswift.com 336

label as the score value changes. But it's not complete yet because we don't ever modify
the player's score. Fortunately, we already have places in the collisionBetweenBall()
method where we can do exactly that, so modify the method to this:

func collisionBetweenBall(ball: SKNode, object: SKNode) {

 if object.name == "good" {

 destroyBall(ball)

 score += 1

 } else if object.name == "bad" {

 destroyBall(ball)

 score -= 1

 }

}

The += and -= operators add or subtract one to the variable depending on whether a good or
bad slot was struck. When we change the variable, the property observer will spot the
change and update the label.

We have a score, so that means players have the achievement they were craving, right? Well,
no. Clearly all it takes to get a number even higher than Gangnam Style's YouTube views is to
sit and tap at the top of the screen directly above a green slot.

Let's add some actual challenge: we're going to let you place obstacles between the top of
the scene and the slots at the bottom, so that players have to position their balls exactly
correctly to bounce off things in the right ways.

To make this work, we're going to add two more properties. The first one will hold a label that
says either "Edit" or "Done", and one to hold a boolean that tracks whether we're in editing
mode or not. Add these two alongside the score properties from earlier:

var editLabel: SKLabelNode!

var editingMode: Bool = false {

www.hackingwithswift.com 337

var editingMode: Bool = false {

 didSet {

 if editingMode {

 editLabel.text = "Done"

 } else {

 editLabel.text = "Edit"

 }

 }

}

Then add this to didMoveToView() to create the edit label in the top-left corner of the scene:

editLabel = SKLabelNode(fontNamed: "Chalkduster")

editLabel.text = "Edit"

editLabel.position = CGPoint(x: 80, y: 700)

addChild(editLabel)

That's pretty much identical to creating the score label, so nothing to see here. We're using a
property observer again to automatically change the editing label's text when edit mode is
changed.

But what is new is detecting whether the user tapped the edit/done button or is trying to
create a ball. To make this work, we're going to ask SpriteKit to give us a list of all the nodes
at the point that was tapped, and check whether it contains our edit label. If it does, we'll flip
the value of our editingMode boolean; if it doesn't, we want to execute the previous ball-
creation code.

We're going to insert this change just after let location = and before let ball =, i.e. right here:

let location = touch.locationInNode(self)

// new code to go here!

let ball = SKSpriteNode(imageNamed: "ballRed")

www.hackingwithswift.com 338

Change that to be:

let location = touch.locationInNode(self)

let objects = nodesAtPoint(location) as [SKNode]

if objects.contains(editLabel) {

 editingMode = !editingMode

} else {

 let ball = SKSpriteNode(imageNamed: "ballRed")

 // rest of ball code

}

Obviously the // rest of ball code comment is where the rest of the ball-creating code goes,
but note that you need to add the new closing brace after you've created the ball, to close
the else block.

This uses the ! operator that you met in project 5 to mean "set editingMode to be the
opposite of whatever it is right now." That change will be picked up by the property observer,
and the label will be updated to reflect the change.

Now that we have a boolean telling us whether we're in editing mode or not, we're going to
extend touchesBegan() even further so that if we're in editing mode we add blocks to the
screen of random sizes, and if we're not it drops a ball.

To get the structure right, this is what you want to have:

if objects.contains(editLabel) {

 editingMode = !editingMode

} else {

 if editingMode {

www.hackingwithswift.com 339

 if editingMode {

 // create a box

 } else {

 // create a ball

 }

}

The // create a ball comment is where your current ball creation code goes. The // create a
box comment is what we're going to write in just a moment.

First, look in the code you downloaded for this project, and copy the file Helper.swift into
your own project, making sure (as always) "Copy items if needed" is checked. This gives you
a function to generate random colors, but I'm not going to explain how it works work
because it doesn't matter – we're just going to use it.

Second, we're going to use a new property on nodes called zRotation. When creating the
background image, we gave it a Z position, which adjusts its depth on the screen, front to
back. If you imagine sticking a skewer through the Z position – i.e., going directly into your
screen – and through a node, then you can imagine Z rotation: it rotates a node on the
screen as if it had been skewered straight through the screen.

Replace the // create a box comment with this:

let size = CGSize(width: GKRandomDistribution(lowestValue: 16,
highestValue: 128).nextInt(), height: 16)

let box = SKSpriteNode(color: RandomColor(), size: size)

box.zRotation = RandomCGFloat(min: 0, max: 3)

box.position = location

box.physicsBody = SKPhysicsBody(rectangleOfSize: box.size)

box.physicsBody!.dynamic = false

addChild(box)

www.hackingwithswift.com 340

Before I explain a key new line of code, I want you to add this line near the top of your file,
just above where it says import UIKit:

import GameplayKit

We've been using GameplayKit so far to handle array shuffling, but in the code above it's
also being used to generate random numbers between two values: 16 and 128. So, we
create a size with a height of 16 and a width between 16 and 128, then create an
SKSpriteNode with the random size we made along with a random color, then give the new
box a random rotation and place it at the location that was tapped on the screen. For a
physics body, it's just a rectangle, but we need to make it non-dynamic so the boxes don't
move when hit.

At this point, we almost have a game: you can tap Edit, place as many blocks as you want,
then tap Done and try to score by dropping balls. It's not perfect because we don't force the
Y position of new balls to be the top of the screen, but that's something you can fix yourself
– how else would you learn, right?

www.hackingwithswift.com 341

Once the edit button has been tapped, users can create as many obstacles as they want.

www.hackingwithswift.com 342

Special effects
Our current destroyBall() method does nothing much, it just removes the ball from the game.
But I made it a method for a reason, and that's so that we can add some special effects now,
in one place, so that however a ball gets destroyed the same special effects are used.

Perhaps unsurprisingly, it's remarkably easy to create special effects with SpriteKit. In fact, it
has a built-in particle editor to help you create effects like fire, snow, rain and smoke almost
entirely through a graphical editor. I already created an example particle effect for you (which
you can customise soon, don't worry!) so let's take a look at the code first.

Modify your destroyBall() method to this:

func destroyBall(ball: SKNode) {

 if let fireParticles = SKEmitterNode(fileNamed: "FireParticles") {

 fireParticles.position = ball.position

 addChild(fireParticles)

 }

 ball.removeFromParent()

}

The SKEmitterNode class is new and powerful: it's designed to create high-performance
particle effects in SpriteKit games, and all you need to do is provide it with the filename of
the particles you designed and it will do the rest. Once we have an SKEmitterNode object to
work with, we position it where the ball was then use addChild() to add it to the scene.

If you run the app now, you'll see the balls explode in a fireball when they touch a slot – a
pretty darn amazing effect given how little code was written!

But the real fun is yet to come, because the code for this project is now all done and you get
to play with the particle editor. In Xcode, look in the Content folder you dragged in and select
the FireParticles.sks file to load the particle editor.

The particle editor is split in two: the center area shows how the current particle effect looks,

www.hackingwithswift.com 343

and the right pane shows one of three inspectors. Of those three inspectors, only the third is
useful because that's where you'll see all the options you can use to change the way your
particles look.

At the time of writing, Xcode's particle editor is a little buggy, so I suggest you change the
Maximum value to 0 before beginning otherwise you might see nothing at all.

Confused by all the options? Here's what they do:

 • Particle Texture: what image to use for your particles.
 • Particles Birthrate: how fast to create new particles.
 • Particles Maximum: the maximum number of particles this emitter should create before
finishing.
 • Lifetime Start: the basic value for how many seconds each particle should live for.
 • Lifetime Range: how much, plus or minus, to vary lifetime.
 • Position Range X/Y: how much to vary the creation position of particles from the emitter
node's position.
 • Angle Start: which angle you want to fire particles, in degrees, where 0 is to the right and
90 is straight up.
 • Angle Range: how many degrees to randomly vary particle angle.
 • Speed Start: how fast each particle should move in its direction.
 • Speed Range: how much to randomly vary particle speed.
 • Acceleration X/Y: how much to affect particle speed over time. This can be used to
simulate gravity or wind.
 • Alpha Start: how transparent particles are when created.
 • Alpha Range: how much to randomly vary particle transparency.
 • Alpha Speed: how much to change particle transparency over time. A negative value
means "fade out."
 • Scale Start / Range / Speed: how big particles should be when created, how much to vary
it, and how much it should change over time. A negative value means "shrink slowly."
 • Rotation Start / Range / Speed: what Z rotation particles should have, how much to vary it,
and how much they should spin over time.
 • Color Blend Factor / Range / Speed: how much to color each particle, how much to vary it,
and how much it should change over time.

(PS: Once you've finished editing your particles, make sure you put a maximum value back
on them otherwise they'll never go away!)

It's worth adding that you can create particles from one of Xcode's built-in particle template.

www.hackingwithswift.com 344

Add a new file, but this time choose "Resource" under the iOS heading, then choose
"SpriteKit Particle File" to see the list of options.

www.hackingwithswift.com 345

Wrap up
This project is done, and it's been a long one, but I hope you look at the results and think it
was all worth it. Plus, you've once again learned a lot: SpriteKit, physics, blend modes,
radians and CGFloat.

You’ve got the firm foundations of a real game here, but there's lots more you can do to
make it even better. Here are some ideas to get you started:

 • The Content folder you copied in has other ball pictures rather than just ballRed. Generate
a random number and choose ball colors randomly.
 • Right now, users can tap anywhere to have a ball created there, which makes the game too
easy. Try to force the Y value of new balls so they are near the top of the screen.
 • Give players a limit of five balls, then remove obstacle boxes when they are hit. Can they
clear all the pins with just five balls? You could make it so that landing on a green slot gets
them an extra ball.
 • Make clicking on an obstacle box in editing mode removes it.

And if you were wondering how to get rid of the node and frames per second counts in your
game, look inside the GameViewController.swift file for these two lines:

skView.showsFPS = true

skView.showsNodeCount = true

www.hackingwithswift.com 346

Project 12
NSUserDefaults
Learn how to save user settings and data for later use.

www.hackingwithswift.com 347

Setting up
This is our fourth technique project, and we're going to go back to project 10 and fix its
glaring bug: all the names and faces you add to the app don't get saved, which makes the
app rather pointless!

We're going to fix this using a new class called NSUserDefaults and a new protocol called
NSCoding. We'll also be using the class NSKeyedUnarchiver that you just met in project
11, along with its counterpart: NSKeyedArchiver. Putting all these together, we're going to
update project 10 so that it saves its people array whenever anything is changed, then loads
when the app runs.

We're going to be modifying project 10, so if you want to preserve the old code take a copy
now and call it project 12.

www.hackingwithswift.com 348

Reading and writing basics
You can use NSUserDefaults to store any basic data type for as long as the app is installed.
You can write basic types such as Bool, Float, Double, Int, String, or NSURL, but you can
also write more complex types such as arrays, dictionaries and NSDate – and even NSData
values.

When you write data to NSUserDefaults, it automatically gets loaded when your app runs so
that you can read it back again. This makes using it really easy, but you need to know that
it's a bad idea to store lots of data in there because it will slow loading of your app. If you
think your saved data would take up more than say 100KB, NSUserDefaults is almost
certainly the wrong choice.

Before we get into modifying project 12, we're going to do a little bit of test coding first to try
out what NSUserDefaults lets us do. You might find it useful to create a fresh Single View
Application project just so you can test out the code.

To get started with NSUserDefaults, you create a new instance of the class like this:

let defaults = NSUserDefaults.standardUserDefaults()

Once that's done, it's easy to set a variety of values – you just need to give each one a
unique key so you can reference it later. These values nearly always have no meaning outside
of what you use them for, so just make sure the key names are memorable.

Here are some examples:

let defaults = NSUserDefaults.standardUserDefaults()

defaults.setInteger(25, forKey: "Age")

defaults.setBool(true, forKey: "UseTouchID")

defaults.setDouble(M_PI, forKey: "Pi")

In older versions of iOS, you needed to tell iOS when it was a good time to save the defaults
data to disk, but this isn't needed (or even recommended!) any more.

www.hackingwithswift.com 349

After that, you should use the setObject() to set strings, arrays, dictionaries and dates. Now,
here's a curiosity that's worth explaining briefly: in Swift, strings, arrays and dictionaries are
all structs, not objects. But NSUserDefaults was written for NSString and friends – all of
whom are 100% interchangeable with Swift their equivalents – which is why this code works.

Using setObject() is just the same as using other data types:

defaults.setObject("Paul Hudson", forKey: "Name")

defaults.setObject(NSDate(), forKey: "LastRun")

Even if you're trying to save complex types such as arrays and dictionaries, NSUserDefaults
laps it up:

let array = ["Hello", "World"]

defaults.setObject(array, forKey: "SavedArray")

let dict = ["Name": "Paul", "Country": "UK"]

defaults.setObject(dict, forKey: "SavedDict")

That's enough about writing for now; let's take a look at reading.

When you're reading values from NSUserDefaults you need to check the return type
carefully to ensure you know what you're getting. Here's what you need to know:

 • integerForKey() returns an integer if the key existed, or 0 if not.
 • boolForKey() returns a boolean if the key existed, or false if not.
 • floatForKey() returns a float if the key existed, or 0.0 if not.
 • doubleForKey() returns a double if the key existed, or 0.0 if not.
 • objectForKey() returns AnyObject? so you need to conditionally typecast it to your data
type.

Knowing the return values are important, because if you use boolForKey() and get back

www.hackingwithswift.com 350

"false", does that mean the key didn't exist, or did it perhaps exist and you just set it to be
false?

It's objectForKey() that will cause you the most bother, because you get an optional object
back. You're faced with two options, one of which isn't smart so you realistically have only
one option!

Your options:

 • Use as to typecast your object to the data type it should be. This worked in Xcode 6.2 or
earlier.
 • Use as! to force typecast your object to the data type it should be. This is available from
Xcode 6.3 or later.
 • Use as? to optionally typecast your object to the type it should be.

If you use as/as! and objectForKey() returned nil, you'll get a crash, so I really don't
recommend it unless you're absolutely sure. But equally, using as? is annoying because you
then have to unwrap the optional or create a default value.

There is a solution here, and it has the catchy name of the nil coalescing operator, and it
looks like ??. This does two things at once: if the object on the left is optional and exists, it
gets unwrapped into a non-optional value; if it does not exist, it uses the value on the right
instead. This means we can use objectForKey() and as? to get an optional object, then
use ?? to either unwrap the object or set a default value, all in one line.

For example, let's say we want to read the array we saved earlier with the key name
SavedArray. Here's how to do that with the nil coalescing operator:

let array = defaults.objectForKey("SavedArray") as? [String] ??
[String]()

So, if SavedArray exists and is a string array, it will be placed into the array constant. If it
doesn't exist (or if it does exist and isn't a string array), then array gets set to be a new string
array.

This technique also works for dictionaries, but obviously you need to typecast it correctly. To
read the dictionary we saved earlier, we'd use this:

www.hackingwithswift.com 351

let dict = defaults.objectForKey("SavedDict") as? [String: String] ??
[String: String]()

www.hackingwithswift.com 352

Fixing Project 10
You've just learned all the core basics of working with NSUserDefaults, but we're just
getting started. You see, above and beyond integers, dates, strings, arrays and so on, you
can also save any kind of data inside NSUserDefaults as long as you follow some rules.

What happens is simple: you use the archivedDataWithRootObject() method of
NSKeyedArchiver, which turns an object graph into an NSData object, then write that to
NSUserDefaults as if it were any other object. If you were wondering, "object graph" means
"your object, plus any objects it refers to, plus any objects those objects refer to, and so on."

The rules are very simple:

1. All your data types must be one of the following: boolean, integer, float, double, string,
array, dictionary, NSDate, or a class that fits rule 2.
2. If your data type is a class, it must conform to the NSCoding protocol, which is used for
archiving object graphs.
3. If your data type is an array or dictionary, all the keys and values must match rule 1 or rule
2.

Many of Apple's own classes support NSCoding, including but not limited to: UIColor,
UIImage, UIView, UILabel, UIImageView, UITableView, SKSpriteNode and many more.
But your own classes do not, at least not by default. If we want to save the people array to
NSUserDefault we'll need to conform to the NSCoding protocol.

The first step is to modify your Person class to this:

class Person: NSObject, NSCoding {

When we were working on this code in project 10, there were two outstanding questions:

 • Why do we need a class here when a struct will do just as well? (And in fact better,
because structs come with a default initializer!)
 • Why do we need to inherit from NSObject?

It's time for the answers to become clear. You see, working with NSCoding requires you to
use objects, or, in the case of strings, arrays and dictionaries, structs that are

www.hackingwithswift.com 353

interchangeable with objects. If we made the Person class into a struct, we couldn't use it
with NSCoding.

The reason we inherit from NSObject is again because it's required to use NSCoding –
although cunningly Swift won't mention that to you, your app will just crash.

Once you conform to the NSCoding protocol, you'll get compiler errors because the protocol
requires you to implement two methods: a new initializer and encodeWithCoder().

We need to write some more code to fix the problems, and although the code is very similar
to what you've already seen in NSUserDefaults, it has two new things you need to know
about.

First, you'll be using a new class called NSCoder. This is responsible for both encoding
(writing) and decoding (reading) your data so that it can be used with NSUserDefaults.

Second, the new initializer must be declared with the required keyword. This means "if
anyone tries to subclass this class, they are required to implement this method." An
alternative to using required is to declare that your class can never be subclassed, known as
a final class, in which case you don't need required because subclassing isn't possible. We'll
be using required here.

Add these two methods to the Person class:

required init(coder aDecoder: NSCoder) {

 name = aDecoder.decodeObjectForKey("name") as! String

 image = aDecoder.decodeObjectForKey("image") as! String

}

func encodeWithCoder(aCoder: NSCoder) {

 aCoder.encodeObject(name, forKey: "name")

 aCoder.encodeObject(image, forKey: "image")

}

The initializer is used when loading objects of this class, and encodeWithCoder() is used

www.hackingwithswift.com 354

The initializer is used when loading objects of this class, and encodeWithCoder() is used
when saving. The code is very similar to using NSUserDefaults, but I'm typecasting both
values using as because I saved the data so I know what I'm loading.

With those changes, the Person class now conforms to NSCoding, so we can go back to
ViewController.swift and add code to load and save the people array.

Let's start with writing, because once you understand that the reading code will make much
more sense. As I said earlier, you can write NSData objects to NSUserDefaults, but we
don't currently have an NSData object – we just have an array.

Fortunately, the archivedDataWithRootObject() method of NSKeyedArchiver turns an
object graph into an NSData object using those NSCoding methods we just added to our
class. Because we make changes to the array by adding people or by renaming them, let's
create a single save() method we can use anywhere that's needed:

func save() {

 let savedData = NSKeyedArchiver.archivedDataWithRootObject(people)

 let defaults = NSUserDefaults.standardUserDefaults()

 defaults.setObject(savedData, forKey: "people")

}

So: line 1 is what converts our array into an NSData object, then lines 2 and 3 save that data
object to NSUserDefaults. You now just need to call that save() method when we change a
person's name or when we import a new picture.

You need to modify our collection view's didSelectItemAtIndexPath method so that you call
self.save() just after calling self.collectionView.reloadData(). Both times the self is required
because we're inside a closure. You then need to modify the image picker's
didFinishPickingMediaWithInfo method so that it calls save() just before the end of the
method.

And that's it – we only change the data in two places, and both now have a call to save().

Finally, we need to load the array back from disk when the app runs, so add this code to

www.hackingwithswift.com 355

viewDidLoad():

let defaults = NSUserDefaults.standardUserDefaults()

if let savedPeople = defaults.objectForKey("people") as? NSData {

 people = NSKeyedUnarchiver.unarchiveObjectWithData(savedPeople) as!
[Person]

}

This code is effectively the save() method in reverse: we use the objectForKey() method to
pull out an optional NSData, using if/let and as? to unwrap it. We then give that to the
unarchiveObjectWithData() method of NSKeyedUnarchiver to convert it back to an object
graph – i.e., our array of Person objects.

www.hackingwithswift.com 356

Wrap up
You will use NSUserDefaults in your projects. That isn't some sort of command, just a
statement of inevitability. If you want to save any user settings, or if you want to save
program settings, it's just the best place for it. And I hope you'll agree it is (continuing a
trend!) easy to use and flexible, particularly when your own classes conform to NSCoding.

One proviso you ought to be aware of: please don't consider NSUserDefaults to be safe,
because it isn't. If you have user information that is private, you should consider writing to
the keychain instead – something we'll look at in project 28.

www.hackingwithswift.com 357

Project 13
Instafilter
Make a photo manipulation program using Core Image
filters and a UISlider.

www.hackingwithswift.com 358

Setting up
In project 10 you learned how to use UIImagePickerController to select and import a
picture from your user's photo library. In this project, we're going to add the reverse: writing
images back to the photo library. But because you're here to learn as much as possible, I'm
also going to introduce you to another UIKit component, UISlider, and also a little bit of Core
Image, which is Apple's high-speed image manipulation toolkit.

The project we're going to make will let users choose a picture from their photos, then
manipulate it with a series of Core Image filters. Once they are happy, they can save the
processed image back to their photo library.

To get started, create a new Single View Application project in Xcode and name it Project13.
You can target iPad, iPhone or Universal – whichever you feel like.

www.hackingwithswift.com 359

Designing the interface
Select your Main.storyboard file to open Interface Builder, then embed the view controller
inside a navigation controller.

Bring up the object library, then search for "UIView" and drag a view into your controller. Give
it a width of 600 and height of 430, with X:0 and Y:64. This should place it just below the
navigation controller, occupying most of the screen. In the attributes inspector, give the view
the background color "Dark Gray Color".

Create an image view, and place it inside the view you just created. I'd like you to indent it by
10 points on every side – i.e., width 580, height 410, X:10, Y:10. Change the image's view
mode from "Scale to fill" to "Aspect Fit". Don't place any more views inside the gray view –
everything else should be placed directly on the main (white) view.

That's the top part of the UI complete. For the bottom part, start by creating a label with
width 70, height 20, X:28, Y:512. Give it the text "Intensity" and make it right-aligned. Now
drop a slider next to it, giving it width 470, X:104, Y:508. You can't adjust the height for
sliders, so leave it at the default.

Finally, place two buttons. The first button should be 120 wide and 44 high, with X:16, Y:540.
Give it the title "Change Filter". The second button should be 60 wide by 44 high, with X:524,
Y:540. Give it the title "Save".

In the picture below you can see how your finished layout should look.

www.hackingwithswift.com 360

Your finished game layout should look like this.

So that's the basic layout complete, but of course we need to add Auto Layout constraints
because we need it all to resize smoothly on various devices. But, you know, I'm feeling lazy
– how about we make Auto Layout do the work for us this time?

Select the view controller, either by clicking on "View Controller" in the document outline, or
by clicking the small yellow and white button just above the view controller on the canvas –
it's the first icon of three. Now go to the Editor menu and choose Resolve Auto Layout Issues
> Add Missing Constraints.

www.hackingwithswift.com 361

Using Add Missing Constraints can be a real time saver when using Auto Layout.

Er… that's it. Your Auto Layout is done: Xcode just added the ideal constraints everywhere
so that your interface resizes perfectly. Don't believe me? Try giving the image view a red
background color (temporarily!), then launching it in any device and rotating the screen. You
should see everything (including the red box) be positioned and resized correctly.

Make sure you switch the image view back to having a clear background color.

That was remarkably easy, and is another example of Apple doing a lot of hard work for you.
Using Xcode to make your Auto Layout rules can be a real help, but it won't be right all the
time. After all, it just takes its best guess as to your intentions. It will also frequently add more
constraints than strictly necessary for the job, so use it with care.

Before we leave Interface Builder, I'd like you to add an outlet for the image view and the
slider, called respectively imageView and intensity. Please also create actions from the two
buttons, calling methods changeFilter() and save(). You can leave these methods with no
code inside them for now.

Finally, we want the user interface to update when the slider is dragged, so please create an

www.hackingwithswift.com 362

Finally, we want the user interface to update when the slider is dragged, so please create an
action from the slider. It should give you the "Value Changed" event rather than Touch Up
Inside, and that's what we want. Call the action's method intensityChanged().

That's it for the storyboard, so bring up ViewController.swift and let's start coding…

www.hackingwithswift.com 363

Importing a picture
We already have two outlets at the top of our class: one for the image view and one for the
slider. We need another property, in which we will store a UIImage containing the image that
the user selected. So, add this beneath the two outlets:

var currentImage: UIImage!

Our first task will be to import a photo from the user's photo library. This is almost identical to
project 10, so I'm going to explain only the important bits. If you missed out project 10, you
should have paid heed to my warning not to skip projects!

First we need to add a button to the navigation bar that will allow users to import a photo
from their library. Put these two lines into your viewDidLoad() method:

title = "YACIFP"

navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Add, target: self, action:
"importPicture")

Alright, so the first one isn't needed – it just sets the title to be YACIFP, short for "Yet Another
Core Image Filters Program." (Spoiler: the App Store is full of them!) If you're feeling a bit less
cynical than me, try "Instafilter" for a title instead. But what matters is the second line,
because it starts the import process.

Here's the importPicture() method – it's almost identical to the import method from project
10, so again no explaining required:

func importPicture() {

 let picker = UIImagePickerController()

 picker.allowsEditing = true

 picker.delegate = self

 presentViewController(picker, animated: true, completion: nil)

www.hackingwithswift.com 364

 presentViewController(picker, animated: true, completion: nil)

}

You should remember that the first time you use a UIImagePickerController iOS will ask the
user for permission to read their photo library.

Once you assign our view controller to be the image picker's delegate, you'll get warnings
that we don't conform to the correct protocols. Fix that by changing the view controller's
class definition to this:

class ViewController: UIViewController,
UIImagePickerControllerDelegate, UINavigationControllerDelegate {

Again, this is identical to project 10.

As before, we need to implement two methods to make the image picker useful: one for
when the user pressed cancel, and one for when they selected a picture. This code is almost
verbatim from project 10, so it should all be old news to you:

func imagePickerController(picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject]) {

 var newImage: UIImage

 if let possibleImage = info["UIImagePickerControllerEditedImage"]
as? UIImage {

 newImage = possibleImage

 } else if let possibleImage =
info["UIImagePickerControllerOriginalImage"] as? UIImage {

 newImage = possibleImage

 } else {

 return

 }

 dismissViewControllerAnimated(true, completion: nil)

www.hackingwithswift.com 365

 dismissViewControllerAnimated(true, completion: nil)

 currentImage = newImage

}

func imagePickerControllerDidCancel(picker: UIImagePickerController)
{

 dismissViewControllerAnimated(true, completion: nil)

}

There is one slight change in there, and it's where we set our currentImage image to be the
one selected in the image picker. This is required so that we can have a copy of what was
originally imported. Whenever the user changes filter, we need to put that original image back
into the filter.

This has all been old code, so nothing too taxing. But now it's time for Core Image!

www.hackingwithswift.com 366

Applying filters
You're probably getting tired of hearing me saying this, but Core Image is yet another super-
fast and super-powerful framework from Apple. It does only one thing, which is to apply
filters to images that manipulate them in various ways.

One downside to Core Image is it's not very guessable, so you need to know what you're
doing otherwise you'll waste a lot of time. It's also not able to take advantage of Swift's type
safety, so you need to be careful when using it because the compiler won't help you as much
as you're used to.

To get started, we need to add two more properties to our class, so put these underneath the
currentImage property:

var context: CIContext!

var currentFilter: CIFilter!

The first is a Core Image context, which is the Core Image component that handles
rendering. We create it here and use it throughout our app, because creating a context is
computationally expensive so we don't want to keep doing it.

The second is a Core Image filter, and will store whatever filter we have activated. This filter
will be given various input settings before we ask it to output a result for us to show in the
image view.

We want to create both of these in viewDidLoad(), so put this just before the end of the
method:

context = CIContext(options: nil)

currentFilter = CIFilter(name: "CISepiaTone")

That creates a default Core Image context, then creates an example filter that will apply a
sepia tone effect to images. It's just for now; we'll let users change it soon enough.

www.hackingwithswift.com 367

To begin with, we're going to let users drag the slider up and down to add varying amounts
of sepia effect to the image they select.

To do that, we need to set our currentImage property as the input image for the
currentFilter Core Image filter. We're then going to call a method (as yet unwritten) called
applyProcessing(), which will do the actual Core Image manipulation.

So, add this to the end of the didFinishPickingMediaWithInfo method:

let beginImage = CIImage(image: currentImage)

currentFilter.setValue(beginImage, forKey: kCIInputImageKey)

applyProcessing()

The CIImage data type is, for the sake of this project, just the Core Image equivalent of
UIImage. Behind the scenes it's a bit more complicated than that, but really it doesn't
matter.

As you can see, we can create a CIImage from a UIImage, and we send the result into the
current Core Image Filter using the kCIInputImageKey. There are lots of Core Image key
constants like this; at least this one is self-explanatory!

We also need to call the (still unwritten!) applyProcessing() method when the slider is
dragged around, so modify the intensityChanged() method to this:

@IBAction func intensityChanged(sender: AnyObject) {

 applyProcessing()

}

With these changes, applyProcessing() is called as soon as the image is first imported, then
whenever the slider is moved. Now it's time to write the initial version of the
applyProcessing() method, so put this just before the end of your class:

www.hackingwithswift.com 368

func applyProcessing() {

 currentFilter.setValue(intensity.value, forKey:
kCIInputIntensityKey)

 let cgimg = context.createCGImage(currentFilter.outputImage!,
fromRect: currentFilter.outputImage!.extent)

 let processedImage = UIImage(CGImage: cgimg)

 imageView.image = processedImage

}

That's only four lines, none of which are terribly taxing.

The first line uses the value of our intensity slider to set the kCIInputIntensityKey value of
our current Core Image filter. For sepia toning a value of 0 means "no effect" and 1 means
"fully sepia."

The second line is where the hard work happens: it creates a new data type called CGImage
from the output image of the current filter. We need to specify which part of the image we
want to render, but using currentFilter.outputImage!.extent means "all of it." Until this
method is called, no actual processing is done, so this is the one that does the real work.

The third line creates a new UIImage from the CGImage, and line four assigns that UIImage
to our image view. Yes, I know that UIImage, CGImage and CIImage all sound the same,
but they are different under the hood and we have no choice but to use them here.

You can now press Cmd+R to run the project as-is, then import a picture and make it sepia
toned. It might be a little slow in the simulator, but I can promise you it runs brilliantly on
devices - Core Image is extraordinarily fast.

Adding a sepia effect isn't very interesting, and I want to help you explore some of the other
options presented by Core Image. So, we're going to make the "Change Filter" button work:
it will show a UIAlertController with a selection of filters, and when the user selects one it
will update the image.

www.hackingwithswift.com 369

First, here's the new changeFilter() method:

@IBAction func changeFilter(sender: AnyObject) {

 let ac = UIAlertController(title: "Choose filter", message: nil,
preferredStyle: .ActionSheet)

 ac.addAction(UIAlertAction(title: "CIBumpDistortion",
style: .Default, handler: setFilter))

 ac.addAction(UIAlertAction(title: "CIGaussianBlur",
style: .Default, handler: setFilter))

 ac.addAction(UIAlertAction(title: "CIPixellate", style: .Default,
handler: setFilter))

 ac.addAction(UIAlertAction(title: "CISepiaTone", style: .Default,
handler: setFilter))

 ac.addAction(UIAlertAction(title: "CITwirlDistortion",
style: .Default, handler: setFilter))

 ac.addAction(UIAlertAction(title: "CIUnsharpMask", style: .Default,
handler: setFilter))

 ac.addAction(UIAlertAction(title: "CIVignette", style: .Default,
handler: setFilter))

 ac.addAction(UIAlertAction(title: "Cancel", style: .Cancel,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

That's seven different Core Image filters plus one cancel button, but no new code. When
tapped, each of the filter buttons will call the setFilter() method, which we need to make.
This method should update our currentFilter property with the filter that was chosen, set the
kCIInputImageKey key again (because we just changed the filter), then call
applyProcessing().

Each UIAlertAction has its title set to a different Core Image filter, and because our
setFilter() method must accept as its only parameter the action that was tapped, we can use
the action's title to create our new Core Image filter. Here's the setFilter() method:

func setFilter(action: UIAlertAction!) {

www.hackingwithswift.com 370

func setFilter(action: UIAlertAction!) {

 currentFilter = CIFilter(name: action.title!)

 let beginImage = CIImage(image: currentImage)

 currentFilter.setValue(beginImage, forKey: kCIInputImageKey)

 applyProcessing()

}

But don't run the project yet! Our current code has a problem, and it's this line:

currentFilter.setValue(intensity.value, forKey: kCIInputIntensityKey)

That sets the intensity of the current filter. But the problem is: not all filters have an intensity
setting. If you try this using the CIBumpDistortion filter, the app will crash because it doesn't
know what to do with a setting for the key kCIInputIntensityKey.

All the filters and the keys they use are described fully in Apple's documentation, but for this
project we're going to take a shortcut. There are four input keys we're going to manipulate
across seven different filters. Sometimes the keys mean different things, and sometimes the
keys don't exist, so we're going to apply only the keys that do exist with some cunning code.

Each filter has an inputKeys property that returns an array of all the keys it can support.
We're going to use this array in conjunction with the contains() method to see if each of our
input keys exist, and, if it does, use it. Not all of them expect a value between 0 and 1, so I
sometimes multiply the slider's value to make the effect more pronounced.

Change your applyProcessing() method to be this:

func applyProcessing() {

 let inputKeys = currentFilter.inputKeys

 if inputKeys.contains(kCIInputIntensityKey)

www.hackingwithswift.com 371

 if inputKeys.contains(kCIInputIntensityKey)
{ currentFilter.setValue(intensity.value, forKey:
kCIInputIntensityKey) }

 if inputKeys.contains(kCIInputRadiusKey)
{ currentFilter.setValue(intensity.value * 200, forKey:
kCIInputRadiusKey) }

 if inputKeys.contains(kCIInputScaleKey)
{ currentFilter.setValue(intensity.value * 10, forKey:
kCIInputScaleKey) }

 if inputKeys.contains(kCIInputCenterKey)
{ currentFilter.setValue(CIVector(x: currentImage.size.width / 2, y:
currentImage.size.height / 2), forKey: kCIInputCenterKey) }

 let cgimg = context.createCGImage(currentFilter.outputImage!,
fromRect: currentFilter.outputImage!.extent)

 let processedImage = UIImage(CGImage: cgimg)

 self.imageView.image = processedImage

}

Using this method, we check each of our four keys to see whether the current filter supports
it, and, if so, we set the value. The first three all use the value from our intensity slider in
some way, which will produce some interesting results. If you wanted to improve this app
later, you could perhaps add three sliders.

If you run your app now, you should be able to choose from various filters then watch them
distort your image in weird and wonderful ways. Note that some of them – such as the
Gaussian blur – will run very slowly in the simulator, but quickly on devices. If we wanted to
do more complex processing (not least chaining filters together!) you can add configuration
options to the CIContext to make it run even faster; another time, perhaps.

www.hackingwithswift.com 372

Saving to the photo library
I know it's fun to play around with Core Image filters (and you've only seen some of them!),
but we have a project to finish so I want to introduce you to a new function:
UIImageWriteToSavedPhotosAlbum(). This method does exactly what its name says: give it
a UIImage and it will write the image to the photo album.

This method takes four parameters: the image to write, who to tell when writing has finished,
what method to call, and any context. The context is just like the context value you can use
with KVO, as seen in project 4, and again we're not going to use it here. The first two
parameters are quite simple: we know what image we want to save (the processed one in the
image view), and we also know that we want self (the current view controller) to be notified
when writing has finished.

The third parameter is ugly. It needs to be a string that lists the method in our view controller
that will be called, and it needs to be a particular format:
methodName:parameterName:parameterName. We're going to use
"image:didFinishSavingWithError:contextInfo:", which will call a method that looks like
this:

func image(image: UIImage, didFinishSavingWithError error:
NSErrorPointer, contextInfo:UnsafePointer<Void>) {

It's ugly, it's unavoidable, and it's a bit of a wart in iOS. To be fair, though, the fact that it
stands out so much is testament to the fact that there are so few warts around!

Putting it all together, here's the finished save() method:

@IBAction func save(sender: AnyObject) {

 UIImageWriteToSavedPhotosAlbum(imageView.image!, self,
"image:didFinishSavingWithError:contextInfo:", nil)

}

From here on it's easy, because we just need to write the didFinishSavingWithError

www.hackingwithswift.com 373

method. This must show one of two messages depending on whether we get an error sent to
us. The error might be, for example, that the user denied us permission to write to the photo
album. This will be sent as an NSError? object, so if it's nil we know there was no error.

We first met NSError in project 1, but didn't actually use it. This time we need to, because if
an error has occurred (i.e., the error parameter is not nil) then we need to unwrap the
NSError object and use its localizedDescription property – this will tell users what the error
message was in their own language.

func image(image: UIImage, didFinishSavingWithError error: NSError?,
contextInfo:UnsafePointer<Void>) {

 if error == nil {

 let ac = UIAlertController(title: "Saved!", message: "Your
altered image has been saved to your photos.",
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

 } else {

 let ac = UIAlertController(title: "Save error", message:
error?.localizedDescription, preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

 }

}

And that's it: your app now imports pictures, manipulates them with a Core Image filter and a
UISlider, then saves the result back to the photo library. Easy!

www.hackingwithswift.com 374

Wrap up
This has been the briefest possible introduction to Core Image, yet we still managed to make
something useful, using UISlider for the first time and even writing images to the photo
album! Unless you really do intend to make Yet Another Core Image Filters Program (best of
luck!) your use of Core Image will mostly be about manipulating a picture in a very specific
way, using a filter you have hand-crafted to look great.

If you want to try other filters, search on Google for "Core Image Filter Reference" and have a
read – it will list the input keys for each of them so that you can get really fine-grained control
over the filters.

If you want to spend more time working on this app, you could start by making the Change
Filter button change title to show the name of the current filter. If you fancy something bigger,
then you should definitely investigate having separate sliders to control each of the input
keys you care about. For example, one for radius and one for intensity. If you want to tackle
something small, see if you can make tapping "Save" do nothing if there is no image loaded.

www.hackingwithswift.com 375

Project 14
Whack-a-Penguin
Build a game using SKCropNode and a sprinkling of Grand
Central Dispatch.

www.hackingwithswift.com 376

Setting up
It's time for another game, and we'll be using more of SpriteKit to build a whack-a-mole-style
game, except with penguins because Whack-a-Penguin isn't trademarked. You're going to
learn about SKCropNode, SKTexture and some more types of SKAction, and we'll also use
dispatch_after() to execute closures after a delay.

Create a new SpriteKit game project in Xcode, named Project14 and targeting iPad, then
delete the spaceship image and most of the example code just like you did in project 11.
Now download the files for this project from GitHub and copy the assets from the Content
folder into your Xcode project. Please also copy in the file Helper.swift; we'll be using it later.

Before we get into the code, please disable Portrait and Upside Down orientations because
this game will run only in landscape mode.

All set? Open up GameScene.swift and get whacking!

Warning: When working with SpriteKit projects, I strongly recommend you use the iPad 2
simulator rather than iPad Air – you'll get much faster frame rates, making it much more
suitable for testing.

www.hackingwithswift.com 377

Getting up and running
We already went over the basics of SpriteKit in project 11, so this time we're going to move a
little faster: modify your didMoveToView() method so it reads this:

override func didMoveToView(view: SKView) {

 let background = SKSpriteNode(imageNamed: "whackBackground")

 background.position = CGPoint(x: 512, y: 384)

 background.blendMode = .Replace

 background.zPosition = -1

 addChild(background)

 gameScore = SKLabelNode(fontNamed: "Chalkduster")

 gameScore.text = "Score: 0"

 gameScore.position = CGPoint(x: 8, y: 8)

 gameScore.horizontalAlignmentMode = .Left

 gameScore.fontSize = 48

 addChild(gameScore)

}

For that to work properly, you'll need to add two properties to the top of the class:

var gameScore: SKLabelNode!

var score: Int = 0 {

 didSet {

 gameScore.text = "Score: \(score)"

 }

}

www.hackingwithswift.com 378

Blah blah property observers blah – this is old stuff to a Swift veteran like you, so I don't
need to explain what that does.

If you run the "game" now you'll see a grassy background with a tree on one side. We're
going to fill that with holes, and in each hole there'll be a penguin. We want each hole to do
as much work itself as possible, so rather than clutter our game scene with code we're going
to create a subclass of SKNode that will encapsulate all hole related functionality.

Add a new file, choosing iOS > Source > Cocoa Touch Class, make it a subclass of SKNode
and name it "WhackSlot". You've already met SKSpriteNode, SKLabelNode and
SKEmitterNode, and they all come from SKNode. This base class doesn't draw images like
sprites or hold text like labels; it just sits in our scene at a position, holding other nodes as
children.

Note: If you were wondering why we're not calling the class WhackHole it's because a slot
is more than just a hole. It will contain a hole, yes, but it will also contain the penguin image
and more.

When you create the subclass you will immediately get a compile error, because Swift claims
not to know what SKNode is. This is easily fixed by adding the line import SpriteKit at the
top of your file, just above the import UIKit.

To begin with, all we want the WhackSlot class to do is add a hole at its current position, so
add this method to your new class:

func configureAtPosition(pos: CGPoint) {

 position = pos

 let sprite = SKSpriteNode(imageNamed: "whackHole")

 addChild(sprite)

}

You might wonder why we aren't using an initializer for this purpose, but the truth is that if
you created a custom initializer you get roped into creating others because of Swift's
required init rules. If you don't create any custom initializers (and don't have any non-

www.hackingwithswift.com 379

optional properties) Swift will just use the parent class's init() methods.

We want to create four rows of slots, with five slots in the top row, then four in the second,
then five, then four. This creates quite a pleasing shape, but as we're creating lots of slots
we're going to need three things:

1. An array in which we can store all our slots for referencing later.
2. A createSlotAt() method that handles slot creation.
3. Four loops, one for each row.

The first item is easy enough – just add this property above the existing gameScore
definition in GameScene.swift:

var slots = [WhackSlot]()

As for number two, that's not hard either – we need to create a method that accepts a
position, then creates a WhackSlot object, calls its configureAtPosition() method, then
adds the slot both to the scene and to our array:

func createSlotAt(pos: CGPoint) {

 let slot = WhackSlot()

 slot.configureAtPosition(pos)

 addChild(slot)

 slots.append(slot)

}

The only moderately hard part of this task is the four loops that call createSlotAt() because
you need to figure out what positions to use for the slots. Fortunately for you, I already did
the design work, so I can tell you exactly where the slots should go! Put this just before the
end of didMoveToView():

for i in 0 ..< 5 { createSlotAt(CGPoint(x: 100 + (i * 170), y:

www.hackingwithswift.com 380

410)) }

for i in 0 ..< 4 { createSlotAt(CGPoint(x: 180 + (i * 170), y:
320)) }

for i in 0 ..< 5 { createSlotAt(CGPoint(x: 100 + (i * 170), y:
230)) }

for i in 0 ..< 4 { createSlotAt(CGPoint(x: 180 + (i * 170), y:
140)) }

Remember that higher Y values in SpriteKit place nodes towards the top of the scene, so
those lines create the uppermost slots first then work downwards.

In case you've forgotten, ..< is the half-open range operator, meaning that the first loop will
count 0, 1, 2, 3, 4 then stop. The i is useful because we use that to calculate the X position of
each slot.

So far this has all been stuff you've done before, so I tried to get through it as fast as I could.
But it's now time to try something new: SKCropNode. This is a special kind of SKNode
subclass that uses an image as a cropping mask: anything in the colored part will be visible,
anything in the transparent part will be invisible.

By default, nodes don't crop, they just form part of a node tree. The reason we need the crop
node is to hide our penguins: we need to give the impression that they are inside the holes,
sliding out for the player to whack, and the easiest way to do that is just to have a crop mask
shaped like the hole that makes the penguin invisible when it moves outside the mask.

The easiest way to demonstrate the need for SKCropNode is to give it a nil mask – this will
effectively stop the crop node from doing anything, thus allowing you to see the trick behind
our game.

In WhackSlot.swift, add a property to your class in which we'll store the penguin picture
node:

var charNode: SKSpriteNode!

Now add this just before the end of the configureAtPosition() method:

www.hackingwithswift.com 381

let cropNode = SKCropNode()

cropNode.position = CGPoint(x: 0, y: 15)

cropNode.zPosition = 1

cropNode.maskNode = nil

charNode = SKSpriteNode(imageNamed: "penguinGood")

charNode.position = CGPoint(x: 0, y: -90)

charNode.name = "character"

cropNode.addChild(charNode)

addChild(cropNode)

Some parts of that are old and some are new, but all bear explaining.

First, we create a new SKCropNode and position it slightly higher than the slot itself. The
number 15 isn't random – it's the exact number of points required to make the crop node line
up perfectly with the hole graphics. We also give the crop node a zPosition value of 1,
putting it to the front of other nodes, which stops it from appearing behind the hole.

We then do something that, right now, means nothing: we set the maskNode property of the
crop node to be nil, which is the default value. It's there because we'll be changing it in just a
moment.

We then create the character node, giving it the "good penguin" graphic, which is a blue
color – the bad penguins are red, presumably because they are bubbling over with hellfire or
something. This is placed at -90, which is way below the hole as if the penguin were properly
hiding. And by "properly" you should read "bizarrely" because penguins aren't exactly known
for hiding in holes in the countryside!

I hope you noticed the important thing, which is that the character node is added to the crop
node, and the crop node added to the slot. This is because the crop node only crops nodes
that are inside it, so we need to have a clear hierarchy: the slot has the hole and crop node
as children, and the crop node has the character node as a child.

www.hackingwithswift.com 382

If you run the game now you'll see that every hole now has a penguin directly beneath it. This
is where the penguin is hiding, "in the hole", or at least would be if we gave the crop node a
mask graphic. Now is probably a good time to select the whackMask.png graphic in the
project navigator – it's a red square with a curved bottom to match the rim of the hole.

Our penguins are positioned just below their holes, and they'll become invisible once added to a
crop node.

Remember, with crop nodes everything with a color is visible, and everything transparent is
invisible, so the whackMask.png will show all parts of the character that are above the hole.
Change the maskNode = nil line to load the actual mask instead:

cropNode.maskNode = SKSpriteNode(imageNamed: "whackMask")

If you run the game now, you'll see the penguins are invisible. They are still there, of course,
but now can't be seen.

www.hackingwithswift.com 383

www.hackingwithswift.com 384

Penguin, show thyself
We want the slots to manage showing and hiding penguins themselves as needed, which
means we need to give them some properties and methods of their own. The two things a
slot needs to know are "am I currently visible to be whacked by the player?" and "have I
already been hit?" The former avoids players tapping on slots that are supposed to be
invisible; the latter so that players can't whack a penguin more than once.

To track this data, put these two properties at the top of your WhackSlot class:

var visible = false

var isHit = false

Showing a penguin for the player to tap on will be handled by a new method called show().
This will make the character slide upwards so it becomes visible, then set visible to be true
and hit to be false. The movement is going to be created by a new SKAction, called
moveByX(_:y:duration:).

This method will also decide whether the penguin is good or bad – i.e., whether the player
should hit it or not. This will be done using a RandomInt() function that I bundled into
Helper.swift for you to make random number generation easier: one-third of the time the
penguin will be good; the rest of the time it will be bad.

To make it clear to the player which is which, we have two different pictures: penguinGood
and penguinEvil. We can change the image inside our penguin sprite by changing its texture
property. This takes a new class called SKTexture, which is to SKSpriteNode sort of what
UIImage is to UIImageView – it holds image data, but isn't responsible for showing it.

Changing the character node's texture like this is helpful because it means we don't need to
keep adding and removing nodes. Instead, we can just change the texture to match what
kind of penguin this is, then change the node name to match so we can do tap detection
later on.

However, all the above should only happen if the slot isn't already visible, because it could
cause havoc. So, the very first thing the method needs to do is check whether visible is true,
and if so exit.

www.hackingwithswift.com 385

Enough talk; here's the show() method:

func show(hideTime hideTime: Double) {

 if visible { return }

 charNode.runAction(SKAction.moveByX(0, y: 80, duration: 0.05))

 visible = true

 isHit = false

 if RandomInt(min: 0, max: 2) == 0 {

 charNode.texture = SKTexture(imageNamed: "penguinGood")

 charNode.name = "charFriend"

 } else {

 charNode.texture = SKTexture(imageNamed: "penguinEvil")

 charNode.name = "charEnemy"

 }

}

You may have noticed that I made the method accept a parameter called hideTime. This is
for later, to avoid having to rewrite too much code. You may also have noticed that it's
actually written as hideTime hideTime, because by default in Swift the first parameter to a
method does not have a label.

If we hadn't used the hideTime twice, you could call the method like this: show(1). With the
duplicate label, you must use the label, like this: show(hideTime: 1). Doubling the parameter
name to force a label is helpful here because otherwise people won't know why they are
passing a parameter.

The show() method is going to be triggered by the view controller on a recurring basis,
managed by a property we're going to create called popupTime. This will start at 0.85
(create a new enemy a bit faster than once a second), but every time we create an enemy
we'll also decrease popupTime so that the game gets harder over time.

www.hackingwithswift.com 386

we'll also decrease popupTime so that the game gets harder over time.

First, the easy bit: add this property to GameScene.swift:

var popupTime = 0.85

To jump start the process, we need to call createEnemy() once when the game starts, then
have createEnemy() call itself thereafter. Clearly we don't want to start creating enemies as
soon as the game starts, because the player needs a few moments to orient themselves so
they have a chance.

So, in didMoveToView() we're going to call the (as yet unwritten) createEnemy() method
after a delay. This requires some new Grand Central Dispatch (GCD) code: dispatch_time()
is used to create time values for a delay, and dispatch_after() is used to schedule a closure
to execute after the time has been reached.

The reason we need to create a GCD time value is because it thinks in nanoseconds, which
isn't very intuitive for humans. One second is equal to 1,000,000,000 (one billion)
nanoseconds, but helpfully Apple has a built-in constant called NSEC_PER_SEC to help us
convert between seconds and nanoseconds. Here's how the code looks to run a closure
after a delay:

let delay = 1.0

let time = dispatch_time(DISPATCH_TIME_NOW, Int64(delay *
Double(NSEC_PER_SEC)))

dispatch_after(time, dispatch_get_main_queue()) { [unowned self] in

 self.doStuff()

}

That's not easy to remember or type, so in the file Helper.swift I've included a function called
RunAfterDelay() that does all the work for you. Call it like this:

RunAfterDelay(1.0) { [unowned self] in

www.hackingwithswift.com 387

RunAfterDelay(1.0) { [unowned self] in

 self.doStuff()

}

Now, onto the createEnemy() method. This will do several things:

 • Decrease popupTime each time it's called. I'm going to multiply it by 0.991 rather than
subtracting a fixed amount, otherwise the game gets far too fast.
 • Shuffle the list of available slots using the GameplayKit shuffle that we've used previously.
 • Make the first slot show itself, passing in the current value of popupTime for the method to
use later.
 • Generate four random numbers to see if more slots should be shown. Potentially up to five
slots could be shown at once.
 • Call itself again after a random delay. The delay will be between popupTime halved and
popupTime doubled. For example, if popupTime was 2, the random number would be
between 1 and 4.

There are only two new things in there. First, I'll be using the *= operator to multiply and
assign at the same time, in the same way that += meant "add and assign" in project 2.
Second, I'll be using the RandomDouble() fuction to generate a random Double value,
which is what RunAfterDelay() uses for its delay.

Here's the method to create enemies:

func createEnemy() {

 popupTime *= 0.991

 slots =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(slots)
as! [WhackSlot]

 slots[0].show(hideTime: popupTime)

 if RandomInt(min: 0, max: 12) > 4 { slots[1].show(hideTime:
popupTime) }

 if RandomInt(min: 0, max: 12) > 8 { slots[2].show(hideTime:

www.hackingwithswift.com 388

popupTime) }

 if RandomInt(min: 0, max: 12) > 10 { slots[3].show(hideTime:
popupTime) }

 if RandomInt(min: 0, max: 12) > 11 { slots[4].show(hideTime:
popupTime) }

 let minDelay = popupTime / 2.0

 let maxDelay = popupTime * 2

 RunAfterDelay(RandomDouble(min: minDelay, max: maxDelay))
{ [unowned self] in

 self.createEnemy()

 }

}

Make sure you add import GameplayKit to the top of your file in order to make the array
shuffling work.

Because createEnemy() calls itself, all we have to do is call it once in didMoveToView() after
a brief delay. Put this just before the end of the method:

RunAfterDelay(1) { [unowned self] in

 self.createEnemy()

}

From then on, we don't have to worry about it because createEnemy() will call itself.

Before we're done, we need to upgrade the WhackSlot class to include a hide() method. If
you run the code now, you'll see that the penguins appear nice and randomly, but they never
actually go away. We're already passing a hideTime parameter to the show() method, and
we're going to use that so the slots hide themselves after they have been visible for a time.

We could of course just make the slots hide after a fixed time, but that's no fun. By using

www.hackingwithswift.com 389

popupTime as the input for hiding delay, we know the penguins will hide themselves more
quickly over time.

First, add this method to the WhackSlot class:

func hide() {

 if !visible { return }

 charNode.runAction(SKAction.moveByX(0, y:-80, duration:0.05))

 visible = false

}

That just undoes the results of show(): the penguin moves back down the screen into its
hole, then its visible property is set to false.

We want to trigger this method automatically after a period of time, and, through extensive
testing (that is, sitting around playing) I have determined the optimal hide time to be 3.5x
popupTime.

So, put this code at end of show():

RunAfterDelay(hideTime * 3.5) { [unowned self] in

 self.hide()

}

Go ahead and run the app, because it's really starting to come together: the penguins show
randomly, sometimes by themselves and sometimes in groups, then hide after a period of
being visible. But you can't hit them, which means this game is more Watch-a-Penguin than
Whack-a-Penguin. Let's fix that!

www.hackingwithswift.com 390

Whack to win
To bring this project to a close, we still need to do two major components: letting the player
tap on a penguin to score, then letting the game end after a while. Right now it never ends,
so with popupTime getting lower and lower it means the game will become impossible after
a few minutes.

We're going to add a hit() method to the WhackSlot class that will handle hiding the
penguin. This needs to wait for a moment (so the player still sees what they tapped), move
the penguin back down again, then set the penguin to be invisible again.

We're going to use an SKAction for each of those three things, which means you need to
learn some new uses of the class:

 • SKAction.waitForDuration() creates an action that waits for a period of time, measured in
seconds.
 • SKAction.runBlock() will run any code we want, provided as a closure. "Block" is
Objective C's name for a Swift closure.
 • SKAction.sequence takes an array of actions, and executes them in order. Each action
won't start executing until the previous one finished.

We need to use SKAction.runBlock() in order to set the penguin's visible property to be
false rather than doing it directly, because we want it to fit into the sequence. Using this
technique, it will only be changed when that part of the sequence is reached.

Put this method into the WhackSlot class:

func hit() {

 isHit = true

 let delay = SKAction.waitForDuration(0.25)

 let hide = SKAction.moveByX(0, y:-80, duration:0.5)

 let notVisible = SKAction.runBlock { [unowned self] in self.visible
= false }

 charNode.runAction(SKAction.sequence([delay, hide, notVisible]))

}

www.hackingwithswift.com 391

With that new method in place, we can call it from the touchesBegan() method in
GameScene.swift. This method needs to figure out what was tapped using the same
nodesAtPoint() method you saw in project 11: find any touch, find out where it was tapped,
then get a node array of all nodes at that point in the scene.

We then need to loop through the list of all nodes that are at that point, and see if they have
the name "charFriend" or "charEnemy" and take the appropriate action. Rather than dump all
the code on you at once, here's the basic outline of touchesBegan() to start with:

override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 if let touch = touches.first {

 let location = touch.locationInNode(self)

 let nodes = nodesAtPoint(location)

 for node in nodes {

 if node.name == "charFriend" {

 // they shouldn't have whacked this penguin

 } else if node.name == "charEnemy" {

 // they should have whacked this one

 }

 }

 }

 }

Nothing complicated there – this is all stuff you know already.

What is new is what comes in place of those two comments. The first comment marks the
code block that will be executed if the player taps a friendly penguin, which is obviously
against the point of the game. When this happens, we need to call the hit() method to make
the penguin hide itself, subtract 5 from the current score, then run an action that plays a "bad

www.hackingwithswift.com 392

hit" sound. All of that should only happen if the slot was visible and not hit.

The code for this block is going to do something interesting that you haven't seen before,
and it looks like this:

let whackSlot = node.parent!.parent as WhackSlot

It gets the parent of the parent of the node, and typecasts it as a WhackSlot. This line is
needed because the player has tapped the penguin sprite node, not the slot – we need to get
the parent of the penguin, which is the crop node it sits inside, then get the parent of the
crop node, which is the WhackSlot object, which is what this code does.

You're also going to meet two new pieces of code. First, the -= operator, which is similar to
+= and *= and means "subtract and assign." So, a -= 5 means "subtract 5 from a." The
second new piece of code is SKAction's playSoundFileNamed() method, which plays a
sound and optionally waits for the sound to finish playing before continuing – useful if you're
using an action sequence.

We haven't used sound files in iOS yet, but there isn't really a whole lot to say. The three
main sound file formats you'll use are MP3, M4A and CAF, with the latter being a renamed
AIFF file. AIFF is a pretty terrible file format when it comes to file size, but it's much faster to
load and use than MP3s and M4As, so you'll use them often.

Put this code where the // they shouldn't have whacked this penguin comment was:

let whackSlot = node.parent!.parent as! WhackSlot

if !whackSlot.visible { continue }

if whackSlot.isHit { continue }

whackSlot.hit()

score -= 5

runAction(SKAction.playSoundFileNamed("whackBad.caf",
waitForCompletion:false))

www.hackingwithswift.com 393

When the player taps a bad penguin, the code is similar. The differences are that we want to
add 1 to the score (so that it takes five correct taps to offset one bad one), and run a different
sound. But we're also going to set the xScale and yScale properties of our character node
so the penguin visibly shrinks in the scene, as if they had been hit.

Put this code where the // they should have whacked this one comment was:

let whackSlot = node.parent!.parent as! WhackSlot

if !whackSlot.visible { continue }

if whackSlot.isHit { continue }

whackSlot.charNode.xScale = 0.85

whackSlot.charNode.yScale = 0.85

whackSlot.hit()

score += 1

runAction(SKAction.playSoundFileNamed("whack.caf",
waitForCompletion:false))

Since we're now potentially modifying the xScale and yScale properties of our character
node, we need to reset them to 1 inside the show() method of the slot. Put this just before
the runAction() call inside show():

charNode.xScale = 1

charNode.yScale = 1

This game is almost done. Thanks to the property observer we put in early on the game is
now perfectly playable, at least until popupTime gets so low that the game is effectively

www.hackingwithswift.com 394

unplayable.

To fix this final problem and bring the project to a close, we're going to limit the game to
creating just 30 rounds of enemies. Each round is one call to createEnemy(), which means it
might create up to five enemies at a time.

First, add this property to the top of your game scene:

var numRounds = 0

Every time createEnemy() is called, we're going to add 1 to the numRounds property. When
it is greater than or equal to 30, we're going to end the game: hide all the slot, show a "Game
over" sprite, then exit the method. Put this code just before the popupTime assignment in
createEnemy():

numRounds += 1

if numRounds >= 30 {

 for slot in slots {

 slot.hide()

 }

 let gameOver = SKSpriteNode(imageNamed: "gameOver")

 gameOver.position = CGPoint(x: 512, y: 384)

 gameOver.zPosition = 1

 addChild(gameOver)

 return

}

www.hackingwithswift.com 395

That uses a position zPosition so that the game over graphic is placed over other items in
our game.

The game is now complete! Go ahead and play it for real and see how you do. If you're using
the iOS simulator, bear in mind that it's much hard to move a mouse pointer than it is to use
your fingers on a real iPad, so don't adjust the difficulty unless you're testing on a real
device!

www.hackingwithswift.com 396

Wrap up
You have another game under your belt, and I hope your brain is already starting to bubble
up ideas for things you can do to improve it. Plus, you learned more skills, not least
SKCropNode, SKTexture, GCD's dispatch_after(), the *= and -= operators, forcing method
labels, plus lots of new SKAction types, so it's all time well spent.

If you're looking to improve this project, you could start by adding a smoke-like particle
effect to be used when the penguins are hit, and perhaps a separate mud-like effect when
they go into or come out of a hole. You could also record your own voice saying "Game
over!" and have it play when the game ends. Try experimenting with the difficulty and see
what you come up with – is it easier or harder if the penguin show/hide animation happens at
random speeds?

www.hackingwithswift.com 397

Project 15
Animation
Bring your interfaces to life with animation, and meet
switch/case at the same time.

www.hackingwithswift.com 398

Setting up
As we're just before the half-way point of this series, it's time to introduce one of the most
important techniques in iOS development: animation. Sadly, many people don't consider
animation important at all, which makes for some thoroughly awful user interface design.

Animation – making things move, scale, and so on – of your views is not only about making
things pretty, although that's certainly a large part. It's main purpose is to gives users a sense
of what's changing and why, and it helps them make sense of a state change in your
program. When you use a navigation controller to show a new view controller, we don't just
want it to appear. Instead, we want it to slide in, making it clear that the old screen hasn't
gone away, it's just to the left of where we were.

You're almost certainly tired of hearing me say this, but iOS has a ridiculously powerful
animation toolkit that's also easy to use. I know, I'm a broken record, right?

Well, don't just take my word for it – let's try out some animation together so you can see
exactly how it works. You're also going to meet switch/case for the first time and learn about
the CGAffineTransform struct, both of which will serve you just as well as animations. So,
create a new Single View Application project in Xcode, name it Project15 and set its target to
be iPad.

Please download the files for this project from GitHub and copy its Content folder into your
Xcode project. Finally, set the orientation to be landscape only. Animation of course works in
all orientations, but it's easier to work with a fixed size for now.

www.hackingwithswift.com 399

Preparing for action
Open Interface Builder with Main.storyboard and place a button on there with the title "Tap".
Give it width 46 and height 44, with X:277 and Y:542. We need to add some Auto Layout
constraints, so select the button in the document outline and Ctrl-drag diagonally on it. The
popup menu will offer "Width", "Height" and "Aspect Ratio"; please add Width and Height.

We want our button to always stay near the bottom of the view controller, so Ctrl-drag from
the button to the view directly above it and choose "Bottom Space to Bottom Layout Guide."
Now Ctrl-drag the same way again and choose "Center Horizontally in Container."

That's it for Auto Layout, so please switch to the assistant view so we can add an action and
an outlet. Ctrl-drag from the button to your code to create an outlet for it called tap. Then
Ctrl-drag again to create an action for the button called tapped().

Every time the user taps the "Tap" button, we're going to execute a different animation. This
will be accomplished by cycling through a counter, and moving an image view. To make all
that work, you need to add two more properties to the class:

var imageView: UIImageView!

var currentAnimation = 0

There isn't an image view in the storyboard – we're going to create it ourself in
viewDidLoad() using an initializer that takes a UIImage and makes the image view the
correct size for the image.

Add this code to viewDidLoad():

imageView = UIImageView(image: UIImage(named: "penguin"))

imageView.center = CGPoint(x: 512, y: 384)

view.addSubview(imageView)

That places the penguin in the middle of an iPad-sized landscape screen, ready for us to
animate.

www.hackingwithswift.com 400

There's one more thing we're going to do before we start looking at the animations, and
that's to put a little bit of code into the tapped() method so that we cycle through animations
each time the button is tapped. Put this in there:

currentAnimation += 1

if currentAnimation > 7 {

 currentAnimation = 0

}

That will add 1 to the value of currentAnimation until it reaches 7, at which point it will set it
back to 0.

www.hackingwithswift.com 401

Switch, case, animate
The currentAnimation property can have a value between 0 and 7, each one triggering a
different animation. You might be tempted to write code like this:

if currentAnimation == 0 {

 anim1()

} else if currentAnimation == 1 {

 anim2()

} else if currentAnimation == 2 {

 andSoOn()

}

But that's not a very efficient way of checking a variable for multiple possible values, so
programming languages have a different syntax for doing exactly that, known as switch/
case. Using this syntax, we could more or less rewrite the previous code like this:

switch currentAnimation {

case 0:

 anim1()

case 1:

 anim2()

case 3:

 andSoOn()

}

I say "more or less rewrite" because Swift wants to make sure your code is as safe as
possible, and one of the checks it executes is that your switch/case statements are
exhaustive – that every possible outcome is catered for.

As a result, you will frequently need to include a default case block to match any value not

www.hackingwithswift.com 402

explicitly catered for above, like this:

switch currentAnimation {

case 0:

 anim1()

case 1:

 anim2()

case 3:

 andSoOn()

default:

 break

}

The break statement exits the switch/case block, so the default case effectively does
nothing.

Note: by default, Swift executes only the case block that matches the value you are
switching on. If you want it to carry on executing the next one as well, you should use the
fallthrough statement. If you don't know what this means, you don't want it!

We're going to create a big switch/case block inside tapped(), but we're going to start small
and work our way up – the default case will handle any values we don't explicitly catch.

This switch/case statement is going to go inside a new method of the UIView class called
animateWithDuration(), which is a kind of method you haven't seen before because it
actually accepts two closures. The parameters we'll be using are how to long animate for,
how long to pause before the animation starts, any options you want to provide, what
animations to execute, and finally a closure that will execute when the animation finishes.

Because the completion closure is the final parameter to the method, we'll be using trailing
closure syntax just like we did in project 5.

Update your tapped() method to this:

www.hackingwithswift.com 403

@IBAction func tapped(sender: AnyObject) {

 tap.hidden = true

 UIView.animateWithDuration(1, delay: 0, options: [],

 animations: { [unowned self] in

 switch self.currentAnimation {

 case 0:

 break

 default:

 break

 }

 }) { [unowned self] (finished: Bool) in

 self.tap.hidden = false

 }

 currentAnimation += 1

 if currentAnimation > 7 {

 currentAnimation = 0

 }

}

That won't do anything yet, which is remarkable given that it's quite a lot of code! However, it
has put us in a position where we can start dabbling with animations. But first, here's a
breakdown of the code:

 • When the method begins, we hide the tap button so that our animations don't collide; it
gets unhidden in the completion closure of the animation.
 • We call animateWithDuration() with a duration of 1 second, no delay, and no interesting

www.hackingwithswift.com 404

options.
 • For the animations closure we first do the usual [unowned self] in dance to avoid strong
reference cycles, then enter the switch/case code.
 • We switch using the value of self.currentAnimation. We need to use self to make the
closure capture clear, remember. This switch/case does nothing yet, because both possible
cases just call break.
 • We use trailing closure syntax to provide our completion closure. This will be called when
the animation completes, and its finished will be true if the animations completed fully.
 • As I said, the completion closure unhides the tap button so it can be tapped again.
 • After the animateWithDuration() call, we have the old code to modify and wrap
currentAnimation.

If you run the app now and tap the button, you'll notice it doesn't actually hide and show as
you might expect. This is because UIKit detects that no animation has taken place, so it calls
the completion closure straight away.

www.hackingwithswift.com 405

Transform!
Our code now has the perfect structure in place to let us dabble with animations freely, so
it's time to learn about CGAffineTransform. This is a structure that represents a specific kind
of transform that we can apply to any UIView object or subclass.

Unless you're into mathematics, affine transforms can seem like a black art. But Apple does
provide some great helper functions to make it easier: there are functions to scale up a view,
functions to rotate, functions to move, and functions to reset back to default.

All of these functions return a CGAffineTransform value that you can put into a view's
transform property to apply it. As we'll be doing this inside an animation block, the
transform will automatically be animated. This illustrates one of the many powerful things of
Core Animation: you tell it what you want to happen, and it calculates all the intermediary
states automatically.

Let's start with something simple: when we're at currentAnimation value 0, we want to
make the view 2x its default size. Change the switch/case code to this:

switch self.currentAnimation {

case 0:

 self.imageView.transform = CGAffineTransformMakeScale(2, 2)

default:

 break

}

That uses a new function, CGAffineTransformMakeScale(), which takes an X and Y scale
value as its two parameters. A value of 1 means "the default size," so 2, 2 will make the view
twice its normal width and height. By default, UIKit animations have an "ease in, ease out"
curve, which means the movement starts slow, accelerates, then slows down again before
reaching the end.

Run the app now and tap the button to watch the penguin animate from 1x to 2x its size over
one second, all by setting the transform inside an animation. You can keep tapping the

www.hackingwithswift.com 406

button as many times more as you want, but nothing else will happen at this time. If you
apply a 2x scale transform to a view that already has a 2x scale transform, nothing happens.

When iOS draws the penguin at twice its size, it automatically smooths the image so it doesn't
look too jaggy.

The next case is going to be 1, and we're going to use a special existing transform called
CGAffineTransformIdentity. This effectively clears our view of any pre-defined transform,
resetting any changes that have been applied by modifying its transform property.

Add this to the switch/case statement after the existing case:

case 1:

 self.imageView.transform = CGAffineTransformIdentity

For the sake of clarity, your code should now read:

www.hackingwithswift.com 407

switch self.currentAnimation {

case 0:

 self.imageView.transform = CGAffineTransformMakeScale(2, 2)

case 1:

 self.imageView.transform = CGAffineTransformIdentity

default:

 break

}

With the second case in there, tapping the button repeatedly will first scale the penguin up,
then scale it back down (resetting to defaults), then do nothing for lots of taps, then repeat
the scale up/scale down. This is because our currentAnimation value is told to wrap (return
to 0) when it's greater than 7, so the default case executes quite a few times.

Let's continue adding more cases: one to move the image view, then another to reset it back
to the identity transform:

case 2:

 self.imageView.transform = CGAffineTransformMakeTranslation(-256,
-256)

case 3:

 self.imageView.transform = CGAffineTransformIdentity

That uses another new function, CGAffineTransformMakeTranslation(), which accepts X
and Y values for its parameters. These values are deltas, or differences from the current
value, meaning that the above code subtracts 256 from both the current X and Y position.

Tapping the button now will scale up then down, then move and return back to the center, all

www.hackingwithswift.com 408

smoothly animated by Core Animation.

We can also use CGAffineTransform to rotate views, using the
CGAffineTransformMakeRotation method. This accepts one parameter, which is the
amount in radians you want to rotate. There are three catches to using this function:

1. You need to provide the value as a CGFloat. This usually isn't a problem – if you type 1.0
in there, Swift is smart enough to make that a CGFloat automatically. But if you try to use
M_PI to use the value of π (mathematical pi), you'll find that's a Double and you need to
convert it explicitly: CGFloat(M_PI).
2. Core Animation will always take the shortest route to make the rotation work. So, if your
object is straight and you rotate to 90 degrees (radians: half of pi, or M_PI_2), it will rotate
clockwise. If your object is straight and you rotate to 270 degrees (radians: M_PI + M_PI_2) it
will rotate counter-clockwise because it's the smallest possible animation.
3. A consequence of the second catch is that if you try to rotate 360 degrees (radians: M_PI
* 2), Core Animation will calculate the shortest rotation to be "just don't move, because we're
already there." The same goes for values over 360, for example if you try to rotate 540
degrees (one and a half full rotations), you'll end up with just a 180-degree rotation.

With all that in mind, here's are two more cases that show off rotation:

case 4:

 self.imageView.transform =
CGAffineTransformMakeRotation(CGFloat(M_PI))

case 5:

 self.imageView.transform = CGAffineTransformIdentity

As well as animating transforms, Core Animation can animate many of the properties of your
views. For example, it can animate the background color of the image view, or the level of
transparency. You can even change multiple things at once if you want something more
complicated to happen.

As an example, to make our view almost fade out then fade back in again while also
changing its background color, we're going to modify its transparency by setting its alpha

www.hackingwithswift.com 409

value, where 0 is invisible and 1 is fully visible, and also set its backgroundColor property –
first to green, then to clear.

Add these two new cases:

case 6:

 self.imageView.alpha = 0.1

 self.imageView.backgroundColor = UIColor.greenColor()

case 7:

 self.imageView.alpha = 1

 self.imageView.backgroundColor = UIColor.clearColor()

That completes all possible cases, 0 to 7. But Core Animation isn't finished just yet. In fact,
we've only scratched its surface in these tests, and there's much more it can do.

To give you the briefest glimpse of its power, replace this line of code:

UIView.animateWithDuration(1, delay: 0, options: [],

…with this:

UIView.animateWithDuration(1, delay: 0, usingSpringWithDamping: 0.5,
initialSpringVelocity: 5, options: [],

This changes the animateWithDuration() so that it uses spring animations rather than the
default, ease-in-ease-out animation. I'm not even going to tell you what this does because
I'm sure you're going to be impressed – press Cmd+R to run the app and tap the button for
yourself. We're done!

www.hackingwithswift.com 410

Wrap up
Core Animation is an extraordinary toolkit, and UIKit wraps it in a simple and flexible set of
methods. And because it's so simple to use, you really have no excuse for not using it. If
you're moving something around conceptually (e.g., moving an email to a folder, showing a
palette of paint brushes, rolling a dice, etc) then move it around visually too. Your users will
thank you for it!

You also learned a little about switch/case as a way of evaluating multiple possible values.
Although you haven't seen much of it yet, Swift's switch/case syntax is actually one of the
most powerful and expressive I've ever come across, although it can bend your brain a little.
In this project we were only matching simple values, but trust me: it can do so much more.

If you want to put your new-found animation skill into practice, try going back to project 8 – 7
Swifty Words – and making the letter group buttons fade out when they are tapped. We were
using the hidden property, but you'll need to switch to alpha because hidden is either true
or false, it has no animatable values between.

www.hackingwithswift.com 411

Project 16
JavaScript Injection
Extend Safari with a cool feature for JavaScript developers.

www.hackingwithswift.com 412

Setting up
Welcome to the second half of the series! From here on in, the apps you create will be
looking beyond plain UIKit to explore some of the other great ways you can use Apple's tools
to produce great apps. In this project you're going to create a Safari extension, which lets us
embed a version of our app directly inside Safari's action menu, then manipulate Safari data
in interesting ways.

What do I mean by "interesting ways"? Well, our little Safari extension is going to read in the
URL and page title that the user was visiting, then show them a large text area they can type
JavaScript into. When the extension is dismissed, we'll execute that JavaScript in Safari –
like Mozilla's Greasemonkey extension, just for iOS.

This is the first of two projects that are hard. This is not because I want to torture you, but
because your skills are improving and it's time to tackle bigger things. In this project, the
actual amount of code you're going to be writing is quite small, because most of the code
will be provided for us by Xcode. However, it's dense, and there's a lot to take in, so it might
feel like slow going.

At the very least, the project will still be useful and you'll learn a lot too – not least about
Safari extensions and a new class called NSNotificationCenter.

Let's get started: create a new Single View Application project in Xcode, name it Project16
and set it to target iPhone.

www.hackingwithswift.com 413

Making a shell app
Safari extensions are launched from within the Safari action menu, but they ship inside a
parent app. That is, you can't ship an extension by itself – it needs have an app alongside it.
Frequently the app does very little, but it must at least be present.

There are two common ways to use the app side of the extension: to show help information,
or to show basic settings for the user to adjust. We're going to go with the first option,
although to skip writing lots of help text we'll just be using "Hello, world!"

Open your apps Main.storyboard file and drop a UILabel into the view controller. Give it the
text "Hello, world!" then make it large enough to fit. Now drag it so that horizontal and
vertical blue alignment lines appear, meaning that it's centered. In the document outline, Ctrl-
drag from the label to the view just above it, and select "Center Horizontally in Container"
and "Center Vertically in Container."

When you add those two constraints, you'll probably see some orange boxes around your
label – one is wholly orange, and one has a dashed line. These orange markers mean your
views don't match your constraints: the solid orange lines mean "this is where you view is,"
and the dashed orange lines mean "this is where your view will be when your code runs."

The reason for the difference is because labels have a default size of whatever fits their
current text. We drew out the size by hand, and in my case I drew it too large, so Xcode is
telling me when the code runs the label will be smaller. You can fix this warning by going to
the Editor menu and choosing Resolve Auto Layout Issues > Update Frames, which will
make the label the size Auto Layout thinks it ought to be.

That's the entire app complete. We're not going to add any more to it here because it's really
not the point; we're going to focus on the extension from here on.

www.hackingwithswift.com 414

Adding an extension
Extensions are miniature apps in their own right, and as such need their own space in your
code. That doesn't mean you can't share code and resources between your extensions and
your app, just that it's not automatic.

To get started with a fresh extension, go to the File menu and choose New > Target. When
you're asked to choose a template, select iOS > Application Extension > Action Extension,
then click Next. For the name just call it Extension, make sure Action Type is set to "Presents
User Interface", then click Finish.

Creating a new Action Extension target effectively creates a separate chunk of source code to
manage inside your project.

When you create an extension inside an app, Xcode will ask you whether you want to
activate its scheme. Check the "Do not show this message again" box then click Activate.
With this change, when you run your code, you'll actually launch the extension – it's perfect
for our needs right now.

Once your extension has been created, it will appear in the project navigation in its own

www.hackingwithswift.com 415

yellow folder. You should see Project16 at the top, but look below and you'll see Extension.
Open up the disclosure arrow and you'll see Xcode has given you two files:
ActionViewController.swift and MainInterface.storyboard.

If you look inside ActionViewController.swift you'll see a fair amount of code, and I have
some bad news for you: the code is complicated, the code is pretty much all new, and most
if it is required. It's complicated because it needs to be: your extension doesn't talk to Safari
and Safari doesn't talk to your extension, because it opens up security risks. Instead, iOS
acts as an intermediary between Safari and the extension, passing data safely between the
two.

To help make the code a little easier to understand, I want you to delete it. Go on – zap it all,
leaving viewDidLoad() doing nothing more than calling super.viewDidLoad(). We're going to
replace it with code that is somewhat similar, but I've removed the complicated parts to try to
make it easier. You'll probably want to return to Apple's template code in your own apps!

Change your viewDidLoad() method to this:

override func viewDidLoad() {

 super.viewDidLoad()

 if let inputItem = extensionContext!.inputItems.first as?
NSExtensionItem {

 if let itemProvider = inputItem.attachments?.first as?
NSItemProvider {

 itemProvider.loadItemForTypeIdentifier(kUTTypePropertyList as
String, options: nil) { [unowned self] (dict, error) in

 // do stuff!

 }

 }

 }

}

Let's walk through that line by line:

www.hackingwithswift.com 416

 • When our extension is created, its extensionContext lets us control how it interacts with
the parent app. In the case of inputItems this will be an array of data the parent app is
sending to our extension to use. We only care about this first item in this project, and even
then it might not exist, so we conditionally typecast using if/let and as?.
 • Our input item contains an array of attachments, which are given to us wrapped up as an
NSItemProvider. Our code pulls out the first attachment from the first input item.
 • The next line uses loadItemForTypeIdentifier() to ask the item provider to actually provide
us with its item, but you'll notice it uses a closure so this code executes asynchronously.
That is, the method will carry on executing while the item provider is busy loading and
sending us its data.
 • Inside our closure we first need the usual [unowned self] to avoid strong reference cycles,
but we also need to accept two parameters: the dictionary that was given to us to by the
item provider, and any error that occurred.
 • With the item successfully pulled out, we can get to the interesting stuff: working with the
data. We have // do stuff! right now, but it'll be more interesting later, I promise.

This code takes a number of shortcuts that Apple's own code doesn't, which is why it's
significantly shorter. Once you've gotten to grips with this basic extension, I do recommend
you go back and look at Apple's template code to see how it loops through all the items and
providers to find the first image it can.

Despite all that work, you can't see the results just yet – we need to do some configuration
work first, because Apple's default action extension configure is for images, not for web
page content.

www.hackingwithswift.com 417

What do you want to get?
Inside the Extension group in the project navigator is a file called Info.plist. You have one for
your app too, and in fact all apps have one. This plist (that's short for property list,
remember) contains metadata about apps and extensions: what language is it, what version
number is it, and so on.

For extensions, this plist also describes what data you are willing to accept and how it
should be processed. Look for the key marked NSExtension and open its disclosure
indicator: you should see NSExtensionAttributes, NSExtensionMainStoryboard and
NSExtensionPointIdentifier. It's that first one we care about, because it modifies the way our
extension behaves.

Open up the disclosure arrow for NSExtensionAttributes and you should see
NSExtensionActivationRule, then String, then TRUEPREDICATE. Change String to be
Dictionary, then click the small + button to the left of Dictionary, and when it asks you for a
key name change "New item" to be
"NSExtensionActivationSupportsWebPageWithMaxCount". You can leave the new item as a
string (it doesn't really matter), but change its value to be 1 – that's the empty space just to
the right of String.

Adding this value to the dictionary means that we only want to receive web pages – we aren't
interested in images or other data types.

Now select the NSExtensionAttributes line itself, and click the + button that appears next to
the word Dictionary. Replace "New item" with "NSExtensionJavaScriptPreprocessingFile",
then give it the value "Action". This tells iOS that when our extension is called, we need to
run the JavaScript preprocessing file called Action.js, which will be in our app bundle. Make
sure you type "Action" and not "Action.js", because iOS will append the ".js" itself.

In the picture below you can see how your extension's property list should look. Make sure
you enter the key names precisely, because there is no room for error.

www.hackingwithswift.com 418

This is how your extension's property list should look.

I say "will be" rather than "is" because we haven't actually created this file yet. Right-click on
your extension's Info.plist file and choose New File. When you're asked what template you
want, choose iOS > Other > Empty, then name it Action.js, and put this text into it:

var Action = function() {};

Action.prototype = {

run: function(parameters) {

},

finalize: function(parameters) {

}

};

var ExtensionPreprocessingJS = new Action

This is a book about Swift, not a book about JavaScript, so I'm afraid I don't intend to

www.hackingwithswift.com 419

explain what that code does except for two things:

 • There are two functions: run() and finalize(). The first is called before your extension is run,
and the other is called after.
 • Apple expects the code to be exactly like this, so you shouldn't change it other than to fill
in the run() and finalize() functions.

Even now, after all this hacking around, your extension still isn't ready to run, and I can only
apologise – I told you it was complicated!

Your Action.js file needs to be in the Copy Bundle Resources build phase of your extension.

Having problems?One reader reported that Xcode had tried to compile Action.js rather than
copy it into the project, which will cause problems when you try to run the extension. If
you're worried that this might have happened to you, it's easy enough to check: choose your
project from the Project Navigator, then choose your extension from the list of targets – it's
just called Extension if you followed my instructions so far.

Now choose the Build Phases tab and open up Compile Sources and Copy Bundle
Resources. If things have worked correctly you should see Action.js under Copy Bundle
Resources and not Compile Sources. If this isn't the case, you can just drag it to move.

www.hackingwithswift.com 420

Establishing communication
To begin with, all we're going to do is send some data from Safari to our extension to make
sure everything is set up correctly – after all, it's been quite a bit of hassle so far with nothing
to show for it!

First, we're going to modify Action.js to send two pieces of data to our extension: the URL
the user was visiting, and the title of the page. Go to Action.js and modify the run() function
to this:

run: function(parameters) {

 parameters.completionFunction({"URL": document.URL, "title":
document.title });

},

JavaScript is quite a murky language, so you might be staring at that blankly. If I were to put
it in plain English, what it means is "tell iOS the JavaScript has finished preprocessing, and
give this data dictionary to the extension." The data that is being sent has the keys "URL"
and "title", with the values being the page URL and page title.

As with the previous JavaScript, don't worry about the nitty-gritty. Tthere are many volumes
of books on learning JavaScript and I don't intend to repeat them here.

Now that data is being sent from JavaScript, data will be received in Swift. In
ActionViewController.swift, replace the // do stuff! comment with this:

let itemDictionary = dict as! NSDictionary

let javaScriptValues =
itemDictionary[NSExtensionJavaScriptPreprocessingResultsKey] as!
NSDictionary

print(javaScriptValues)

Before I explain what that code does, please run the code. I'm saying this because if you're
like me then you're probably desperate to see anything working at this point, so let's at least

www.hackingwithswift.com 421

make sure things are working. When you press Run, wait for the list of host applications to
finish loading, then select Safari and click Run.

Xcode will ask you which app you should run with your extension. Please choose Safari.

When Safari loads, go to any web page, then tap the action toolbar button on the bottom –
it's the box with an arrow coming out. You'll see two rows of icons: swipe to the right on the
bottom row. If your extension isn't listed, click More and enable it there. Don't be surprised if
you see strange errors being printed out in the Xcode debug console while you're doing this,
because Apple sometimes likes to spout unhelpful warnings in their own code.

In the picture below you can see where your extension's icon should appear inside Safari's
action menu. If you don't see it there, tap More.

www.hackingwithswift.com 422

Look for your extension inside Safari's action menu.

When your app runs, you should see messages in the console at the bottom of your Xcode
window. If the console isn't visible, use Shift+Cmd+C to activate it, and you should see
something like this:

{

 URL = "http://www.apple.com/retail/code/";

 title = "Apple Retail Store - Hour of Code Workshop";

}

If you're seeing that, well done – your extension is working! If not, you screwed up
somewhere, so check my steps again.

Let's take a look at the code. As a reminder, here it is again:

www.hackingwithswift.com 423

let itemDictionary = dict as! NSDictionary

let javaScriptValues =
itemDictionary[NSExtensionJavaScriptPreprocessingResultsKey] as!
NSDictionary

print(javaScriptValues)

I've previously spoken about how Swift's String type can be used interchangeably with
NSString, and how Swift's Array type can be used interchangeably with NSArray – both of
these are Objective C's versions of the Swift structures. Well, the Objective C version of
Swift's Dictionary is called NSDictionary, and it's what we receive from Safari.

One of the nice things about NSDictionary is that you don't need to declare or even know
what data types it holds. One of the nasty things about NSDictionary is that you don't need
to declare or even know what data types it holds. Yes, it's both an advantage and a
disadvantage in one. When working with extensions, however, it's definitely an advantage
because we just don't care what's in there – we just want to pull out our data.

When you use loadItemForTypeIdentifier(), your closure will be called with the data that
was received from the extension along with any error that occurred. Apple could provide
other data too, so what we get is a dictionary of data that contains all the information Apple
wants us to have, and we put that into itemDictionary.

Right now, there's nothing in that dictionary other than the data we sent from JavaScript, and
that's stored in a special key called NSExtensionJavaScriptPreprocessingResultsKey. So,
we pull that value out from the dictionary, and put it into a value called javaScriptValues.

We sent a dictionary of data from JavaScript, so we typecast javaScriptValues as an
NSDictionary again so that we can pull out values using keys, but for now we just send the
whole lot to the print() function, which dumps the dictionary contents to Xcode's debug
console.

So, we've successfully proved that Safari is sending data to our extension; it's time to do
something interesting with it!

www.hackingwithswift.com 424

Hacking with JavaScript
Our extension is going to let users type in JavaScript, so before we get onto more coding
we're going to add a basic user interface. Open MainInterface.storyboard, then delete its
UIImageView and navigation bar. Once that's done, embed the view controller in a navigation
controller.

We're going to use a new UIKit component called UITextView. You already met UITextField
in project 5, and it's useful for letting users enter text into a single-line text box. But if you
want multiple lines of text, you need UITextView, so search for "textview" in the object library
and drag one into your view so that it takes up all the space. Delete the template "Lorem
ipsum" text that is in there.

Use Resolve Layout Issues > Add Missing Constraints to add automatic Auto Layout
constraints. If you find you're having trouble with text going behind the navigation bar, try
deleting the top vertical constraint and replacing it with a constraint against the top layout
guide. Now use the assistant editor to create an outlet named script for the text view in
ActionViewController.swift, and while you're there you can delete the UIImageView outlet
that Xcode made for you.

That's everything for Interface Builder, so switch back to the standard editor, open
ActionViewController.swift and add these two properties to your class:

var pageTitle = ""

var pageURL = ""

We're going to store these two because they are being transmitted by Safari. We'll use the
page title to show useful text in the navigation bar, and the URL is there for you to use
yourself if you make improvements.

You already saw that we're receiving the data dictionary from Safari, because we used the
print() function to output its values. Replace the print() call with this:

self.pageTitle = javaScriptValues["title"] as! String

self.pageURL = javaScriptValues["URL"] as! String

www.hackingwithswift.com 425

dispatch_async(dispatch_get_main_queue()) {

 self.title = self.pageTitle

}

That sets our two properties from the javaScriptValues dictionary, typecasting them as
String. It then uses dispatch_async() to set the view controller's title property on the main
queue. This is needed because the closure being executed as a result of
loadItemForTypeIdentifier() could be called on anything thread, and we don't want to
change the UI unless we're on the main thread.

You might have noticed that I haven't written [unowned self] in for the dispatch_async()
call, and that's because it's not needed. The closure will capture the variables it needs, which
includes self, but we're already inside a closure that has declared self to be unowned, so
this new closure will use that.

We can immediately make our app useful by modifying the done() method. It's been there all
along, but I've been ignoring it because there's so much other prep to do just to get out of
first gear, but it's now time to turn our eyes towards it and add some functionality.

The done() method was originally called as an action from the storyboard, but we deleted the
navigation bar Apple put in because it's terrible. Instead, let's create a UIBarButtonItem in
code, and make that call done() instead. Put this in viewDidLoad():

navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Done, target: self, action:
"done")

Right now, done() just has one line of code, which is this:

self.extensionContext!.completeRequestReturningItems(self.extensionCo
ntext!.inputItems, completionHandler: nil)

www.hackingwithswift.com 426

Calling completeRequestReturningItems() on our extension context will cause the
extension to be closed, returning back to the parent app. However, it will pass back to the
parent app any items that we specify, which in the current code is the same items that were
sent in.

In a Safari extension like ours, the data we return here will be passed in to the finalize()
function in the Action.js JavaScript file, so we're going to modify the done() method so that it
passes back the text the user entered into our text view.

To make this work, we need to:

 • Create a new NSExtensionItem object that will host our items.
 • Create a dictionary containing the key "customJavaScript" and the value of our script.
 • Put that dictionary into another dictionary with the key
NSExtensionJavaScriptFinalizeArgumentKey.
 • Wrap the big dictionary inside an NSItemProvider object with the type identifier
kUTTypePropertyList.
 • Place that NSItemProvider into our NSExtensionItem as its attachments.
 • Call completeRequestReturningItems(), returning our NSExtensionItem.

I realise that seems like far more effort than it ought to be, but it's really just the reverse of
what we are doing inside viewDidLoad().

With all that in mind, rewrite your done() method to this:

@IBAction func done() {

 let item = NSExtensionItem()

 let webDictionary = [NSExtensionJavaScriptFinalizeArgumentKey:
["customJavaScript": script.text]]

 let customJavaScript = NSItemProvider(item: webDictionary,
typeIdentifier: kUTTypePropertyList as String)

 item.attachments = [customJavaScript]

 extensionContext!.completeRequestReturningItems([item],
completionHandler: nil)

}

www.hackingwithswift.com 427

That's all the code required to send data back to Safari, at which point it will appear inside
the finalize() function in Action.js. From there we can do what we like with it, but in this
project the JavaScript we need to write is remarkably simple: we pull the "customJavaScript"
value out of the parameters array, then pass it to the JavaScript eval() function, which
executes any code it finds.

Open Action.js, and change the finalize() function to this:

finalize: function(parameters) {

 var customJavaScript = parameters["customJavaScript"];

 eval(customJavaScript);

}

That's it! Our user has written their code in our extension, tapped Done, and it gets executed
in Safari using eval(). If you want to give it a try, enter the code alert(document.title); into
the extension. When you tap Done, you'll return to Safari and see the page title in a message
box.

www.hackingwithswift.com 428

Fixing the keyboard
Before we're done, there's a bug in our extension, and it's a bad one – or at least it's bad
once you spot it. You see, when you tap to edit a text view, the iOS keyboard automatically
appears so that user can start typing. But if you try typing lots, you'll notice that you can
actually type underneath the keyboard because the text view hasn't adjusted its size
because the keyboard appeared.

If you don't see a keyboard when you tap to edit, it probably means you have the Connect
Hardware Keyboard setting turned on. Press Shift+Cmd+K to disable the hardware keyboard
and use the on-screen one.

Having our view adjust to the presence of a keyboard is tricky, because there are a number
of situations you need to cope with. For example, various keyboards are different heights, the
user can rotate their device at will, they can connect a hardware keyboard when they need
to, and there's even the QuickType bar that can be shown or hidden on demand.

In all the years I've done iOS development, I've seen at least a dozen ways of coping with
keyboards, and few of them are easy. Even Apple's example solution requires fiddling around
with constraints, which isn't ideal. I've tried to put together a solution that copes with all
possibilities and also requires as little code as possible. If you manage to find something
even simpler, do let me know!

We can ask to be told when the keyboard state changes by using a new class called
NSNotificationCenter. Behind the scenes, iOS is constantly sending out notifications when
things happen – keyboard changing, application moving to the background, as well as any
custom events that applications post. We can add ourselves as an observer for certain
notifications and a method we name will be called when the notification occurs, and will even
be passed any useful information.

When working with the keyboard, the notifications we care about are
UIKeyboardWillHideNotification and UIKeyboardWillChangeFrameNotification. The first
will be sent when the keyboard has finished hiding, and the second will be shown when any
keyboard state change happens – including showing and hiding, but also orientation,
QuickType and more.

It might sound like we don't need UIKeyboardWillHideNotification if we have
UIKeyboardWillChangeFrameNotification, but in my testing just using
UIKeyboardWillChangeFrameNotification isn't enough to catch a hardware keyboard

www.hackingwithswift.com 429

being connected. Now, that's an extremely rare case, but we might as well be sure!

To register ourselves as an observer for a notification, we get a reference to the default
notification center. We then use the addObserver() method, which takes four parameters:
the object that should receive notifications (it's self), the method that should be called, the
notification we want to receive, and the object we want to watch. We're going to pass nil to
the last parameter, meaning "we don't care who sends the notification."

So, add this code to viewDidLoad():

let notificationCenter = NSNotificationCenter.defaultCenter()

notificationCenter.addObserver(self, selector: "adjustForKeyboard:",
name: UIKeyboardWillHideNotification, object: nil)

notificationCenter.addObserver(self, selector: "adjustForKeyboard:",
name: UIKeyboardWillChangeFrameNotification, object: nil)

The adjustForKeyboard() method is complicated, but that's because it has quite a bit of
work to do. First, it will receive a parameter that is of type NSNotification. This will include
the name of the notification as well as an NSDictionary containing notification-specific
information called userInfo.

When working with keyboards, the dictionary will contain a key called
UIKeyboardFrameEndUserInfoKey telling us the frame of the keyboard after it has finished
animating. This will be of type NSValue, which in turn is of type CGRect. The CGRect struct
holds both a CGPoint and a CGSize, so it can be used to describe a rectangle.

One of the quirks of Objective C was that arrays and dictionaries couldn't contain structures
like CGRect, so Apple had a special class called NSValue that acted as a wrapper around
structures so they could be put into dictionaries and arrays. That's what's happening here:
we're getting an NSValue object, but we know it contains a CGRect inside so we use its
CGRectValue() method to pull out that value.

Once we finally pull out the correct frame of the keyboard, we need to convert the rectangle
to our view's co-ordinates. This is because rotation isn't factored into the frame, so if the
user is in landscape we'll have the width and height flipped – using the convertView()
method will fix that.

www.hackingwithswift.com 430

The next thing we need to do in the adjustForKeyboard() method is to adjust the
contentInset and scrollIndicatorInsets of our text view. These two essentially indent the
edges of our text view so that it appears to occupy less space even though its constraints
are still edge to edge in the view.

Finally, we're going to make the text view scroll so that the text entry cursor is visible. If the
text view has shrunk this will now be off screen, so scrolling to find it again keeps the user
experience intact.

It's not a lot of code, but it is complicated – par for the course on this project, it seems.
Anyway, here's the method:

func adjustForKeyboard(notification: NSNotification) {

 let userInfo = notification.userInfo!

 let keyboardScreenEndFrame =
(userInfo[UIKeyboardFrameEndUserInfoKey] as! NSValue).CGRectValue()

 let keyboardViewEndFrame = view.convertRect(keyboardScreenEndFrame,
fromView: view.window)

 if notification.name == UIKeyboardWillHideNotification {

 script.contentInset = UIEdgeInsetsZero

 } else {

 script.contentInset = UIEdgeInsets(top: 0, left: 0, bottom:
keyboardViewEndFrame.height, right: 0)

 }

 script.scrollIndicatorInsets = script.contentInset

 let selectedRange = script.selectedRange

 script.scrollRangeToVisible(selectedRange)

}

www.hackingwithswift.com 431

As you can see, setting the inset of a text view is done using the UIEdgeInsets struct, which
needs insets for all four edges. I'm using the text view's content inset for its
scrollIndicatorInsets to save time.

Note there's a check in there for UIKeyboardWillHideNotification, and that's the
workaround for hardware keyboards being connected by explicitly setting the insets to be
zero.

www.hackingwithswift.com 432

Wrap up
I'll tell you what: I'm feeling tired and I didn't even have to learn anything to write this project
– I can't imagine how tired you are! But please don't be too disheartened: extensions are new
in iOS 8 and developers are still trying to figure out the best way to use them.

Some of the code isn't pleasant to work with, and certainly I wish iOS would just figure out
text view insets automatically for keyboards, but you're through it now so your project is
done. Even though this was a hard project, I did cut quite a few corners in this project to
make the code as easy as possible, so again I want to encourage you to try creating another
extension and see how Apple's example code is different from mine.

If you'd like to make improvements to this project, you could try combining a number of
techniques together to make a pretty awesome app. You're already receiving the URL of the
site the user is on, so why not use NSUserDefaults to save the user's JavaScript for each
site? You should convert the URL to an NSURL object in order to use its host property. If you
wanted to be really fancy, you could let users name their scripts, then select one to load view
using a UITableView.

www.hackingwithswift.com 433

Project 17
Swifty Ninja
Learn to draw shapes in SpriteKit while making a fun and
tense slicing game.

www.hackingwithswift.com 434

Setting up
I don't want to put you off, but this is by far the longest project in the series. It's not the most
complicated, but it's long, coming in just short of 500 lines in total. That said, I hope it'll be
worth it, because the end result is great: we're going to make a Fruit Ninja-style game, where
slicing penguins is good and slicing bombs is bad. I think I must unconsciously have
something against penguins…

Anyway, in this project you're going to be creating your own enums for the first time, you're
going to meet SKShapeNode and AVAudioPlayer, you're going to create SKAction groups,
you're going to create shapes with UIBezierPath, learn about default parameters, and more.
So, it's the usual recipe: make something cool, and learn at the same time.

This is the second of two projects that are hard – not because I'm trying to set you back, just
because they are more complex than the others. This project is hard because you need to
write a lot of code before you can start to see results, which I personally find frustrating. I
much prefer it when I can write a few lines, see the result, write a few lines more, see the
result again, and so on. That isn't possible here, so I suggest you make some coffee before
you begin.

Still here? OK!

Create a new SpriteKit project in Xcode, name it Project17, set its target to be iPad, then do
the usual cleaning job: remove all the code from didMoveToView() and touchesBegan(),
then delete the spaceship graphics from Images.xcassets. Please also download the files for
this project from GitHub, then copy its Content folder and Helper.swift files into your Xcode
project.

Please force the app to be landscape only before continuing.

Warning: When working with SpriteKit projects, I strongly recommend you use the iPad 2
simulator rather than iPad Air – you'll get much faster frame rates, making it much more
suitable for testing.

www.hackingwithswift.com 435

Basics quick start
The only way we can get through this project with our sanity intact is by whizzing through the
things you know already so I can spend more time focusing on the new bits. So, be prepared
for abrupt changes of pace: fast, slow, fast, slow, as appropriate.

Open up GameScene.swift and put this into didMoveToView():

let background = SKSpriteNode(imageNamed: "sliceBackground")

background.position = CGPoint(x: 512, y: 384)

background.blendMode = .Replace

background.zPosition = -1

addChild(background)

physicsWorld.gravity = CGVector(dx: 0, dy: -6)

physicsWorld.speed = 0.85

createScore()

createLives()

createSlices()

The last three are all methods we'll create in a moment, but first there are two new lines in
there. The default gravity of our physics world is -0.98, which is roughly equivalent to Earth's
gravity. I'm using a slightly lower value so that items stay up in the air a bit longer.

Gravity is expressed using a new data type called CGVector, which looks and works like a
CGPoint except it takes "delta x" and "delta y" as its parameters. "Delta" is a fancy way of
saying "difference", in this case from 0. Vectors are best visualised like an arrow that has its
base always at 0,0 and its tip at the point you specify. We're specifying X:0 and Y:-6, so our
vector arrow is pointing straight down.

I'm also telling the physics world to adjust its speed downwards, which causes all movement
to happen at a slightly slower rate.

www.hackingwithswift.com 436

The first two new methods are easy and require little explanation, but you will need to add
some properties to the GameScene class to support them:

var gameScore: SKLabelNode!

var score: Int = 0 {

 didSet {

 gameScore.text = "Score: \(score)"

 }

}

var livesImages = [SKSpriteNode]()

var lives = 3

That's all old news for you – if nothing else, this should show how far you've come! Now here
are the two new methods:

func createScore() {

 gameScore = SKLabelNode(fontNamed: "Chalkduster")

 gameScore.text = "Score: 0"

 gameScore.horizontalAlignmentMode = .Left

 gameScore.fontSize = 48

 addChild(gameScore)

 gameScore.position = CGPoint(x: 8, y: 8)

}

func createLives() {

 for i in 0 ..< 3 {

www.hackingwithswift.com 437

 for i in 0 ..< 3 {

 let spriteNode = SKSpriteNode(imageNamed: "sliceLife")

 spriteNode.position = CGPoint(x: CGFloat(834 + (i * 70)), y: 720)

 addChild(spriteNode)

 livesImages.append(spriteNode)

 }

}

You'll notice I'm adding the lives images to the livesImages array, which is done so that we
can cross off lives when the player loses.

Our game interface is quite simple: score on the bottom left, lives on the top right, and a big
empty area in the middle where we can smite penguins.

That leaves the createSlices() method, and this bit is new. In this game, swiping around the
screen will lead a glowing trail of slice marks that fade away when you let go or keep on

www.hackingwithswift.com 438

moving. To make this work, we're going to do three things:

1. Track all player moves on the screen, recording an array of all their swipe points.
2. Draw two slice shapes, one in white and one in yellow to make it look like there's a hot
glow.
3. Use the zPosition property that you met in project 11 to make sure the slices go above
everything else in the game.

Drawing a shape in SpriteKit is easy thanks to a special node type called SKShapeNode.
This lets you define any kind of shape you can draw, along with line width, stroke color and
more, and it will render it to the screen. We're going to draw two lines – one for a yellow glow,
and one for a white glow in the middle of the yellow glow – so we're going to need two
SKShapeNode properties:

var activeSliceBG: SKShapeNode!

var activeSliceFG: SKShapeNode!

And here's the code for the createSlices() method:

func createSlices() {

 activeSliceBG = SKShapeNode()

 activeSliceBG.zPosition = 2

 activeSliceFG = SKShapeNode()

 activeSliceFG.zPosition = 2

 activeSliceBG.strokeColor = UIColor(red: 1, green: 0.9, blue: 0,
alpha: 1)

 activeSliceBG.lineWidth = 9

 activeSliceFG.strokeColor = UIColor.whiteColor()

 activeSliceFG.lineWidth = 5

www.hackingwithswift.com 439

 addChild(activeSliceBG)

 addChild(activeSliceFG)

}

Note that the background slice has a thicker line width than the foreground, and we have to
add the background one first. I'm using Z position 2 for the slice shapes, because I'll be
using Z position 1 for bombs and Z position 0 for everything else – this ensures the slice
shapes are on top, then bombs, then everything else.

www.hackingwithswift.com 440

Shaping up for action
Like I already explained, we're going to keep an array of the user's swipe points so that we
can draw a shape resembling their slicing. To make this work, we're going to need five new
methods, one of which you've met already. They are: touchesBegan(), touchesMoved(),
touchesEnded(), touchesCancelled() and redrawActiveSlice().

You already know how touchesBegan() works, and the other three "touches" methods all
work the same way. There's a subtle difference between touchesEnded() and
touchesCancelled(): the former is called when the user stops touching the screen, and the
latter is called if the system has to interrupt the touch for some reason – e.g. if a low memory
warning appears. We're going to make touchesCancelled() just call touchesEnded(), to
avoid duplicating code.

First things first: add this new property to your class so that we can store swipe points:

var activeSlicePoints = [CGPoint]()

We're going to tackle the three easiest methods first: touchesMoved(), touchesEnded() and
touchesCancelled(). All the touches touchesMoved() method needs to do is figure out
where in the scene the user touched, add that location to the slice points array, then redraw
the slice shape, so that's easy enough:

override func touchesMoved(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 guard let touch = touches.first else { return }

 let location = touch.locationInNode(self)

 activeSlicePoints.append(location)

 redrawActiveSlice()

}

www.hackingwithswift.com 441

When the user finishes touching the screen, touchesEnded() will be called. I'm going to
make this method fade out the slice shapes over a quarter of a second because we either
remove them immediately (which looks ugly) or we leave them sitting there for no reason
(which destroys the effect). So, add this touchesEnded() method:

override func touchesEnded(touches: Set<UITouch>?, withEvent event:
UIEvent?) {

 activeSliceBG.runAction(SKAction.fadeOutWithDuration(0.25))

 activeSliceFG.runAction(SKAction.fadeOutWithDuration(0.25))

}

You haven't used the fadeOutWithDuration() action before, but I think it's pretty obvious
what it does!

The third easy function is touchesCancelled(), and it's easy because we're just going to
forward it on to touchesEnded() like this:

override func touchesCancelled(touches: Set<UITouch>?, withEvent
event: UIEvent?) {

 if let touches = touches {

 touchesEnded(touches, withEvent: event)

 }

}

So far this is all easy stuff, but we're going to look at an interesting method now:
touchesBegan(). This needs to do several things:

1. Remove all existing points in the activeSlicePoints array, because we're starting fresh.
2. Get the touch location and add it to the activeSlicePoints array.
3. Call the (as yet unwritten) redrawActiveSlice() method to clear the slice shapes.
4. Remove any actions that are currently attached to the slice shapes. This will be important
if they are in the middle of a fadeOutWithDuration() action.
5. Set both slice shapes to have an alpha value of 1 so they are fully visible.

www.hackingwithswift.com 442

We can convert that to code with ease – in fact, I've put numbered comments in the code
below so you can match them up to the points above:

override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 super.touchesBegan(touches, withEvent: event)

 // 1

 activeSlicePoints.removeAll(keepCapacity: true)

 // 2

 if let touch = touches.first {

 let location = touch.locationInNode(self)

 activeSlicePoints.append(location)

 // 3

 redrawActiveSlice()

 // 4

 activeSliceBG.removeAllActions()

 activeSliceFG.removeAllActions()

 // 5

 activeSliceBG.alpha = 1

 activeSliceFG.alpha = 1

 }

}

So, there's some challenge there but not a whole lot. Where it gets interesting is the

www.hackingwithswift.com 443

redrawActiveSlice() method, because this is going to use a new class called UIBezierPath
that will be used to connect our swipe points together into a single line.

As with the previous method, let's take a look at what redrawActiveSlice() needs to do:

1. If we have fewer than two points in our array, we don't have enough data to draw a line so
it needs to clear the shapes and exit the method.
2. If we have more than 12 slice points in our array, we need to remove the oldest ones until
we have at most 12 – this stops the swipe shapes from becoming too long.
3. It needs to start its line at the position of the first swipe point, then go through each of the
others drawing lines to each point.
4. Finally, it needs to update the slice shape paths so they get drawn using their designs –
i.e., line width and color.

To make this work, you're going to need to know that an SKShapeNode object has a
property called path which describes the shape we want to draw. When it's nil, there's
nothing to draw; when it's set to a valid path, that gets drawn with the SKShapeNode's
settings. SKShapeNode expects you to use a data type called CGPath, but we can easily
create that from a UIBezierPath.

Drawing a path using UIBezierPath is a cinch: we'll use its moveToPoint() method to
position the start of our lines, then loop through our activeSlicePoints array and call the
path's addLineToPoint() method for each point.

To stop the array storing more than 12 slice points, we're going to use a new loop type called
a while loop. This loop will continue executing until its condition stops being true, so we'll
just give the condition that activeSlicePoints has more than 12 items, then ask it to remove
the first item until the condition fails.

I'm going to insert numbered comments into the code again to help you match up the goals
with the code more easily:

func redrawActiveSlice() {

 // 1

 if activeSlicePoints.count < 2 {

 activeSliceBG.path = nil

 activeSliceFG.path = nil

www.hackingwithswift.com 444

 activeSliceFG.path = nil

 return

 }

 // 2

 while activeSlicePoints.count > 12 {

 activeSlicePoints.removeAtIndex(0)

 }

 // 3

 let path = UIBezierPath()

 path.moveToPoint(activeSlicePoints[0])

 for i in 1 ..< activeSlicePoints.count {

 path.addLineToPoint(activeSlicePoints[i])

 }

 // 4

 activeSliceBG.path = path.CGPath

 activeSliceFG.path = path.CGPath

}

At this point, we have something you can run: press Cmd+R to run the game, then tap and
swipe around on the screen to see the slice effect – I think you'll agree that SKShapeNode is
pretty powerful!

www.hackingwithswift.com 445

As the player swipes, their slices light up the screen in a bright yellow curve.

Before we're done with the slice effect, we're going to add one more thing: a "swoosh"
sound that plays as you swipe around. You've already seen the playSoundFileNamed()
method of SKAction, but we're going to use it a little differently here.

You see, if we just played a swoosh every time the player moved, there would be 100 sounds
playing at any given time – one for every small movement they made. Instead, we want only
one swoosh to play at once, so we're going to set to true a property called
swooshSoundActive, make the waitForCompletion of our SKAction true, then use a
completion closure for runAction() so that swooshSoundActive is set to false.

So, when the player first swipes we set swooshSoundActive to be true, and only when the
swoosh sound has finished playing do we set it back to false again. This will allow us to
ensure only one swoosh sound is playing at a time.

First, give your class this new property:

var swooshSoundActive = false

www.hackingwithswift.com 446

var swooshSoundActive = false

Now we need to check whether that's false when touchesMoved() is called, and, if it is false,
call a new method called playSwooshSound(). Add this to code just before the end of
touchesMoved():

if !swooshSoundActive {

 playSwooshSound()

}

I've provided you with three different swoosh sounds, all of which are effectively the same
just at varying pitches. The playSwooshSound() method needs to set swooshSoundActive
to be true (so that no other swoosh sounds are played until we're ready), play one of the
three sounds, then when the sound has finished set swooshSoundActive to be false again
so that another swoosh sound can play.

By playing our sound with waitForCompletion set to true, SpriteKit automatically ensures
the completion closure given to runAction() isn't called until the sound has finished, so this
solution is perfect.

func playSwooshSound() {

 swooshSoundActive = true

 let randomNumber = RandomInt(min: 1, max: 3)

 let soundName = "swoosh\(randomNumber).caf"

 let swooshSound = SKAction.playSoundFileNamed(soundName,
waitForCompletion: true)

 runAction(swooshSound) { [unowned self] in

 self.swooshSoundActive = false

 }

www.hackingwithswift.com 447

 }

}

www.hackingwithswift.com 448

Enemy or bomb?
In this section we're going to look at just one method, which should tell you immediately that
this is a complicated method. This method is called createEnemy(), and is responsible for
launching either a penguin or a bomb into the air for the player to swipe. That's it – that's all
it does. And yet it's going to take quite a lot of code because it takes quite a lot of
functionality in order to make the game complete:

1. Should this enemy be a penguin or a bomb?
2. Where should be it created on the screen?
3. What direction should it be moving in?

It should be obvious that 3) relies on 2) – if you create something on the left edge of the
screen, having it move to the left would make the game impossible for players!

An additional complexity is that in the early stages of the game we sometimes want to force
a bomb, and sometimes force a penguin, in order to build a smooth learning curve. For
example, it wouldn't be fair to make the very first enemy a bomb, because the player would
swipe it and lose immediately.

We're going to specify what kind of enemy we want using an enum. You've used enums
already (not least in project 2), but you've never created one before. To make createEnemy()
work, we need to declare a new enum that tracks what kind of enemy should be created:
should we force a bomb always, should we force a bomb never, or use the default
randomisation?

Add this above your class definition in GameScene.swift:

enum ForceBomb {

 case Never, Always, Default

}

You can now use those values in your code, for example like this:

if forceBomb == .Never {

 enemyType = 1

www.hackingwithswift.com 449

 enemyType = 1

} else if forceBomb == .Always {

 enemyType = 0

}

OK, it's time to start looking at the createEnemy() method. I say "start" because we're going
to look at it in three passes: the code required to create bombs, the code to position enemies
and set up their physics, and the code required to do everything else. Your code probably
won't run until all three parts are in place, so don't worry!

We're going to need to track enemies that are currently active in the scene, so please add
this array as a property of your class:

var activeEnemies = [SKSpriteNode]()

And now let's look at the core of the createEnemy() method. It needs to:

1. Accept a parameter of whether we want to force a bomb, not force a bomb, or just be
random.
2. Decide whether to create a bomb or a penguin (based on the parameter input) then create
the correct thing.
3. Add the new enemy to the scene, and also to our activeEnemies array.

That's it. Not too much, I hope. To decide whether to create a bomb or a player, I'll choose a
random number from 0 to 6, and consider 0 to mean "bomb". Here's the code:

func createEnemy(forceBomb forceBomb: ForceBomb = .Default) {

 var enemy: SKSpriteNode

 var enemyType = RandomInt(min: 0, max: 6)

 if forceBomb == .Never {

 enemyType = 1

www.hackingwithswift.com 450

 enemyType = 1

 } else if forceBomb == .Always {

 enemyType = 0

 }

 if enemyType == 0 {

 // bomb code goes here

 } else {

 enemy = SKSpriteNode(imageNamed: "penguin")

 runAction(SKAction.playSoundFileNamed("launch.caf",
waitForCompletion: false))

 enemy.name = "enemy"

 }

 // position code goes here

 addChild(enemy)

 activeEnemies.append(enemy)

}

You may have spotted that the forceBomb parameter is specified with a default value
of .Default, as seen at the end of project 2.

Other than that, there's nothing complicated in there, but I have taken out two fairly meaty
chunks of code. That // position code goes here comment masks a lot of missing
functionality that really makes the game come alive, so we're going to fill that in now.

I'm going to use numbered comments again so you can see exactly how this code matches
up with what it should do. So, here is what that missing position code needs to do:

1. Give the enemy a random position off the bottom edge of the screen.
2. Create a random angular velocity, which is how fast something should spin.
3. Create a random X velocity (how far to move horizontally) that takes into account the

www.hackingwithswift.com 451

enemy's position.
4. Create a random Y velocity just to make things fly at different speeds.
5. Give all enemies a circular physics body where the collisionBitMask is set to 0 so they
don't collide.

The only thing that might catch you out in the actual code is my use of magic numbers,
which is what programmers call seemingly random (but actually important) numbers
appearing in code. Ideally you don't want these, because it's better to make them constants
with names, but then how would I be able to give you any homework? (Evil laugh.)

Turning those five points into code is easy enough – just replace the // position code goes
here with this:

// 1

let randomPosition = CGPoint(x: RandomInt(min: 64, max: 960), y:
-128)

enemy.position = randomPosition

// 2

let randomAngularVelocity = CGFloat(RandomInt(min: -6, max: 6)) /
2.0

var randomXVelocity = 0

// 3

if randomPosition.x < 256 {

 randomXVelocity = RandomInt(min: 8, max: 15)

} else if randomPosition.x < 512 {

 randomXVelocity = RandomInt(min: 3, max: 5)

} else if randomPosition.x < 768 {

 randomXVelocity = -RandomInt(min: 3, max: 5)

} else {

 randomXVelocity = -RandomInt(min: 8, max: 15)

}

www.hackingwithswift.com 452

// 4

let randomYVelocity = RandomInt(min: 24, max: 32)

// 5

enemy.physicsBody = SKPhysicsBody(circleOfRadius: 64)

enemy.physicsBody!.velocity = CGVector(dx: randomXVelocity * 40, dy:
randomYVelocity * 40)

enemy.physicsBody!.angularVelocity = randomAngularVelocity

enemy.physicsBody!.collisionBitMask = 0

The last missing part of the createEnemy() method is about creating bombs, and I've left it
separate because it requires some thinking. A "bomb" node in our game is actually going to
be made up of three parts: the bomb image, a bomb fuse particle emitter, and a container
that puts the two together so we can move and spin them around together.

The reason we need to keep the bomb image and bomb fuse separate is because tapping on
a bomb is a fatal move that causes the player to lose all their lives immediately. If the fuse
particle emitter were inside the bomb image, then the user could accidentally tap a stray fuse
particle and lose unfairly.

As a reminder, we're going to force the Z position of bombs to be 1, which is higher than the
default value of 0. This is so that bombs always appear in front of penguins, because hours
of playtesting has made it clear to me that it's awful if you don't realise there's a bomb
lurking behind something when you swipe it!

Creating a bomb also needs to play a fuse sound, but that has its own complexity. You've
already seen that SKAction has a very simple way to play sounds, but it's so simple that it's
not useful here because we want to be able to stop the sound and SKAction sounds don't
let you do that. It would be confusing for the fuse sound to be playing when no bombs are
visible, so we need a better solution.

That solution is called AVAudioPlayer, and it's not a SpriteKit class – it's available to use in
your UIKit apps too if you want. We're going to have an AVAudioPlayer property for our
class that will store a sound just for bomb fuses so that we can stop it as needed.

www.hackingwithswift.com 453

Let's put numbers to the tasks this chunk of code needs to perform:

1. Create a new SKSpriteNode that will hold the fuse and the bomb image as children,
setting its Z position to be 1.
2. Create the bomb image, name it "bomb", and add it to the container.
3. If the bomb fuse sound effect is playing, stop it and destroy it.
4. Create a new bomb fuse sound effect, then play it.
5. Create a particle emitter node, position it so that it's at the end of the bomb image's fuse,
and add it to the container.

That's all you need to know, so please replace the // bomb code goes here comment with
this, watching out for my numbered comments to help you match code against meaning:

// 1

enemy = SKSpriteNode()

enemy.zPosition = 1

enemy.name = "bombContainer"

// 2

let bombImage = SKSpriteNode(imageNamed: "sliceBomb")

bombImage.name = "bomb"

enemy.addChild(bombImage)

// 3

if bombSoundEffect != nil {

 bombSoundEffect.stop()

 bombSoundEffect = nil

}

// 4

let path = NSBundle.mainBundle().pathForResource("sliceBombFuse.caf",
ofType:nil)!

let url = NSURL(fileURLWithPath: path)

www.hackingwithswift.com 454

let url = NSURL(fileURLWithPath: path)

let sound = try! AVAudioPlayer(contentsOfURL: url)

bombSoundEffect = sound

sound.play()

// 5

let emitter = SKEmitterNode(fileNamed: "sliceFuse")!

emitter.position = CGPoint(x: 76, y: 64)

enemy.addChild(emitter)

Note that I've used try! here because if we're unable to read a sound file from our app bundle
then clearly something is fatally wrong.

To make that code work, you need to import the AVFoundation framework, so go to the top
of your file and add this line of code before import UIKit:

import AVFoundation

You'll also need to declare the bombSoundEffect property, so put this just after the
declaration of swooshSoundActive:

var bombSoundEffect: AVAudioPlayer!

After all that work, you're almost done with bombs. But there's one small bug that we can
either fix now or fix when you can see it, but we might as well fix it now because your brain is
thinking about all that bomb code.

The bug is this: we're using AVAudioPlayer so that we can stop the bomb fuse when bombs
are no longer on the screen. But where do we actually stop the sound? Well, we don't yet –
but we need to.

To fix the bug, we need to modify the update() method, which is something we haven't

www.hackingwithswift.com 455

To fix the bug, we need to modify the update() method, which is something we haven't
touched before. This method is called every frame before it's drawn, and gives you a chance
to update your game state as you want. We're going to use this method to count the number
of bomb containers that exist in our game, and stop the fuse sound if the answer is 0.

Change your update() method to this:

override func update(currentTime: CFTimeInterval) {

 var bombCount = 0

 for node in activeEnemies {

 if node.name == "bombContainer" {

 bombCount += 1

 break

 }

 }

 if bombCount == 0 {

 // no bombs – stop the fuse sound!

 if bombSoundEffect != nil {

 bombSoundEffect.stop()

 bombSoundEffect = nil

 }

 }

}

www.hackingwithswift.com 456

Follow the sequence
You've come so far already, and really there isn't a lot to show for your work other than being
able to draw glowing slice shapes when you move touches around the screen. But that's all
about to change, because we're now about to create the interesting code – we're going to
make the game actually create some enemies.

Now, you might very well be saying, "but Paul, we just wrote the enemy creating code, and I
never want to see it again!" You're right (and I never want to see it again either!) but it's a bit
more complicated: the createEnemy() method creates one enemy as required. The code
we're going to write now will call createEnemy() in different ways so that we get varying
groups of enemies.

For example, sometimes we want to create two enemies at once, sometimes we want to
create four at once, and sometimes we want to create five in quick sequence. Each one of
these will call createEnemy() in different ways.

There's a lot to cover here, so let's get started: add this new enum before the ForceBomb
enum you added a few minutes ago:

enum SequenceType: Int {

 case OneNoBomb, One, TwoWithOneBomb, Two, Three, Four, Chain,
FastChain

}

That outlines the possible types of ways we can create enemy: one enemy that definitely is a
bomb, one that might or might not be a bomb, two where one is a bomb and one isn't, then
two/three/four random enemies, a chain of enemies, then a fast chain of enemies.

The first two will be used exclusively when the player first starts the game, to give them a
gentle warm up. After that, they'll be given random sequence types from TwoWithOneBomb
to FastChain.

We're going to need quite a few new properties in order to make the plan work, so please
add these now:

www.hackingwithswift.com 457

var popupTime = 0.9

var sequence: [SequenceType]!

var sequencePosition = 0

var chainDelay = 3.0

var nextSequenceQueued = true

And here's what they do:

 • popupTime is the amount of time to wait between the last enemy being destroyed and a
new one being created.
 • sequence is an array of our SequenceType enum that defines what enemies to create.
 • sequencePosition is where we are right now in the game.
 • chainDelay is how long to wait before creating a new enemy when the sequence type
is .Chain or .FastChain. Enemy chains don't wait until the previous enemy is offscreen
before creating a new one, so it's like throwing five enemies quickly but with a small delay
inbetween each one.
 • nextSequenceQueued is used so we know when all the enemies are destroyed and we're
ready to create more.

Whenever we call our new method, which is tossEnemies(), we're going to decrease both
popupTime and chainDelay so that the game gets harder as they play. Sneakily, we're
always going to increase the speed of our physics world, so that objects move rise and fall
faster too.

Nearly all the tossEnemies() method is a large switch/case statement that looks at the
sequencePosition property to figure out what sequence type it should so. It then calls
createEnemy() correctly for the sequence type, passing in whether to force bomb creation or
not.

The one thing that will need to be explained is the way enemy chains are created. Unlike
regular sequence types, a chain is made up of several enemies with a space between them,
and the game doesn't wait for an enemy to be sliced before showing the next thing in the
chain.

The best thing for you to do is to put this source code into your project, and we can talk

www.hackingwithswift.com 458

about the chain complexities in a moment:

func tossEnemies() {

 popupTime *= 0.991

 chainDelay *= 0.99

 physicsWorld.speed *= 1.02

 let sequenceType = sequence[sequencePosition]

 switch sequenceType {

 case .OneNoBomb:

 createEnemy(forceBomb: .Never)

 case .One:

 createEnemy()

 case .TwoWithOneBomb:

 createEnemy(forceBomb: .Never)

 createEnemy(forceBomb: .Always)

 case .Two:

 createEnemy()

 createEnemy()

 case .Three:

 createEnemy()

 createEnemy()

 createEnemy()

 case .Four:

 createEnemy()

www.hackingwithswift.com 459

 createEnemy()

 createEnemy()

 createEnemy()

 createEnemy()

 case .Chain:

 createEnemy()

 RunAfterDelay(chainDelay / 5.0) { [unowned self] in
self.createEnemy() }

 RunAfterDelay(chainDelay / 5.0 * 2) { [unowned self] in
self.createEnemy() }

 RunAfterDelay(chainDelay / 5.0 * 3) { [unowned self] in
self.createEnemy() }

 RunAfterDelay(chainDelay / 5.0 * 4) { [unowned self] in
self.createEnemy() }

 case .FastChain:

 createEnemy()

 RunAfterDelay(chainDelay / 10.0) { [unowned self] in
self.createEnemy() }

 RunAfterDelay(chainDelay / 10.0 * 2) { [unowned self] in
self.createEnemy() }

 RunAfterDelay(chainDelay / 10.0 * 3) { [unowned self] in
self.createEnemy() }

 RunAfterDelay(chainDelay / 10.0 * 4) { [unowned self] in
self.createEnemy() }

 }

 sequencePosition += 1

 nextSequenceQueued = false

www.hackingwithswift.com 460

 nextSequenceQueued = false

}

That looks like a massive method, I know, but in reality it's just the same thing being called in
different ways. The interesting parts are the .Chain and .FastChain cases, and also I want to
explain in more detail the nextSequenceQueued property.

Each sequence in our array creates one or more enemies, then waits for them to be
destroyed before continuing. Enemy chains are different: they create five enemies with a
short break inbetween, and don't wait for each one to be destroyed before continuing.

To handle these chains, we have calls to RunAfterDelay() with a timer value. If we assume
for a moment that chainDelay is 10 seconds, then:

 • chainDelay / 10.0 is 1 second.
 • chainDelay / 10.0 * 2 is 2 seconds.
 • chainDelay / 10.0 * 3 is three seconds.
 • chainDelay / 10.0 * 4 is four seconds.

So, it spreads out the createEnemy() calls quite neatly.

The nextSequenceQueued property is more complicated. If it's false, it means we don't
have a call to tossEnemies() in the pipeline waiting to execute. It gets set to true only in the
gap between the previous sequence item finishing and tossEnemies() being called. Think of
it as meaning, "I know there aren't any enemies right now, but more will come shortly."

We can make our game come to life with enemies with two more pieces of code. First, add
this just before the end of didMoveToView():

sequence =
[.OneNoBomb, .OneNoBomb, .TwoWithOneBomb, .TwoWithOneBomb, .Three, .O
ne, .Chain]

for _ in 0 ... 1000 {

 let nextSequence = SequenceType(rawValue: RandomInt(min: 2, max:
7))!

 sequence.append(nextSequence)

www.hackingwithswift.com 461

 sequence.append(nextSequence)

}

RunAfterDelay(2) { [unowned self] in

 self.tossEnemies()

}

That code fills the sequence array with seven pre-written sequences to help players warm
up to how the game works, then adds 1001 (the ... operator means "up to and including")
random sequence types to fill up the game. Finally, it triggers the initial enemy toss after two
seconds.

The way we generate random sequence type values is new and quite interesting. If you cast
your mind back, this is how we defined the SequenceType enum:

enum SequenceType: Int {

 case OneNoBomb, One, TwoWithOneBomb, Two, Three, Four, Chain,
FastChain

}

Note that it says enum SequenceType: Int. We didn't have that for the ForceBomb enum –
it's new here, and it means "I want this enum to be mapped to integer values," and means
we can reference each of the sequence type options using so-called "raw values" from 0 to
7.

For example, to create a TwoWithOneBomb sequence type we could use
SequenceType(rawValue: 2). Swift doesn't know whether that number exists or not (we
could have written 77), so it returns an optional type that you need to unwrap.

The second change we're going to make is to remove enemies from the game when they fall
off the screen. This is required, because our game mechanic means that new enemies aren't
created until the previous ones have been removed. The exception to this rule are enemy
chains, where multiple enemies are created in a batch, but even then the game won't
continue until all enemies from the chain have been removed.

www.hackingwithswift.com 462

We're going to modify the update() method so that:

1. If we have active enemies, we loop through each of them.
2. If any enemy is at or lower than Y position -140, we remove it from the game and our
activeEnemies array.
3. If we don't have any active enemies and we haven't already queued the next enemy
sequence, we schedule the next enemy sequence and set nextSequenceQueued to be true.

Put this code first in the update() method:

if activeEnemies.count > 0 {

 for node in activeEnemies {

 if node.position.y < -140 {

 node.removeFromParent()

 if let index = activeEnemies.indexOf(node) {

 activeEnemies.removeAtIndex(index)

 }

 }

 }

} else {

 if !nextSequenceQueued {

 RunAfterDelay(popupTime) { [unowned self] in

 self.tossEnemies()

 }

 nextSequenceQueued = true

 }

}

www.hackingwithswift.com 463

And now the part you've been waiting for extremely patiently: press Cmd+R to run the game,
because it should now be getting close to useful!

Now that the game has bombs as well as penguins, it's almost starting to come together.

www.hackingwithswift.com 464

Slice to win
We need to modify touchesMoved() to detect when users slice penguins and bombs. The
code isn't complicated, but it is long, so I'm going to split it into three. First, here's the
structure – place this just before the end of touchesMoved():

let nodes = nodesAtPoint(location)

for node in nodes {

 if node.name == "enemy" {

 // destroy penguin

 } else if node.name == "bomb" {

 // destroy bomb

 }

}

Now, let's take a look at what destroying a penguin should do. It should:

1. Create a particle effect over the penguin.
2. Clear its node name so that it can't be swiped repeatedly.
3. Disable the dynamic of its physics body so that it doesn't carry on falling.
4. Make the penguin scale out and fade out at the same time.
5. After making the penguin scale out and fade out, we should remove it from the scene.
6. Add one to the player's score.
7. Remove the enemy from our activeEnemies array.
8. Play a sound so the player knows they hit the penguin.

Replace the // destroy penguin with this, following along with my numbered comments:

// 1

let emitter = SKEmitterNode(fileNamed: "sliceHitEnemy")!

emitter.position = node.position

addChild(emitter)

www.hackingwithswift.com 465

addChild(emitter)

// 2

node.name = ""

// 3

node.physicsBody!.dynamic = false

// 4

let scaleOut = SKAction.scaleTo(0.001, duration:0.2)

let fadeOut = SKAction.fadeOutWithDuration(0.2)

let group = SKAction.group([scaleOut, fadeOut])

// 5

let seq = SKAction.sequence([group, SKAction.removeFromParent()])

node.runAction(seq)

// 6

score += 1

// 7

let index = activeEnemies.indexOf(node as! SKSpriteNode)!

activeEnemies.removeAtIndex(index)

// 8

runAction(SKAction.playSoundFileNamed("whack.caf", waitForCompletion:
false))

You've now seen the two ways of collecting SpriteKit actions together: groups and
sequences. An action group specifies that all actions inside it should execute simultaneously,

www.hackingwithswift.com 466

whereas an action sequence runs them all one at a time. In the code above we have a group
inside a sequence, which is common.

If the player swipes a bomb by accident, they lose the game immediately. This uses much
the same code as destroying a penguin, but with a few differences:

 • The node called "bomb" is the bomb image, which is inside the bomb container. So, we
need to reference the node's parent when looking up our position, changing the physics
body, removing the node from the scene, and removing the node from our activeEnemies
array..
 • I'm going to create a different particle effect for bombs than for penguins.
 • We end by calling the (as yet unwritten) method endGame().

Replace the // destroy bomb comment with this:

let emitter = SKEmitterNode(fileNamed: "sliceHitBomb")!

emitter.position = node.parent!.position

addChild(emitter)

node.name = ""

node.parent!.physicsBody!.dynamic = false

let scaleOut = SKAction.scaleTo(0.001, duration:0.2)

let fadeOut = SKAction.fadeOutWithDuration(0.2)

let group = SKAction.group([scaleOut, fadeOut])

let seq = SKAction.sequence([group, SKAction.removeFromParent()])

node.parent!.runAction(seq)

let index = activeEnemies.indexOf(node.parent as! SKSpriteNode)!

activeEnemies.removeAtIndex(index)

runAction(SKAction.playSoundFileNamed("explosion.caf",

www.hackingwithswift.com 467

runAction(SKAction.playSoundFileNamed("explosion.caf",
waitForCompletion: false))

endGame(triggeredByBomb: true)

Before I walk you through the endGame() method, we need to adjust the update() method a
little. Right now, if a penguin or a bomb falls below -140, we remove it from the scene. We're
going to modify that so that if the player misses slicing a penguin, they lose a life. We're also
going to delete the node's name just in case any further checks for enemies or bombs
happen – clearing the node name will avoid any problems.

In the update() method, replace this code:

if node.position.y < -140 {

 node.removeFromParent()

 if let index = activeEnemies.indexOf(node) {

 activeEnemies.removeAtIndex(index)

 }

}

…with this:

if node.position.y < -140 {

 node.removeAllActions()

 if node.name == "enemy" {

 node.name = ""

 subtractLife()

 node.removeFromParent()

www.hackingwithswift.com 468

 if let index = activeEnemies.indexOf(node) {

 activeEnemies.removeAtIndex(index)

 }

 } else if node.name == "bombContainer" {

 node.name = ""

 node.removeFromParent()

 if let index = activeEnemies.indexOf(node) {

 activeEnemies.removeAtIndex(index)

 }

 }

}

That's mostly the same, except now we call subtractLife() when the player lets any penguins
through. So, if you miss a penguin you lose one life; if you swipe a bomb, you lose all your
lives. Or at least you would if our code actually compiled, which it won't: you're missing the
subtractLife() and endGame() methods!

www.hackingwithswift.com 469

Game over, man
You are now within reach of the end of this project, and not a moment too soon, I suspect.
You'll be pleased to know that you're just two methods away from the end, and neither of
them are particularly taxing.

First is the subtractLife() method, which is called when a penguin falls off the screen without
being sliced. It needs to subtract 1 from the lives property that we created what seems like
years ago, update the images in the livesImages array so that the correct number are
crossed off, then end the game if the player is out of lives.

To make it a bit clearer that something bad has happened, we're also going to add playing a
sound and animate the life being lost – we'll set the X and Y scale of the life being lost to 1.3,
then animate it back down to 1.0.

Here's the code:

func subtractLife() {

 lives -= 1

 runAction(SKAction.playSoundFileNamed("wrong.caf",
waitForCompletion: false))

 var life: SKSpriteNode

 if lives == 2 {

 life = livesImages[0]

 } else if lives == 1 {

 life = livesImages[1]

 } else {

 life = livesImages[2]

 endGame(triggeredByBomb: false)

 }

www.hackingwithswift.com 470

 life.texture = SKTexture(imageNamed: "sliceLifeGone")

 life.xScale = 1.3

 life.yScale = 1.3

 life.runAction(SKAction.scaleTo(1, duration:0.1))

}

Note how I'm using SKTexture to modify the contents of a sprite node without having to
recreate it, just like in project 14.

Finally, there's the endGame() method. I've made this accept a parameter that sets whether
the game ended because of a bomb, and I've forced the label for it using triggeredByBomb
triggeredByBomb because without the label it's a meaningless method name.

func endGame(triggeredByBomb triggeredByBomb: Bool) {

 if gameEnded {

 return

 }

 gameEnded = true

 physicsWorld.speed = 0

 userInteractionEnabled = false

 if bombSoundEffect != nil {

 bombSoundEffect.stop()

 bombSoundEffect = nil

 }

 if triggeredByBomb {

 livesImages[0].texture = SKTexture(imageNamed: "sliceLifeGone")

 livesImages[1].texture = SKTexture(imageNamed: "sliceLifeGone")

www.hackingwithswift.com 471

 livesImages[1].texture = SKTexture(imageNamed: "sliceLifeGone")

 livesImages[2].texture = SKTexture(imageNamed: "sliceLifeGone")

 }

}

If the game hasn't already ended, this code stops every object from moving by adjusting the
speed of the physics world to be 0. It stops any bomb fuse fizzing, and sets all three lives
images to have the same "life gone" graphic. Nothing surprising in there, but you do need to
declare gameEnded as a property for your class, like this:

var gameEnded = false

Even though the game has ended, some actions can still take place. This should be banned
if possible, so add these lines to the start of tossEnemies() and touchesMoved():

if gameEnded {

 return

}

That's it, your game is done!

www.hackingwithswift.com 472

Wrap up
You've just finished two hard projects back to back, and regardless of how much you have
learned you deserve kudos for all your patience. This project required you to follow several
long steps before you could see your code run. I hope it was worth it, and I hope in
retrospect that you can see why all the code was needed.

Along the way, you've learned all about SKShapeNode, AVAudioPlayer, UIBezierPath,
custom enums, default method parameters, and more, so you're several steps closer to your
goal of being an experienced Swift developer. Well done!

If you're looking to improve this project some more, and you're able to steer yourself away
from the particle editor for a few minutes, why not have a go at removing the magic numbers
in the createEnemy() method. Instead, define them as constant properties of your class,
giving them useful names. You could also try adding a new and fast-moving type of enemy
that awards the player bonus points if they hit it.

www.hackingwithswift.com 473

Project 18
iAd and Debugging
A double bill of learning teaches you how to place adverts
and debug your code.

www.hackingwithswift.com 474

Setting up
With two hard projects under your belt, let's take a breather and try some easier stuff: iAd,
Apple's advertising network. How easy is iAd? So easy that I decided this technique project
was so short I needed to add something else to make it worth your time, so I added a
section debugging with Xcode.

To get started with iAd, create a new Single View Application project in Xcode, named
Project18 and targeting any device you like.

www.hackingwithswift.com 475

iAd in 10 minutes
Can iAd really be taught in ten minutes? Absolutely, and I won't even need to rush. This is
because the hard work of iAd is done in two places: Interface Builder and iTunes Connect
(iTC). You haven't met iTC yet, but it's the content management system for app developers
that lets you create apps, set prices, upload screenshots, and more. iTC is also where you
opt in to iAd, and then you get paid through your normal payment method.

So: all the enabling, all the contracts, all the payment and so on are handled through iTunes
Connect. The next job is taken care of by Interface Builder: it has an iAd object in its object
library, and you can just place your advert where you want it in a view controller, and
constraints, and you're almost done.

To make things a little more interesting, I'm going to show you how to create an iAd advert in
code. This is actually a fairly common thing to do, because many apps that show adverts
also have an in-app purchase to remove those ads. Making your adverts in code means you
can manage that process much more efficiently.

First, you need to import the iAd coding framework, so put this at the top, just before the
import UIKit line:

import iAd

Now add this property so we can reference the iAd banner view throughout our class:

var bannerView: ADBannerView!

The actual act of creating an iAd for your screen is a matter of using the ADBannerView
class. Apple's guidelines for using this class say that you should only have one visible at a
time, that you should share the view across view controllers if possible, and that you should
hide it if no ads are showing.

We're going to create the banner view and start it as hidden. Then, by setting ourself as the
delegate, we'll get told by iAd if a banner loaded or not, at which point we can choose to
show the advert.

www.hackingwithswift.com 476

When you create an iAd banner, you need to specify a banner type: do you want a regular
banner or a medium rectangle? The former is short and wide and most commonly seen at
the top of web pages; the latter is useful for placing inside content, and is what you would
normally see on a web page while you're reading a story.

We're also going to need to use the translatesAutoresizingMaskIntoConstraints property
of UIView subclasses so that we can add Auto Layout constraints ourselves. As long as you
followed project 6, none of this code should worry you. Put this into viewDidLoad():

bannerView = ADBannerView(adType: .Banner)

bannerView.translatesAutoresizingMaskIntoConstraints = false

bannerView.delegate = self

bannerView.hidden = true

view.addSubview(bannerView)

let viewsDictionary = ["bannerView": bannerView]

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[bannerView]|", options: [], metrics: nil, views: viewsDictionary))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:[bannerView]|", options: [], metrics: nil, views: viewsDictionary))

Those constraints will force the iAd banner to fill the full width of the screen and align to its
bottom.

We've made our view controller the delegate of the banner view so it will receive its load and
fail messages, but you'll get a warning saying that it doesn't currently conform to the
ADBannerViewDelegate protocol. This is easily fixed by changing your class definition to
this:

class ViewController: UIViewController, ADBannerViewDelegate {

www.hackingwithswift.com 477

Warning: that's the last time I'll be showing you how to make a class conform to a protocol.
In the future I'll tell you to conform to a protocol and you should know how to do it yourself.

The ADBannerViewDelegate protocol has no required methods, but does have two optional
ones that we care about: bannerViewDidLoadAd() tells us when we received an advert, and
bannerView(_,didFailToReceiveAdWithError:) tells us when something went wrong. The
very least we need to do is show our banner when we received an advert, and hide it
otherwise:

func bannerViewDidLoadAd(banner: ADBannerView!) {

 bannerView.hidden = false

}

func bannerView(banner: ADBannerView!, didFailToReceiveAdWithError
error: NSError!) {

 bannerView.hidden = true

}

If you're using a table view, a scroll view, a collection view, a text view or something else that
scrolls, you should set its contentInset and scrollIndicatorInset properties (see project 16)
so that it doesn't scroll under the advert when it's visible.

Otherwise, that's it. Yes, that's iAd ready in your app – it will automatically serve correctly
sized adverts for each user's device, it will automatically handle users tapping on the advert
to show more information, and it will automatically report usage statistics to Apple so you
can get paid. The fact that it's so easy is because it's built into the core of iOS!

Adding iAd to your apps take no more than 10 minutes and can generate good money.

www.hackingwithswift.com 478

Adding iAd to your apps take no more than 10 minutes and can generate good money.

You can run your app now and seem some sample iAd adverts so you know it's all working.
You won't see live adverts until your app is actually live on the App Store, but as long as the
sample adverts work you're OK.

There's one more thing I want to discuss, only so that it saves you the hassle of trying to
figure it yourself, and that's sharing a banner view across view controllers. You see, if your
user is pushing and popping lots of views inside a navigation controller, and each one has an
advert inside, you're going to create lots of adverts that appear for only a few seconds, which
wastes your advert inventory.

Apple's solution is to create an ADBannerView object once then share it across all your
views. You should still have only one visible at any given time, but at least this way you don't
need to keep creating and destroying adverts.

All the projects we've made (and will make) all include the file AppDelegate.swift, and we
looked at it very briefly in project 7. The app delegate is, as you might imagine, the delegate
for all our app's notifications, but more importantly it's an object that gets created when the
app starts and never destroyed until the app is terminated – it's always there.

The permanent nature of this app delegate means that we can easily use it to store app-wide
information. That is, anything we need to reuse in multiple places. In complex apps it's usual
to try to isolate functionality in different classes rather than put things into the app delegate,
for example you might have a class dedicated to managing iAds. But for now using our app
delegate is perfectly fine.

To make this solution work, you need to move the property and the ADBannerView creation
into your app delegate – inside application(_,didFinishLaunchingWithOptions:) is fine.
Then you would use the viewWillAppear() and viewWillDisappear() to hide or show the
advert in each view controller.

To get a reference to the banner view belonging to your app delegate, you need to learn
some new code. Specifically, you need to use the UIApplication class to get a reference to
your current application, which is done using the sharedApplication() method. You can then
read its delegate, but you do need to typecast it as the AppDelegate type because that's
what contains your banner view property.

So, you might have something like this in viewDidAppear()
let appDelegate = UIApplication.sharedApplication().delegate as

www.hackingwithswift.com 479

let appDelegate = UIApplication.sharedApplication().delegate as
AppDelegate

view.addSubview(appDelegate.bannerView)

It's not hard to do, and really it's something Apple could do automatically, but it is required
so don't forget it!

www.hackingwithswift.com 480

Debugging in Xcode
Using iAd is so easy that I figured you'd want more. And you're still reading, so I guess I was
right! To give you a little more bang for your buck, I'm going to walk you through some of the
ways you can find problems in your code and fix them – a process known as debugging.
Please create a new Single View Application project named Project18b and targeting iPhone.

We're going to start with the absolute easiest, which is the print() function. This prints a
message into the Xcode debug console that can say anything you want, because users
won't see it in the UI. The "scattershot" approach to bug fixing is to litter your code with calls
to print() then follow the messages to see what's going on.

You'll meet lots of people telling you how bad this is, but the truth is it's the debugging
method everyone starts with – it's easy, it's natural, and it often gives you enough information
to solve your problem. Use it with Swift's string interpolation to see the contents of your
variables when your app is running.

One level up from print() are assertions, which are debug-only checks that will force your
app to crash if a specific condition isn't true. When you ship your app to the App Store,
Xcode automatically disables your assertions so they have no impact on performance.

Here's a very basic example:

assert(1 == 1, "Maths failure!")

assert(1 == 2, "Maths failure!")

As you can see assert() takes two parameters, and they are something to check, and a
message to print out of the check fails. If the check evaluates to false, your app will be
forced to crash because you know it's not in a safe state, and you'll see the error message in
the debug console.

The advantage to assertions is that their check code is never executed in a live app, so your
users are never aware of their presence. This is different from print(), which would remain in
your code if you shipped it, albeit mostly invisible.

Because calls to assert() are ignored in release builds of your app, you can do complex

www.hackingwithswift.com 481

checks:

assert(myReallySlowMethod() == false, "The slow method returned
false, which is a bad thing!")

Next up, let's look at breakpoints. You can put this code into your existing Project18 code if
you want, into its viewDidLoad() method – it would certainly help you follow along if you had
an actual project to type things into. These are easy to use initially, but have a lot of hidden
complexity if you want to use it.

Let's start small, with a simple loop that prints numbers from 1 to 100:

for i in 1 ... 100 {

 print("Got number \(i)")

}

If we wanted to see exactly what our program state was at the time we call the print()
function, look to the left of where you've been typing and you'll see the line number markers.
Click on the line number where print() is, and a blue marker will appear. Click again, and the
blue arrow will become faint to show that the breakpoint exists but is disabled. Click again to
make it active, or right-click and choose Delete Breakpoint to remove it entirely.

No line numbers? If your Xcode isn't showing line numbers by default, I suggest you turn
them on. Go to the Xcode menu and choose Preferences, then choose the Text Editing tab
and make sure "Line numbers" is checked.

With that breakpoint in place, Xcode will pause execution when it's reached and show you
the values of all your variables. Try running it now, and you should see your app paused, with
a green marker on the line of code that is about to be executed. At the bottom of the Xcode
window you should see Xcode telling you that i currently has a value of 1. That's because it
paused as soon as this line is reached, which is the very first iteration of our loop.

From here, you can carry on execution by pressing F6, but you may need to use Fn+F6
because the function keys are often mapped to actions on Macs. This shortcut is called Step

www.hackingwithswift.com 482

Over and will tell Xcode to advance code execution by one line. You can walk through the
loop in its entirety by pressing F6 again and again, but there's another command called
Continue (Ctrl+Cmd+Y) that means "continue executing my program until you hit another
breakpoint."

When your program is paused, you'll see something useful on the left of Xcode's window: a
back trace that shows you all the threads in your program and what they are executing. So if
you find a bug somewhere in method d(), this back trace will show you that d() was called by
c(), which was called by b(), which in turn was called by a() – it effectively shows you the
events leading up to your problem, which is invaluable when trying to spot bugs.

Breakpoints can do two more clever things, but for some reason both of them aren't used
nearly enough. The first is that you can make breakpoints conditional, meaning that they will
pause execution of your program only if the condition is matched. Right now, our breakpoint
will stop execution every time our loop goes around, but what if we wanted it to stop only
every 10 times?

Right-click on the breakpoint (the blue arrow marker) and choose Edit Breakpoint. In the
popup that appears, set the condition value to be i % 10 == 0 – this uses modulo, as seen in
project 8. With that in place, execution will now pause only when i is 10, 20, 30 and so on, up
to 100. You can use conditional breakpoints to execute debugger commands automatically –
the "Automatically continue" checkbox is perfect for making your program continue
uninterrupted while breakpoints silently trigger actions.

The second clever thing that breakpoints can do is be automatically triggered when an
exception is thrown. Exceptions are errors that aren't handled, and will cause your code to
crash. With breakpoints, you can say "pause execution as soon as an exception is thrown,"
so that you can examine your program state and see what the problem is.

To make this happen, press Cmd+7 to choose the breakpoint navigator – it's on the left of
your screen, where the project navigator normally sits. Now click the + button in the bottom-
left corner and choose "Add Exception Breakpoint." That's it! The next time your code hits a
fatal problem, the exception breakpoint will trigger and you can take action.

The last debugging technique I want to look at is view debugging, because this is relatively
new so developers aren't really using it much yet. View debugging used to be difficult to do,
because you'd have a complicated view controller layout with buttons, labels, views inside
views, and so on. If something wasn't showing, it was hard to know why.

www.hackingwithswift.com 483

Xcode 6 and later can help you, because it adds two clever features. The first is called Show
View Frames, and it's accessible under the Debug menu by choosing View Debugging >
Show View Frames. If you have a complicated view layout (project 8 is a good example!), this
option will draw lines around all your views so you can see exactly where they are.

The second feature is extraordinarily cool, but I've only seen it used to good effect a couple
of times. It's called Capture View Hierarchy, and when it's used your see your current view
layout inside Xcode with thin gray lines around all the views. You might think this is just like
Show View Frames, but it's cleverer than that!

If you click and drag inside the hierarchy display, you'll see you're actually viewing a 3D
representation of your view, which means you can look behind the layers to see what else is
there. The hierarchy automatically puts some depth between each of its views, so they
appear to pop off the canvas as you rotate them. This debug mode is perfect for times when
you know you've placed your view but for some reason can't see it – often you'll find the
view is behind something else by accident.

www.hackingwithswift.com 484

Wrap up
I couldn't in good conscience show you iAd by itself, because it's just so darn easy to use.
But on the flip side, it at least means you got a lightning intro to Xcode debugging. There are
lots of options to choose from, and you will, I promise, use all of them at some point. Yes,
even print().

There's more to learn about debugging, such as the Step Into and Step Out commands, but
realistically you need to start with what you have before you venture any further. I would
much rather you mastered three of the debugging tools available to you rather than having a
weak grasp of all of them.

www.hackingwithswift.com 485

Project 19
Capital Cities
Teach users about geography while you learn about
MKMapView and annotations.

www.hackingwithswift.com 486

Setting up
It's time for another app project, and this time you're going to learn about MapKit – Apple's
mapping framework that lets us drops pins, plan routes, and zoom around the world with just
a few swipes.

Working with MapKit requires you to learn quite a few new classes, so I've tried to construct
a project simple enough that we can focus on the mapping element. In this project you'll
make an app that shows the locations of capital cities around the world, and when one of
them is tapped you can bring up more information.

Create a new Single View Application project in Xcode, name it Project19 and set its target to
be iPhone. Now go to Interface Builder for your view controller, and embed it inside a
navigation controller. Search for "map" in the object library, drop a map view into your view
controller so that it occupies the full view, then use Resolve Auto Layout Issues > Add
Missing Constraints so that it stays next to each edge.

Now, run your program and… crash? Oh dear. Time for some code!

www.hackingwithswift.com 487

Up and running with MapKit
Select your project in the project navigator – it's the top thing, with a blue icon next to it. In
the center of the Xcode window you'll see lots of options, and this is usually where you limit
the orientation of your app. But this time, I want you to go up to the list of tabs and change
from General to Capabilities, because we're going to ask that our app be allowed to use
maps.

There are lots of capabilities you can request on this screen, but the one we're looking for
right now is called simply "Maps". Find it, then change its switch from Off to On. You should
be able to try running your app again, because this time will work.

In the picture below you can see the Entitlements tab showing map support being enabled.

You must use the Entitlements tab to enable support for MapKit.

You'll see a default map view, and you can pan around, zoom in and out, and so on. If you
were wondering, you need to hold down Alt to trigger a virtual "pinch" gesture – just click
and drag as if you were moving one finger, and the other "finger" will move in the opposite

www.hackingwithswift.com 488

direction.

Using the assistant editor, please create an outlet for your map view called mapView. You
should also set your view controller to be the delegate of the map view. As a reminder, you
do that by Ctrl-dragging from the map view to the orange and white view controller button
just above the layout area. You will also need to add import MapKit to ViewController.swift
so it understands what MKMapView is.

With that done, we're going to add some annotations to our map. Annotations are objects
that contain a title, a subtitle and a position. The first two are both strings, the third is a new
data type called CLLocationCoordinate2D, which is a structure that holds a latitude and
longitude for where the annotation should be placed.

Map annotations are described not as a class, but as a protocol. This is something you
haven't seen before, because so far protocols have all been about methods. But if we want
to conform to the MKAnnotation protocol, which is the one we need to adopt in order to
create map annotations, it states that we must have a coordinate in our annotation. That
makes sense, because there's no point in having an annotation on a map if we don't know
where it is. The title and subtitle are optional, but we'll provide them anyway.

Create a new file and choose iOS > Source > Cocoa Touch Class. Make it a subclass of
NSObject and name it Capital. With map annotations, you can't use structs, and you must
inherit from NSObject because it needs to interactive with Apple's Objective C code.

Change the contents of Capital.swift to this:

import MapKit

import UIKit

class Capital: NSObject, MKAnnotation {

 var title: String?

 var coordinate: CLLocationCoordinate2D

 var info: String

 init(title: String, coordinate: CLLocationCoordinate2D, info:
String) {

www.hackingwithswift.com 489

String) {

 self.title = title

 self.coordinate = coordinate

 self.info = info

 }

}

There are our three properties, along with a basic initializer that just copies in the data it's
given. Again, we need to use self. here because the parameters being passed in are the
same name as our properties. I've added import MapKit to the file because that's where
MKAnnotation and CLLocationCoordinate2D are defined.

With this custom subclass, we can create capital cities by passing in their name, coordinate
and information – I'll be using the info property to hold one priceless (read: off-the-cuff, I
sucked at geography) informational nugget about each city. You're welcome to do better!

Put these lines into the viewDidLoad() method of ViewController.swift:

let london = Capital(title: "London", coordinate:
CLLocationCoordinate2D(latitude: 51.507222, longitude: -0.1275),
info: "Home to the 2012 Summer Olympics.")

let oslo = Capital(title: "Oslo", coordinate:
CLLocationCoordinate2D(latitude: 59.95, longitude: 10.75), info:
"Founded over a thousand years ago.")

let paris = Capital(title: "Paris", coordinate:
CLLocationCoordinate2D(latitude: 48.8567, longitude: 2.3508), info:
"Often called the City of Light.")

let rome = Capital(title: "Rome", coordinate:
CLLocationCoordinate2D(latitude: 41.9, longitude: 12.5), info: "Has a
whole country inside it.")

let washington = Capital(title: "Washington DC", coordinate:
CLLocationCoordinate2D(latitude: 38.895111, longitude: -77.036667),
info: "Named after George himself.")

These Capital objects conform to the MKAnnotation protocol, which means we can send it
to map view for display using the addAnnotation() method. Put this just before the end of

www.hackingwithswift.com 490

viewDidLoad():

mapView.addAnnotation(london)

mapView.addAnnotation(oslo)

mapView.addAnnotation(paris)

mapView.addAnnotation(rome)

mapView.addAnnotation(washington)

Alternatively, you can add multiple annotations at once using the addAnnotations() method.
Using this, you would replace those five lines with this:

mapView.addAnnotations([london, oslo, paris, rome, washington])

That creates an array out of the annotations and sends it in one lump to the map view.

If you run your program now, you'll see pins on the map for each city, and you can tap any of
them to see the city name. But where's the info property? To show more information, we
need to customise the view used to show the annotations.

www.hackingwithswift.com 491

Our pins are visible on the map, but they don't do anything more than just show each city's
name.

www.hackingwithswift.com 492

Annotations and accessory views
Every time the map needs to show an annotation, it calls a viewForAnnotation method on
its delegate. We don't implement that method right now, so the default red pin is used with
nothing special – although as you've seen it's smart enough to pull out the title for us.

Customising an annotation view is a little bit like customising a table view cell or collection
view cell, because iOS automatically reuses annotation views to make best use of memory. If
there isn't one available to reuse, we need to create one from scratch using the
MKPinAnnotationView class.

Our custom annotation view is going to look a lot like the default view, with the exception
that we're going to add a button that users can tap for more information. So, they tap the pin
to see the city name, then tap its button to see more information. In our case, it's those
fascinating facts I spent literally tens of seconds writing.

There are a couple of things you need to be careful of here. First, viewForAnnotation will be
called for your annotations, but also Apple's. For example, if you enable tracking of the
user's location then that's shown as an annotation and you don't want to try using it as a
capital city. If an annotation is not one of yours, just return nil from the method to have
Apple's default used instead.

Second, adding a button to the view isn't done using the addTarget() method you already
saw in project 8. Instead, you just add the button and the map view will send a message to
its delegate (us!) when it's tapped.

Here's a breakdown of what the method will do:

1. Define a reuse identifier. This is a string that will be used to ensure we reuse annotation
views as much as possible.
2. Check whether the annotation we're creating a view for is one of our Capital objects.
3. Try to dequeue an annotation view from the map view's pool of unused views.
4. If it isn't able to find a reusable view, create a new one using MKPinAnnotationView and
sets its canShowCallout property to be true. This triggers the popup with the city name.
5. Create a new UIButton using the built-in .DetailDisclosure type. This is a small blue "i"
symbol with a circle around it.
6. If it can reuse a view, update that view to use a different annotation.
7. If the annotation isn't from a capital city, it must return nil so iOS uses a default view.

www.hackingwithswift.com 493

Put this method into your view controller, watching out for my numbered comments:

func mapView(mapView: MKMapView!, viewForAnnotation annotation:
MKAnnotation!) -> MKAnnotationView! {

 // 1

 let identifier = "Capital"

 // 2

 if annotation.isKindOfClass(Capital.self) {

 // 3

 var annotationView =
mapView.dequeueReusableAnnotationViewWithIdentifier(identifier)

 if annotationView == nil {

 //4

 annotationView = MKPinAnnotationView(annotation: annotation,
reuseIdentifier: identifier)

 annotationView!.canShowCallout = true

 // 5

 let btn = UIButton(type: .DetailDisclosure)

 annotationView!.rightCalloutAccessoryView = btn

 } else {

 // 6

 annotationView!.annotation = annotation

 }

 return annotationView

 }

 // 7

 return nil

www.hackingwithswift.com 494

 return nil

}

You can press Cmd+R to run your app, and now if you tap on any pin you'll see a city's name
as well as a button you can tap to show more information. Like I said, you don't need to use
addTarget() to add an action to the button, because you'll automatically be told by the map
view using a calloutAccessoryControlTapped method.

When this method is called, you'll be told what map view sent it (we only have one, so that's
easy enough), what annotation view the button came from (this is useful), as well as the
button that was tapped.

The annotation view contains a property called annotation, which will contain our Capital
object. So, we can pull that out, typecast it as a Capital, then show its title and information in
any way we want. The easiest for now is just to use a UIAlertController, so that's what we'll
do.

Add this code to your view controller, just beneath the previous method:

func mapView(mapView: MKMapView!, annotationView view:
MKAnnotationView!, calloutAccessoryControlTapped control: UIControl!)
{

 let capital = view.annotation as! Capital

 let placeName = capital.title

 let placeInfo = capital.info

 let ac = UIAlertController(title: placeName, message: placeInfo,
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

}

With that, the project is done. We have pins in place, city names being showed when the

www.hackingwithswift.com 495

pins are tapped, and more information popping up when requested. Perfect!

Now that we have customized the map pins, users can tap the 'i' button to see some detail
about each city.

www.hackingwithswift.com 496

Wrap up
I tried to keep this project as simple as possible so that you can focus on the map
component, because there's a lot to learn: MKMapView, MKAnnotation,
MKPinAnnotationView, CLLocationCoordinate2D and so on, and all must be used before
you get a finished product.

Again, we've only scratched the surface of what maps can do in iOS, but that just gives you
more room to extend the app yourself! Try adding a UIAlertController action sheet that lets
users specify how they want to view the map. There's a mapType property that draws the
maps in different ways. For example, .Satellite gives a satellite view of the terrain.

If you want to try something harder, you could typecast the return value from
dequeueReusableAnnotationViewWithIdentifier() so that it's an MKPinAnnotationView.
This will always be the case, because that's what we're creating. But once you typecast the
return value, it means you can change the pinColor property to either .Red, .Green
or .Purple. With that information, try to add a "Favorite" button to cities: regular cities are
red, favorites are green.

www.hackingwithswift.com 497

Project 20
Fireworks Night
Learn about timers and color blends while making things
go bang!

www.hackingwithswift.com 498

Setting up
In this game project we're going to let users create fireworks displays using their fingers.
They'll need to touch fireworks of the same color, then shake their device to make them
explode. Shaking an iPad isn't the most pleasant user experience, but I had to find some
way of teaching you about shake gestures!

On the topic of what you'll learn, you're going to meet NSTimer, you're going to use sprite
color blending, and you're going to try the followPath() SpriteKit action.

Create a new SpriteKit project in Xcode, name it project 20, and set its target to be iPad.
Force its orientation to be landscape. Now download the files for this project from GitHub
and drag the Content folder into your Xcode project.

You should, like always with SpriteKit, delete the existing spaceship image from
Images.xcassets and delete the contents of the didMoveToView() and touchesBegan()
methods.

Warning: When working with SpriteKit projects, I strongly recommend you use the iPad 2
simulator rather than iPad Air – you'll get much faster frame rates, making it much more
suitable for testing.

www.hackingwithswift.com 499

Ready... aim... fire!
To get the game up and running quickly, we're going to work on the three methods required
to launch some fireworks: didMoveToView() (will create a timer that launches fireworks every
six seconds), createFirework() (will create precisely one firework at a specific X/Y position)
and launchFireworks() (will call createFirework(); designed to create firework spreads.)

First, the easy stuff: we need to add some properties to our class:

 • gameTimer will be a new class called NSTimer. We'll use this to call the
launchFireworks() method every six seconds.
 • fireworks will be an array of SKNode objects. Fireworks, like the bomb fuse in project 17,
will have a container node, an image node and a fuse node. This avoids accidental taps
triggered by tapping on the fuse of a firework.
 • leftEdge, bottomEdge and rightEdge are used to define where we launch fireworks from.
Each of them will be just off screen to one side.
 • score will track the player's score. I'm going to give you a didSet property observer but
leave it blank for you to fill in later – you should know how to show a score label by now!

The only thing that's new in there is the NSTimer class, and we'll come to that in a moment.
First, add these properties now:

var gameTimer: NSTimer!

var fireworks = [SKNode]()

let leftEdge = -22

let bottomEdge = -22

let rightEdge = 1024 + 22

var score: Int = 0 {

 didSet {

 // your code here

 }

}

www.hackingwithswift.com 500

While you're up there, please add import GameplayKit above import UIKit, because we'll
be using that to generate random numbers.

To get the whole thing moving, we need to put in a background picture (the same way we've
put in all the background pictures so far) and start up our NSTimer object. This is done using
the scheduledTimerWithTimeInterval() method, which not only creates the timer but also
starts it going.

When you create an NSTimer you specify five parameters: how many seconds you want the
delay to be, what object should be told when the timer fires, what method should be called
on that object when the timer fires, any context you want to provide, and whether the time
should repeat.

In our case, we're going to have it call launchFireworks() every six seconds, with repeating
enabled. So, replace your current didMoveToView() with this:

override func didMoveToView(view: SKView) {

 let background = SKSpriteNode(imageNamed: "background")

 background.position = CGPoint(x: 512, y: 384)

 background.blendMode = .Replace

 background.zPosition = -1

 addChild(background)

 gameTimer = NSTimer.scheduledTimerWithTimeInterval(6, target: self,
selector: "launchFireworks", userInfo: nil, repeats: true)

}

www.hackingwithswift.com 501

We're using a night sky as the background for this game – it is called Fireworks Night, after all!

That timer will carry on repeating until we tell it to stop, which in this project we won't – that'll
be your job! Each time the timer fires, it will call launchFireworks(), which itself will call
createFirework(). Initially we're going to write four types of firework "spreads" (different
ways of launching fireworks) but this is something you could easily add more to later.

This system of having one method to create a single enemy and one to create multiple is
identical to project 17, so hopefully it makes sense.

First, let's take a look at the createFirework() method. This needs to accept three
parameters: the X movement speed of the firework, plus X and Y positions for creation.
Inside the method there's a lot going on. It needs to:

1. Create an SKNode that will act as the firework container, and place it at the X/Y position
that was specified.
2. Create a rocket sprite node, give it the name "firework" so we know that it's the important
thing, then add it to the container node.
3. Give the firework sprite node one of three random colors: cyan, green or red. I've chosen

www.hackingwithswift.com 502

cyan because pure blue isn't particularly visible on a starry sky background picture.
4. Create a UIBezierPath that will represent the movement of the firework.
5. Tell the container node to follow that path, turning itself as needed.
6. Create particles behind the rocket to make it look like the fireworks are lit.
7. Add the firework to our fireworks array and also to the scene.

Here's that, just in Swift:

func createFirework(xMovement xMovement: CGFloat, x: Int, y: Int) {

 // 1

 let node = SKNode()

 node.position = CGPoint(x: x, y: y)

 // 2

 let firework = SKSpriteNode(imageNamed: "rocket")

 firework.name = "firework"

 node.addChild(firework)

 // 3

 switch GKRandomSource.sharedRandom().nextIntWithUpperBound(3) {

 case 0:

 firework.color = UIColor.cyanColor()

 firework.colorBlendFactor = 1

 case 1:

 firework.color = UIColor.greenColor()

 firework.colorBlendFactor = 1

 case 2:

 firework.color = UIColor.redColor()

 firework.colorBlendFactor = 1

www.hackingwithswift.com 503

 default:

 break

 }

 // 4

 let path = UIBezierPath()

 path.moveToPoint(CGPoint(x: 0, y: 0))

 path.addLineToPoint(CGPoint(x: xMovement, y: 1000))

 // 5

 let move = SKAction.followPath(path.CGPath, asOffset: true,
orientToPath: true, speed: 200)

 node.runAction(move)

 // 6

 let emitter = SKEmitterNode(fileNamed: "fuse")!

 emitter.position = CGPoint(x: 0, y: -22)

 node.addChild(emitter)

 // 7

 fireworks.append(node)

 addChild(node)

}

Step three is done using two new properties: color and colorBlendFactor. These two show
off a simple but useful feature of SpriteKit, which is its ability to recolor your sprites
dynamically with absolutely no performance cost. So, our rocket image is actually white, but
by giving it UIColor.redColor() (red) with colorBlendFactor set to 1 (use the new color
exclusively) it will appear red.

www.hackingwithswift.com 504

Step five is done using a new SKAction you haven't seen before: followPath(). This takes a
CGPath as its first parameter (we'll pull this from the UIBezierPath) and makes the node
move along that path. It doesn't have to be a straight line like we're using, any bezier path is
fine.

The followPath() method takes three other parameters, all of which are useful. The first
decides whether the path coordinates are absolute or are relative to the node's current
position. If you specify asOffset as true, it means any coordinates in your path are adjusted
to take into account the node's position.

The third parameter to followPath() is orientToPath and makes a complicated task into an
easy one. When it's set to true, the node will automatically rotate itself as it moves on the
path so that it's always facing down the path. Perfect for fireworks, and indeed most things!
Finally, you can specify a speed to adjust how fast it moves along the path.

Now comes the launchFireworks() method, which will lauch fireworks five at a time in four
different shapes. As a result this method is quite long because it needs to call
createFirework() 20 times, but really it's not difficult at all.

The method will generate a random number between 0 and 3 inclusive. If it's zero, we launch
the fireworks straight up; if it's one, we fire them in a fan from the center outwards; if it's two
we fire them from the left edge to the right; it it's three we fire them from the right edge to the
left.

Regardless of the direction of travel, the createFirework() call is much the same: how much
should the firework move horizontally, and what should its starting X/Y coordinates be. Put
this method into your project, then we'll look at it again:

func launchFireworks() {

 let movementAmount: CGFloat = 1800

 switch GKRandomSource.sharedRandom().nextIntWithUpperBound(4) {

 case 0:

 // fire five, straight up

 createFirework(xMovement: 0, x: 512, y: bottomEdge)

 createFirework(xMovement: 0, x: 512 - 200, y: bottomEdge)

www.hackingwithswift.com 505

 createFirework(xMovement: 0, x: 512 - 200, y: bottomEdge)

 createFirework(xMovement: 0, x: 512 - 100, y: bottomEdge)

 createFirework(xMovement: 0, x: 512 + 100, y: bottomEdge)

 createFirework(xMovement: 0, x: 512 + 200, y: bottomEdge)

 case 1:

 // fire five, in a fan

 createFirework(xMovement: 0, x: 512, y: bottomEdge)

 createFirework(xMovement: -200, x: 512 - 200, y: bottomEdge)

 createFirework(xMovement: -100, x: 512 - 100, y: bottomEdge)

 createFirework(xMovement: 100, x: 512 + 100, y: bottomEdge)

 createFirework(xMovement: 200, x: 512 + 200, y: bottomEdge)

 case 2:

 // fire five, from the left to the right

 createFirework(xMovement: movementAmount, x: leftEdge, y:
bottomEdge + 400)

 createFirework(xMovement: movementAmount, x: leftEdge, y:
bottomEdge + 300)

 createFirework(xMovement: movementAmount, x: leftEdge, y:
bottomEdge + 200)

 createFirework(xMovement: movementAmount, x: leftEdge, y:
bottomEdge + 100)

 createFirework(xMovement: movementAmount, x: leftEdge, y:
bottomEdge)

 case 3:

 // fire five, from the right to the left

 createFirework(xMovement: -movementAmount, x: rightEdge, y:
bottomEdge + 400)

 createFirework(xMovement: -movementAmount, x: rightEdge, y:
bottomEdge + 300)

 createFirework(xMovement: -movementAmount, x: rightEdge, y:
bottomEdge + 200)

 createFirework(xMovement: -movementAmount, x: rightEdge, y:

www.hackingwithswift.com 506

 createFirework(xMovement: -movementAmount, x: rightEdge, y:
bottomEdge + 100)

 createFirework(xMovement: -movementAmount, x: rightEdge, y:
bottomEdge)

 default:

 break

 }

}

You'll notice I made movementAmount into a constant. This is because I was testing various
values to find one that worked best, so having it in a constant made it easy to adjust with trial
and error.

As you can see in the code, each firework is fired from different X/Y positions so that you get
a nice spread on the screen. For example, firing a fan creates one firework on the far left and
moving to the left, one in the center left and moving to the left, one in the center moving
straight up, and so on.

With that code, you're now able to run the game and see how it works – after a few seconds
the first fireworks will start, then they'll continue lauches as the timer continues to fire.

www.hackingwithswift.com 507

Fireworks can fire out in one of four formations, to add some challenge to the game.

www.hackingwithswift.com 508

Swipe to select
Now that you can see fireworks shooting across your screen, it's time to reveal the difficulty
element. You see, every game needs some challenge, and in our case the challenge is to
destroy fireworks in groups of the same color. We're going to make it so that players can
select only one color of firework at a time, so if they choose two red then touch a green, the
two red will become deselected.

So, the challenge will be to select and detonate fireworks based on their color, and as you'll
see shortly we're going to heavily bias scores so that players receive many more points for
larger groups.

What we're going to code now is the touch handling method, checkForTouches(). We're
going to call this from touchesBegan() and touchesMoved() so that users can either tap to
select fireworks or just swipe across the screen.

The method needs to start by figuring out where in the scene the player touches, and what
nodes are at that point. It will then loop through all nodes under the point to find any with the
name "firework". When it finds one, it will set its name to be "selected" rather than "firework"
and change its colorBlendFactor value to be white. That will disable the color blending
entirely, making the firework white.

Here's the checkForTouches() method with that functionality in there:

func checkForTouches(touches: Set<UITouch>) {

 guard let touch = touches.first else { return }

 let location = touch.locationInNode(self)

 let nodes = nodesAtPoint(location)

 for node in nodes {

 if node.isKindOfClass(SKSpriteNode.self) {

 let sprite = node as! SKSpriteNode

 if sprite.name == "firework" {

 sprite.name = "selected"

www.hackingwithswift.com 509

 sprite.name = "selected"

 sprite.colorBlendFactor = 0

 }

 }

 }

}

You've seen most of that previously, but that's because I missed out the logic to handle
ensuring that players select only one color at a time. The above code will let them select all
the fireworks, regardless of color.

So, we need to insert a second loop just before the sprite.name = "selected" line. When
you place one loop inside another it's called an inner loop, and you need to be careful: if you
have one loop that executes 100 times it's OK, and if you have another loop that executes
200 times that's OK too, but if you put one inside the other you now have 20,000 iterations of
your loop and that's almost certainly not fine.

Here, though, we'll have maybe two or three items in our outer loop and a maximum of 10 or
so in the inner, so we're quite alright.

Remember, this inner loop needs to ensure that the player can select only one firework color
at a time. So if they select red then another red, both are selected. But if they then select a
green, we need to deselect the first two because they are red.

So, the loop will go through every firework in our fireworks array, then find the firework
image inside it. Remember, that array holds the container node, and each container node
holds the firework image and its spark emitter. If the firework was selected and is a different
color to the firework that was just tapped, then we'll put its name back to "firework" and put
its colorBlendFactor back to 1 so it resumes its old color.

So, put this code just before the sprite.name = "selected" line:

for parent in fireworks {

 let firework = parent.children[0] as! SKSpriteNode

www.hackingwithswift.com 510

 if firework.name == "selected" && firework.color != sprite.color {

 firework.name = "firework"

 firework.colorBlendFactor = 1

 }

}

That's the entire method, so all we need to do is make sure it's called. To make that happen,
we need to modify the existing touchesBegan() method and add one for touchesMoved()
too. All they will do is send the touch information on to checkForTouches(), like this:

override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 super.touchesBegan(touches, withEvent: event)

 checkForTouches(touches)

}

override func touchesMoved(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 super.touchesMoved(touches, withEvent: event)

 checkForTouches(touches)

}

There's one more thing we need to code before moving on, and that's some additions to the
update() method. This is because we need to handle the fireworks that the player doesn't
destroy, and our solution is simple enough: if they get past 900 points up vertically, we
consider them dead and remove them from the fireworks array and from the scene.

There is one curious quirk here, and it's down to how you remove items from an array. When
removing items, we're going to loop through the array backwards rather than forwards. The
reason for is that array items move down when you remove an item, so if you have 1, 2, 3, 4
and remove 3 then 4 moves down to become 3. If you're counting forwards, this is a problem
because you just checked three and want to move on, but there's now a new 3 and possibly

www.hackingwithswift.com 511

no longer a 4! If you're counting backwards, you just move on to 2.

Note: I chose 900 rather than 800 to mean "off screen vertically" because it's nice to give
players a little extra time when making important actions. It's possible that the top firework is
at 890 and the bottom one still on screen and being manipulated, so at least this way the
player has the best possible window in which to make all their selections.

Here's the new update() method:

override func update(currentTime: NSTimeInterval) {

 for (index, firework) in fireworks.enumerate().reverse() {

 if firework.position.y > 900 {

 // this uses a position high above so that rockets can explode
off screen

 fireworks.removeAtIndex(index)

 firework.removeFromParent()

 }

 }

}

www.hackingwithswift.com 512

Making things go bang
This is easily the best bit of the game, mostly because it involves even more particle
systems. There are three things we need to create: a method to explode a single firework, a
method to explode all the fireworks (which will call the single firework explosion method), and
some code to detect and respond the device being shaken.

First, the code to explode a single firework. Put this somewhere in your game scene:

func explodeFirework(firework: SKNode) {

 let emitter = SKEmitterNode(fileNamed: "explode")!

 emitter.position = firework.position

 addChild(emitter)

 firework.removeFromParent()

}

You should be able to read that once and know exactly what it does: it creates an explosion
where the firework was, then removes the firework from the game scene.

The explodeFireworks() method is next, and is only fractionally more complicated. It will be
triggered when the user wants to set off their selected fireworks, so it needs to loop through
the fireworks array (backwards again!), pick out any selected ones, then call
explodeFirework() on it.

As I said earlier, the player's score needs to go up by more when they select more fireworks,
so about half of the explodeFireworks() method is taken up with figuring out what score to
give the player.

There's one small piece of extra complexity: remember, the fireworks array stores the
firework container node, so we need to read the firework image out of its children array.

Enough talk – here's the code:

func explodeFireworks() {

www.hackingwithswift.com 513

func explodeFireworks() {

 var numExploded = 0

 for (index, fireworkContainer) in fireworks.enumerate().reverse() {

 let firework = fireworkContainer.children[0] as! SKSpriteNode

 if firework.name == "selected" {

 // destroy this firework!

 explodeFirework(fireworkContainer)

 fireworks.removeAtIndex(index)

 numExploded += 1

 }

 }

 switch numExploded {

 case 0:

 // nothing – rubbish!

 break

 case 1:

 score += 200

 case 2:

 score += 500

 case 3:

 score += 1500

 case 4:

 score += 2500

 default:

 score += 4000

 }

}

www.hackingwithswift.com 514

}

As you can see, exploding five fireworks is worth 20x more points than exploding just one,
hence the incentive to select groups by color!

There's one last thing to do before this game is complete, and that's to detect the device
being shaken. This is easy enough to do because iOS will automatically call a method called
motionBegan() on our game when the device is shaken. Well, it's a little more complicated
than that – what actually happens is that the method gets called in GameViewController.swift,
which is the UIViewController that hosts our SpriteKit game scene.

The default view controller doesn't know that it has a SpriteKit view, and certainly doesn't
know what scene is showing, so we need to do a little typecasting. Once we have a
reference to our actual game scene, we can call explodeFireworks(). Put this method just
after the prefersStatusBarHidden() method in GameViewController.swift:

override func motionBegan(motion: UIEventSubtype, withEvent event:
UIEvent?) {

 let skView = view as! SKView

 let gameScene = skView.scene as! GameScene

 gameScene.explodeFireworks()

}

That's it, your game is done. Obviously you can't shake your laptop to make the iOS
Simulator respond, but you can use the keyboard shortcut Ctrl+Cmd+Z to get the same
result. If you're testing on your iPad, make sure you give it a good shake in order to trigger
the explosions!

www.hackingwithswift.com 515

Wrap up
I've enjoyed making this project, so I hope you enjoyed following along. Plus you have yet
more Swift coding experience under your belt, now complete with NSTimer, followPath(),
color blending and, yes, even the shake gesture – although I wouldn't be surprised if you
switch to having a button on the screen to make explosions easier!

There's a lot more you can do with this foundation behind you. How about adding a score
label? Or perhaps adding different fireworks spread types, for example one where fireworks
launch from the left and right? Or if you fancy a bigger challenge, how about making the
game end after a certain number of launches? You will need to use the invalidate() method
of NSTimer to stop it from repeating.

www.hackingwithswift.com 516

Project 21
Local Notifications
Send reminders, prompts and alerts even when your app
isn't running.

www.hackingwithswift.com 517

Setting up
This is going to be the easiest technique project in the entire series, and I expect you're
extremely relieved to hear that because it can be hard going always having to learn new
things!

What you're going to learn about are local notifications, which let you send reminders to your
user's lock screen to show them information when your app isn't running. If you set a
reminder in your calendar, making it pop up on your lock screen at the right time is a local
notification.

These aren't the same as push notifications, and in fact they are quite a different beast from
a development perspective. I would love to cover push notifications here, but they require a
dedicated server (or service, if you outsource) to send from and that's outside the remit of
this course.

To get started, create a new Single View Application project in Xcode, name it Project21, and
set it to target any device.

www.hackingwithswift.com 518

Scheduling notifications
Open Main.storyboard in Interface Builder and place two buttons, one above the other. The
first should have the title "Register Local" and the second the title "Schedule Local". Add
whatever constraints you think sensible, but ideally make them centered horizontally so they
fit any device. Using the assistant editor, create an action for each: registerLocal() and
scheduleLocal(). Now go back to the standard editor and switch to ViewController.swift.

Let me explain how this project needs to work. First, you can't post messages to the user's
lock screen unless you have their permission. This was changed in iOS 8, but it's quite
sensible – it would, after all, be awfully annoying if any app could bother you when it pleased.

So, in order to send local notifications in our app, we first need to request permission, and
that's what we'll put in the registerLocal() method. You register your settings based on what
you actually need, and that's done with a class called UIUserNotificationSettings. For this
example we're going to request an alert (a message to show), along with a badge (for our
icon) and a sound (because users just love those.)

Once you've created your notification settings object, it's just a matter of calling the
registerUserNotificationSettings() method to tell iOS what you want, and it will then prompt
the user if needed. If you requested access before and were denied, nothing will be shown.

Change your registerLocal() method to be this:

@IBAction func registerLocal(sender: AnyObject) {

 let notificationSettings = UIUserNotificationSettings(forTypes:
[.Alert, .Badge, .Sound], categories: nil)

UIApplication.sharedApplication().registerUserNotificationSettings(no
tificationSettings)

}

Helpful tip: if you want to test allowing or denying permission, just reset the simulator and run
the app again to get a clean slate. Choose the iOS Simulator menu then "Reset Content and
Settings" to make this happen.

www.hackingwithswift.com 519

When you request permission to show notifications, iOS shows an alert like this one.

Once we have user permission, it's time to fill in the scheduleLocal() method. This will use
the UILocalNotification class to configure all the data needed to schedule a notification,
then call scheduleLocalNotification() to schedule it for delivery to the user.

We're going to use the following properties:

 • fireDate decides when the notification should be shown. iOS tracks this for us, so our app
doesn't need to be running when it's time for the notification to be delivered.
 • alertBody is a string containing the text to show to users. The title of the message will
automatically be your app's name.
 • alertAction is a string shown under your message that completes the sentence, "Slide
to…" For example, if you set it be "pericombobulate", it would read "Slide to
pericombobulate."
 • soundName we'll be using the default alert sound, but it's not hard to specify your own –
just make sure you include it in the project!
 • userInfo is a dictionary of keys and values that you can provide. The system does nothing
with these other than hand them back to you when the app launches so you can respond.

www.hackingwithswift.com 520

with these other than hand them back to you when the app launches so you can respond.

Here's the first draft of the scheduleLocal() method:

@IBAction func scheduleLocal(sender: AnyObject) {

 let notification = UILocalNotification()

 notification.fireDate = NSDate(timeIntervalSinceNow: 5)

 notification.alertBody = "Hey you! Yeah you! Swipe to unlock!"

 notification.alertAction = "be awesome!"

 notification.soundName = UILocalNotificationDefaultSoundName

 notification.userInfo = ["CustomField1": "w00t"]

UIApplication.sharedApplication().scheduleLocalNotification(notificat
ion)

}

I'm providing a single key/value pair to the userInfo property; we'll come onto that soon.

That code will trigger a notification five seconds after you click "Schedule Local", so:

 • Click "Register Local" and agree to let the app show notifications.
 • Click "Schedule Local".
 • Before the five seconds are up, press Cmd+L to lock the iOS Simulator screen.
 • Wait.

You should see the message appear after a few seconds. Note that the alertAction text can
be quite faint.

www.hackingwithswift.com 521

Notifications appear directly on the iOS lock screen, so try not to annoy your users!

Before I move on, our scheduleLocal() method has a bug: what if the user doesn't grant us
permission, and we try showing a local notification? Well, nothing will happen. That's good
because your app didn't crash, but it's bad because users will think your app is broken.

To fix the bug, we need to modify scheduleLocal() so that it checks if we have permission to
show local notifications before proceeding. This is as easy as querying the return value of
currentUserNotificationSettings() for our application, and if it's .None then we need to alert
the user and exit the method.

Put this code at the top of the scheduleLocal() notification:

guard let settings =
UIApplication.sharedApplication().currentUserNotificationSettings()
else { return }

if settings.types == .None {

 let ac = UIAlertController(title: "Can't schedule", message:

www.hackingwithswift.com 522

 let ac = UIAlertController(title: "Can't schedule", message:
"Either we don't have permission to schedule notifications, or we
haven't asked yet.", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

 return

}

www.hackingwithswift.com 523

Acting on responses
There's one more thing to learn before we're done with notifications, and that's what
happens to your application when it's given a notification to process. So far we've just been
scheduling them, but if the user swipes on a notification to unlock their device, your app is
launched and given the notification to process. Also, what happens if the user is actually
inside your app while one of your notifications fires?

These are two separate cases under the hood, and both need to be addressed
independently. In your AppDelegate.swift file we've already briefly looked at the
didFinishLaunchingWithOptions method, but we didn't look at what the "options" might
be. Well, if your app was lauched from a notification, this is how iOS will tell you, so let's take
a closer look now.

First, this is how launchOptions is defined:

[NSObject: AnyObject]?

Translated, it's an optional dictionary where an NSObject (or subclass) will be the key and
any object can be the value.

In order to read information about the notification, we need first to unwrap this optional so
that we have a real dictionary on our ends. Then we need to look up the (*deep breath*)
UIApplicationLaunchOptionsLocalNotificationKey key. Yes, that's absurdly long. If that
exists, it will be a UILocalNotification object, so we need to conditionally typecast it using
as?.

Once we have the UILocalNotification object, we need to see if it has a userInfo value,
which means more optional unwrapping. And finally, if we've made it this far, we will have the
same data we set for userInfo back when scheduling the notification, so you can do with it
as you please.

Modify your didFinishLaunchingWithOptions method to this:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)

www.hackingwithswift.com 524

-> Bool {

 if let options = launchOptions {

 if let notification =
options[UIApplicationLaunchOptionsLocalNotificationKey] as?
UILocalNotification {

 if let userInfo = notification.userInfo {

 let customField1 = userInfo["CustomField1"] as! String

 // do something neat here

 }

 }

 }

 return true

}

I called my data CustomField1 but you can put whatever you want in there.

The other situation that might occur is if your app's notification fires while the app is still
running. In this situation, it's obviously too late to call didFinishLaunchingWithOptions, so
instead your app delegate will have its didReceiveLocalNotification method called. This
doesn't exist by default, but it's easy enough to create.

As this method can only be called when a notification has definitely been received, you don't
need to unwrap any launch options or look for any absurdly long dictionary keys. Instead,
just check for the presence of userInfo and go from there. Add this method to your
application delegate:

func application(application: UIApplication,
didReceiveLocalNotification notification: UILocalNotification) {

 if let userInfo = notification.userInfo {

 let customField1 = userInfo["CustomField1"] as! String

 print("didReceiveLocalNotification: \(customField1)")

 }

}

www.hackingwithswift.com 525

}

And that's it – you're able to go ahead and use local notifications all you want in your apps.
But remember, if you abuse the trust your user has placed in you they will undoubtedly delete
your app!

www.hackingwithswift.com 526

Wrap up
That was easy, right? And yet it's such a great feature to have, because now your app can
talk to users even when it isn't running. You want to show a step count for how far they've
walked? Local notification. You want to trigger an alert because it's their turn to play in a
game? Local notification. You want to send them marketing messages to make them buy
more stuff? Actually, just don't do that, you bad person.

If you're curious about push notifications then check out something like pushwizard.com,
because you need a server somewhere that can store which devices to send to and handle
delivery of the messages.

www.hackingwithswift.com 527

Project 22
Detect-a-Beacon
Learn to find and range iBeacons using our first project for
a physical device.

www.hackingwithswift.com 528

Setting up
Apple introduced iBeacon technology with iOS 7, and it's helped make the Internet of Things
hypefest even more stratospheric. In this project you're going to learn to detect and range
beacons, which in turn means learning how to ask your user for their location. With this,
you'll have all the tools required to make your own location-aware apps – just scatter a few
beacons around your house!

If you don't have any iBeacons at home, that's OK because most people don't. Instead, I
recommend you install the app "Locate Beacon" on your iPad or iPhone, because that
comes with an iBeacon transmitter built in, making it perfect for testing. You also need an
iOS device that's compatible with iBeacons, which means iPhone 4s or later, 3rd generation
iPad or later, iPad Mini or later, or 5th generation iPod Touch or later. I'm afraid the iOS
Simulator won't work, but you can at least follow along with the code. Please ensure you
have Bluetooth enabled on your device.

If you've never pushed an app to a real device before, you need to make sure you select the
device from the list of destinations. You can do this by clicking where it says "Project22" to
the right of the play and stop buttons, or by going to the Product menu and choosing
Destination then selecting your device. If it comes up with "ineligible" it means your device is
running an older version of iOS than your project is designed for, so you may need to go to
your project settings (where you configure orientation) and change Deployment Target to
match.

Create a new Single View Application project in Xcode, name it Project22 and set its target to
be whichever of the above devices you own.

www.hackingwithswift.com 529

Requesting location
It should come as no surprise that Apple considers a user's location to be private, and that
means we need to ask for permission to use it. From iOS 8 onwards, how you ask for
permission depends on what you're trying to do: would you like the user's location only when
your app is running, or would you like a user's location even when your app isn't running?

You might think that you'd only ever want location access when your app is running. After all,
what's the point in asking for information when your app isn't around to use it?

There are times you'll want both. For example, if you're creating a map app that shows users
how to get from their current location to your nearest store, you'll only need their location
when the app is being used. But if you're creating an app that needs to be woken up when
the user reaches a location, then you'll need access even when the app isn't running – iOS
monitors the user's location on your behalf and automatically starts your app as needed.

Requesting location access requires a change to your apps Info.plist file, which is the
property list file we met in project 16. Depending on whether you want "always" access or
just "when in use" you need to set one key or the other. Select your property list, then go to
the Editor menu and choose Add Item. Now change the name of your new item to either:

 • NSLocationAlwaysUsageDescription if you want to have the user's location even when
the app isn't running.
 • NSLocationWhenInUseUsageDescription if you only want the user's location when the
app is running.

You should make sure the type is set to String, then in the value field enter some text to
explain to users why you want their location. For example, "We want to help you find your
nearest store." When your user is prompted to grant location access, this text will be shown
alongside Apple's own descriptive message.

www.hackingwithswift.com 530

When iOS requests location access users are likely to be suspicious, so make sure you explain
why you want it.

That's enough knowledge to get this app jump started, so open up Main.storyboard and
place a label in there. Give it the custom font Helvetica Neue Thin size 40, then give the text
"UNKNOWN". For constraints, please center it horizontally and vertically. Now create an
outlet for it using the assistant editor, and name the outlet distanceReading.

That label will show one of four messages depending on how close we are to our test
beacon, which of course might be an iPad acting as a beacon if you don't own actual
hardware. Because iBeacons use very low energy levels, their range is limited and also easily
interrupted; even something as simple as turning your back to the beacon weakens its signal
dramatically. Based on the beacon's distance to us, we'll show either "UNKNOWN", "FAR",
"NEAR" or "RIGHT HERE".

Apple restricts your ranging to these values because of the signal's low energy, but it's more
than enough for most uses.

www.hackingwithswift.com 531

Our user interface is just one label: how close is the user to the beacon?

To complete our current step, let's make sure we have location configured correctly. This bit
will work fine on the simulator, because although the simulator isn't capable of detecting
iBeacons it can simulate general location information well enough.

Open up ViewController.swift and add this property to your class:

var locationManager: CLLocationManager!

This is the Core Location class that lets us configure how we want to be notified about
location, and will also deliver location updates to us. As soon as you add that property you'll
get errors in Xcode because it doesn't know what CLLocationManager is, so add this
import to the top of your file:

import CoreLocation

www.hackingwithswift.com 532

That doesn't actually create a location manager, or even prompt the user for location
permission! To do that, we first need to create the object (easy), then set ourselves as its
delegate (easy, but we need to conform to the protocol), then finally we need to request
authorization. We'll start by conforming to the protocol, so change your class definition to
this:

class ViewController: UIViewController, CLLocationManagerDelegate {

Now modify your viewDidLoad() method to this:

override func viewDidLoad() {

 super.viewDidLoad()

 locationManager = CLLocationManager()

 locationManager.delegate = self

 locationManager.requestAlwaysAuthorization()

 view.backgroundColor = UIColor.grayColor()

}

Creating the object and setting the delegate are easy enough, but the
requestAlwaysAuthorization() call is new. This is where the actual action happens: if you
have already been granted location permission then things will Just Work; if you haven't, iOS
will request it now. Note: if you used the "when in use" key, you should call
requestWhenInUseAuthorization() instead.

Warning: If you did not set the correct plist key earlier, your request for location access will
be ignored.

I slipped one other thing in there: I set the view's background color to be gray. As well as

www.hackingwithswift.com 533

I slipped one other thing in there: I set the view's background color to be gray. As well as
changing the label's text, we'll be using color to tell users how distant the beacon is.

Requesting location authorization is a non-blocking call, which means your code will carry on
executing while the user reads your location message and decides whether to grant you
access to their location.

When the user has finally made their mind, you'll get told their result because we set
ourselves as the delegate for our CLLocationManager object. The method that will be called
is this one:

func locationManager(manager: CLLocationManager,
didChangeAuthorizationStatus status: CLAuthorizationStatus) {

 if status == .AuthorizedAlways {

 if
CLLocationManager.isMonitoringAvailableForClass(CLBeaconRegion.self)
{

 if CLLocationManager.isRangingAvailable() {

 // do stuff

 }

 }

 }

}

Put that into your view controller class somewhere, then run your app. It's important to test it
before continuing, because if you've made a mistake somewhere it's hard to know unless
you stop and check. The most common error is misconfiguring the plist with location privacy
settings, so if you don't see a message requesting location access then check there first.

The didChangeAuthorizationStatus method we just added doesn't do anything because it
just has a comment saying // do stuff. We'll fill that in with great stuff shortly, but for now
look at the conditional statements wrapped around it: did we get authorized by the user? If
so, is our device able to monitor iBeacons? If so, is ranging available? (Ranging is the ability
to tell roughly how far something else is away from our device.)

www.hackingwithswift.com 534

Hunting the beacon
If everything is working, you should have received a large iOS confirmation prompt asking
whether you grant the user access to their location. This message is really blunt, so users
hopefully take a few moments to read it before continuing.

But that prompt is not the only way iOS helps users guard their privacy. If you went for "when
in use", you'll still get location information while your app is in the background if you enable
the background capability, and iOS will notify users that this is happening by making the
device status bar blue and saying "YourAppName is using your location." If you went for
"always", iOS will wait a few days then ask the user if they still want to grant permission, just
to be fully sure.

Assuming everything went well, let's take a look at how we actually range beacons. First, we
use a new class called CLBeaconRegion, which is used to identify a beacon uniquely.
Second, we give that to our CLLocationManager object by calling its
startMonitoringForRegion() and startRangingBeaconsInRegion() methods. Once that's
done, we sit and wait. As soon as iOS has anything tell us, it will do so.

iBeacons are identified using three pieces of information: a universally unique identifier
(UUID), plus a major number and a minor number. The first number is a long hexadecimal
string that you can create by running the uuidgen in your Mac's terminal. It should identify
you or your store chain uniquely.

The major number is used to subdivide within the UUID. So, if you have 10,000 stores in your
supermarket chain, you would use the same UUID for them all but give each one a different
major number. That major number must be between 1 and 65535, which is enough to identify
every McDonalds and Starbucks outlet combined!

The minor number can (if you wish) be used to subdivide within the major number. For
example, if your flagship London store has 12 floors each of which has 10 departments, you
would assign each of them a different minor number.

The combination of all three identify the user's precise location:

 • UUID: You're in a Acme Hardware Supplies store.
 • Major: You're in the Glasgow branch.
 • Minor: You're in the shoe department on the third floor.

www.hackingwithswift.com 535

If you don't need that level of detail you can skip minor or even major – it's down to you.

It's time to put this into code, so we're going to create a new method called startScanning()
that contains the following:

func startScanning() {

 let uuid = NSUUID(UUIDString: "5A4BCFCE-174E-4BAC-
A814-092E77F6B7E5")!

 let beaconRegion = CLBeaconRegion(proximityUUID: uuid, major: 123,
minor: 456, identifier: "MyBeacon")

 locationManager.startMonitoringForRegion(beaconRegion)

 locationManager.startRangingBeaconsInRegion(beaconRegion)

}

You met NSUUID in project 10, but here we're converting a string into a UUID rather than
generating a UUID and converting it to a string. The UUID I'm using there is one of the ones
that comes built into the Locate Beacon app – look under "Apple AirLocate 5A4BCFCE" and
find it there. Note that I'm scanning for specific major and minor numbers, so please enter
those into your Locate Beacon app.

The identifier field is just a string you can set to help identify this beacon in a human-
readable way. That, plus the UUID, major and minor fields, goes into the CLBeaconRegion
class, which is used to identify and work with iBeacons. It then gets sent to our location
manager, asking it to monitor for the existence of the region and also to start measuring the
distance between us and the beacon.

Find the // do stuff comment inside the didChangeAuthorizationStatus method you wrote
a few minutes ago, and change it to this:

startScanning()

That method should now be much clearer: we only start scanning for beacons when we have

www.hackingwithswift.com 536

permission and if the device is able to do so.

If you run the app now (on a real device, remember!) you'll see that it literally looks identical,
as if we needn't have bothered writing any iBeacon code. But behind the scenes, detection
and ranging is happening, we're just not doing anything with it!

This app is going to change the label text and view background color to reflect proximity to
the beacon we're scanning for. This will be done in a single method, called
updateDistance(), which will use a switch/case block and animations in order to make the
transition look smooth. Let's write that method first:

func updateDistance(distance: CLProximity) {

 UIView.animateWithDuration(0.8) { [unowned self] in

 switch distance {

 case .Unknown:

 self.view.backgroundColor = UIColor.grayColor()

 self.distanceReading.text = "UNKNOWN"

 case .Far:

 self.view.backgroundColor = UIColor.blueColor()

 self.distanceReading.text = "FAR"

 case .Near:

 self.view.backgroundColor = UIColor.orangeColor()

 self.distanceReading.text = "NEAR"

 case .Immediate:

 self.view.backgroundColor = UIColor.redColor()

 self.distanceReading.text = "RIGHT HERE"

 }

 }

}

www.hackingwithswift.com 537

Most of that is just choosing the right color and text, but you'll notice the method accepts a
CLProximity as its parameter. This can only be be one of our four distance values, which is
why we don't need a default case in there – Swift can see the switch/case is complete.

With that method written, all that remains before our project is complete is to catch the
ranging method from CLLocationManager. We'll be given the array of beacons it found for a
given region, which allows for cases where there are multiple beacons transmitting the same
UUID.

If we receive any beacons from this method, we'll pull out the first one and use its proximity
property to call our updateDistance() method and redraw the user interface. If there aren't
any beacons, we'll just use .Unknown, which will switch the text back to "UNKNOWN" and
make the background color gray.

Here's the code:

func locationManager(manager: CLLocationManager, didRangeBeacons
beacons: [CLBeacon], inRegion region: CLBeaconRegion) {

 if beacons.count > 0 {

 let beacon = beacons[0]

 updateDistance(beacon.proximity)

 } else {

 updateDistance(.Unknown)

 }

}

With that, your code is done. Run it on a device, make sure Locate Beacon is up and
transmitting, and enjoy your location-aware app!

www.hackingwithswift.com 538

Wrap up
Working with iBeacon locations is different from working with maps. The technology is often
called micro-location because it can tell the difference between a few centimeters and a
meter or more. Plus it works inside, which is somewhere GPS continues to be poor, and
understandably.

What you've produced is designed to do ranging, but you could easily make it ignore the
range data and just focus on whether a beacon is present. For example, if the beacon in your
house is present (regardless of range), you could make your app show home-related tasks
that you have pre-configured.

www.hackingwithswift.com 539

Project 23
Space Race
Dodge space debris while you learn about per-pixel
collision detection.

www.hackingwithswift.com 540

Setting up
In this game project we'll seek to answer the question, "how fast can you make a fun game
in SpriteKit?" Spoiler warning: the answer is very fast. And that's even when you ignore
learning about advancing particle systems, linear and angular damping, and per-pixel
collision detection.

The game we're going to produce is a very simple survival game: our player will have to pilot
a spaceship safely through a field of space junk. The longer they stay alive the higher their
score will be, but they need to keep moving otherwise certain death awaits!

Remarkably, we're going to make this project in just over 100 lines of code. To begin, create
a new SpriteKit project in Xcode, name it Project23 and set its target to be iPad. Configure it
work only in landscape, then download the files for this project and copy the Content folder
into your project. Now delete the spaceship from Images.xcassets and all the code from
inside didMoveToView() and touchesBegan().

All done? Start the clock – let's see how long it takes to make this game!

Warning: When working with SpriteKit projects, I strongly recommend you use the iPad 2
simulator rather than iPad Air – you'll get much faster frame rates, making it much more
suitable for testing.

www.hackingwithswift.com 541

Space: the final frontier
To begin with we're going to place a handful of things that are required to make our game
work: a starfield (not a static background picture this time), the player image, plus a score
label. Those three things will use an SKEmitterNode, an SKSpriteNode and an
SKLabelNode respectively, so let's declare them as properties now:

var starfield: SKEmitterNode!

var player: SKSpriteNode!

var scoreLabel: SKLabelNode!

var score: Int = 0 {

 didSet {

 scoreLabel.text = "Score: \(score)"

 }

}

As per usual, we're using a property observer to update the score label as needed.

In order to get those properties set up with meaningful values, we're going to put a lot of
code into didMoveToView() so that everything is created and positioned up front.

I'm not going to bore you by going through every line of code – three quarters of it you
should know by heart at this point! – but I do want to point out a few interesting things.

First, the starfield particle emitter is positioned at X:1024 Y:384, which is the right edge of the
screen and half way up. If you created particles like this normally it would look strange,
because most of the screen wouldn't start with particles and they would just stream in from
the right. But by using the advanceSimulationTime() method of the emitter we're going to
ask SpriteKit to simulate 10 seconds passing in the emitter, thus updating all the particles as
if they were created 10 seconds ago. This will have the effect of filling our screen with star
particles.

Second, because the spaceship is an irregular shape and the objects in space are also

www.hackingwithswift.com 542

irregular, we're going to use per-pixel collision detection. This means collisions happen not
based on rectangles and circles but based on actual pixels from one object touching actual
pixels in another.

Now, SpriteKit does a really great job of optimizing this so that it looks like it's using actual
pixels when in fact it just uses a very close approximation, but you should still only use it
when it's needed. If something can be created as a rectangle or a circle you should do so
because it's much faster.

Third, we're going to set the contact test bit mask for our player to be 1. This will match the
category bit mask we will set for space debris later on, and it means that we'll be notified
when the player collides with debris.

Fourth, I'm going to set the gravity of our physics world to be empty, because this is space
and there isn't any gravity. Well, that's not strictly true because there is a small amount of
gravity everywhere in space, but certainly nothing we can simulate effectively in this game!

Here's the new didMoveToView() method:

override func didMoveToView(view: SKView) {

 backgroundColor = UIColor.blackColor()

 starfield = SKEmitterNode(fileNamed: "Starfield")!

 starfield.position = CGPoint(x: 1024, y: 384)

 starfield.advanceSimulationTime(10)

 addChild(starfield)

 starfield.zPosition = -1

 player = SKSpriteNode(imageNamed: "player")

 player.position = CGPoint(x: 100, y: 384)

 player.physicsBody = SKPhysicsBody(texture: player.texture!, size:
player.size)

 player.physicsBody!.contactTestBitMask = 1

 addChild(player)

www.hackingwithswift.com 543

 scoreLabel = SKLabelNode(fontNamed: "Chalkduster")

 scoreLabel.position = CGPoint(x: 16, y: 16)

 scoreLabel.horizontalAlignmentMode = .Left

 addChild(scoreLabel)

 score = 0

 physicsWorld.gravity = CGVector(dx: 0, dy: 0)

 physicsWorld.contactDelegate = self

}

Did you see how easy it is to make per-pixel collision detection work? You just need to create
the SKPhysicsBody by passing in a texture and size, and for us we just want to use the
player's current texture and size. That's it!

The last line of code in that method sets our current game scene to be the contact delegate
of the physics world, so you'll need to conform to the SKPhysicsContactDelegate protocol.

www.hackingwithswift.com 544

Our basic game has the user piloting a space rocket through space.

www.hackingwithswift.com 545

Bring on the enemies!
The point of our game is for the spaceship to survive while random "space debris" gets
thrown at it. I've included three items of various shapes in this example, but you can add
more easily enough. As long as the player stays alive their score ticks upwards, so clearly it's
going to take some quick movement to get the highest score.

To add enemies and time to the game, we need to declare four new properties:

var possibleEnemies = ["ball", "hammer", "tv"]

var gameTimer: NSTimer!

var gameOver = false

The possibleEnemies array contains the names of the three images that can be used as
space debris in the game: a ball, a hammer and a TV. You met NSTimer in project 20, and
we'll be using it here to create new enemies regularly. Finally, gameOver is a simple boolean
that will be set to true when we should stop increasing the player's score.

We need to create a new enemy on a regular basis, so the first thing to do is create a
scheduled timer. I'm going to give it a timer interval of 0.35 seconds, so it will create about
three enemies a second. Put this code into didMoveToView():

gameTimer = NSTimer.scheduledTimerWithTimeInterval(0.35, target:
self, selector: "createEnemy", userInfo: nil, repeats: true)

Creating an enemy needs to use techniques that you've mostly seen already: it will shuffle
the possibleEnemies array, create a sprite node using the first item in that array, position it
off the right edge and with a random vertical position, then add it to the scene.

That part is old. The new part is the way we're going to create the physics body of the
debris: we're going to use per-pixel collision again, tell it to collide with the player, make it
move to the left at a fast speed, and give it some angular velocity. But we're also going to set
to 0 its linearDamping and angularDamping properties, which means its movement and
rotation will never slow down over time. Perfect for a frictionless space environment!

www.hackingwithswift.com 546

Here's the createEnemy() method in full:

func createEnemy() {

 possibleEnemies =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(possible
Enemies) as! [String]

 let randomDistribution = GKRandomDistribution(lowestValue: 50,
highestValue: 736)

 let sprite = SKSpriteNode(imageNamed: possibleEnemies[0])

 sprite.position = CGPoint(x: 1200, y: randomDistribution.nextInt())

 addChild(sprite)

 sprite.physicsBody = SKPhysicsBody(texture: sprite.texture!, size:
sprite.size)

 sprite.physicsBody?.categoryBitMask = 1

 sprite.physicsBody?.velocity = CGVector(dx: -500, dy: 0)

 sprite.physicsBody?.angularVelocity = 5

 sprite.physicsBody?.linearDamping = 0

 sprite.physicsBody?.angularDamping = 0

}

Make sure you add import GameplayKit at the top of the file so the array shuffling code
works. That method uses a new way of generating random numbers that we haven't covered
before: it uses the GKRandomDistribution class from GameplayKit to generate a random
number between 50 and 736 inclusive.

Now that lots of debris will appear, we need to make sure we remove their nodes once they
are invisible. In this game, that means removing nodes from the scene once they are
effectively useless because they have passed the player. This will be done using a check in
the update() method: if any node is beyond X position -300, we'll consider it dead.

www.hackingwithswift.com 547

The update() method is also a good place to make our score increment all the time. All we
need to do is check whether gameOver is still false, and add one to the score if so. Here's
the code for the update() method:

override func update(currentTime: CFTimeInterval) {

 for node in children {

 if node.position.x < -300 {

 node.removeFromParent()

 }

 }

 if !gameOver {

 score += 1

 }

}

www.hackingwithswift.com 548

Random deadly objects are thrown at the player, who scores points simply by staying alive.

www.hackingwithswift.com 549

Making contact
Check your clock, because remarkably we're just two methods away from finishing this
game! Predictably, the two methods are critically important: one to move the player around
the screen, and one to handle collisions between the player and the space debris.

Handling player movement is as simple as implementing the touchesMoved() method. We
will, like always, need to use the locationInNode() method to figure out where on the screen
the user touched. But this time we're going to clamp the player's Y position, which in plain
English means that we're going to stop them going above or below a certain point, keeping
them firmly in the game area.

I'll be clamping the player's position so they can't overlap the score label, and I'll apply the
same restriction on top so that the player has a symmetrical channel to fly through. This is a
cinch to do, so here's the touchesMoved() method:

override func touchesMoved(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 guard let touch = touches.first else { return }

 var location = touch.locationInNode(self)

 if location.y < 100 {

 location.y = 100

 } else if location.y > 668 {

 location.y = 668

 }

 player.position = location

}

Our last task is to end the game when the player hits any piece of space debris. This is all
code you know already: we're going to create a particle emitter, position it where the player is
(or was!), and add the explosion to the scene while removing the player. In this game we're
also going to set gameOver to be true so that the update() method stops adding to their

www.hackingwithswift.com 550

score. Here's all the code:

func didBeginContact(contact: SKPhysicsContact) {

 let explosion = SKEmitterNode(fileNamed: "explosion")!

 explosion.position = player.position

 addChild(explosion)

 player.removeFromParent()

 gameOver = true

}

www.hackingwithswift.com 551

Wrap up
That's it! We just made a game in 20 minutes or so, which shows you just how fast SpriteKit
is. I even showed you how per-pixel collision detection works (it's so easy!), how to advance
particle systems so they start life with some history behind them, and how to adjust linear
and angular damping so that objects don't slow down over time.

If you're tempted to work on this project some more, you could start by fixing a bug: if the
player gets in a difficult position, they can just remove their finger from the screen then touch
somewhere else to have the spaceship immediately jump there. How could you fix this? Well,
one easy way is to add code for touchesEnded() that terminates the game if the player
stops touching the screen.

If you're looking for something bigger to try, how about turn this game into a full space
shooter. To do this, you need to create lasers going the opposite way, then make those lasers
also collide with the space debris. In terms of controls, it wouldn't be hard to use
touchesMoved() to move the player and touchesBegan() to fire lasers.

www.hackingwithswift.com 552

Project 24
Swift Extensions
Try your hand at improving the built-in data types of Swift.

www.hackingwithswift.com 553

Setting up
There's one technique I've been patiently waiting to show you since this series started, and
now is the right time: extensions. Cunningly, this is not at all the same thing I already showed
you in project 16, which was when we created an extension to Safari. This time we're going
to create extensions for Swift – literally extending the language so it can do more things.

This isn't complicated, honest. We're not trying to make Swift do things it wasn't designed to
do; in fact, I'd wager that language extensions are used in nearly all major projects that are
shipping today. Why? Because they let you attach functionality to data types you didn't
create. You've seen time and time again how we can add any methods we want to our own
classes. Well, extensions let you do that to other classes and structs, including Apple's own.

There isn't enough in extensions to give you an intellectual challenge, so you're going to
learn about extensions while using a Swift playground. We haven't used these yet because
they haven't been appropriate, but now is a good chance. I'm also going to take this
opportunity to outline in more detail the differences between functions and methods.

In Xcode, go to the File menu and choose New > Playground. Name it Project24, make sure
iOS is selected as the platform, then choose Next and save it somewhere you can find later.
Swift playgrounds are split into two columns: the left half contains your code, the right
contains your output.

www.hackingwithswift.com 554

Adding to integers
I've been asking you to use a file called Helper.swift several times so far in this series, and it's
basically a collection of interesting functions that do a handful of difficult tasks. However, that
file is messy: it has function names like RandomCGFloat() and RandomColor() mixed
together even though they do quite different things.

This gets confusing. It gets confusing because we don't know where these functions come
from, it gets confusing because we're filling the code completion database with global
functions that have similar names, and it gets confusing because these functions don't all
take uniform parameters. Extensions can help us fix the first two, because it lets us move
these global functions to be methods inside a class or struct.

We're going to start with an extremely simple extension so you can get a basic grip on how
things work before moving on to more complicated examples.

Let's start with an extension that adds one to an integer. Yes, I realise this is essentially just
+= 1, but we're starting simple. Put this in your playground:

import UIKit

var myInt = 0

This code will be evaluated immediately, so in the right column you'll see 0. This tells you that
the myInt variable has the value 0. Now add this to the playground, just beneath the import
UIKit statement:

extension Int {

 func plusOne() -> Int {

 return self + 1

 }

}

www.hackingwithswift.com 555

There are two things in there that are new:

1. extension Int tells Swift that we want to add functionality to its Int struct. We could have
used String, Array, UIButton or whatever instead, but Int is a nice easy one to start.
2. self + 1 is new because so far we've only used self to refer to a view controller or SpriteKit
scene. Well, self in this case refers to the number that was used to call this method.

How the extension works will become clear once you use it. Put this line just below the
current myInt line:

var myInt = 0

myInt.plusOne()

In the right column you'll now see 0 for the first line and 1 for the second, so calling
plusOne() has returned a number one higher than the number we called it on. Note: unlike
regular Swift files, playground code is executed linearly – i.e., top to bottom. That means you
need to put the extension code above where you use it.

 The extension has been added to all integers, so you can even call it like this:

5.plusOne()

When you do that, you'll see 6 in the output column.

Our little extension adds 1 to its input number and returns it to the caller, but doesn't modify
the original value. Try typing this:

var myInt = 10

myInt.plusOne()

myInt

www.hackingwithswift.com 556

Using a variable by itself tells the playground just to output its value, so in the output column
you'll see 10, then 11, then 10 again. This is the original value, the return from the plusOne()
method, and the original, unchanged value.

To push things a little further, let's modify the plusOne() method so that it doesn't return
anything, instead modifying the instance itself – i.e., the input integer.

To make that happen, you might think we need to do something like this:

extension Int {

 func plusOne() {

 self += 1

 }

}

That removes the return value because we aren't returning anything now, and it uses the +=
operator to add one to self. But this won't work, and in fact Xcode will give you a wonderfully
indecipherable error message: "Cannot invoke += with an argument of type Int."

That error will undoubtedly make you think, "surely += and Ints go together like George
Lucas and endless Star Wars remakes," but what Xcode really means is that it Swift doesn't
let you modify self inside an extension by default. The reason is that we could call plusOne()
using 5.plusOne(), and clearly you can't modify the number 5 to mean something else.

So, Swift forces you to declare the method mutating, meaning that it will change its input.
Change your extension to this:

extension Int {

 mutating func plusOne() {

 self += 1

 }

}

www.hackingwithswift.com 557

…and now the error message will go away. Once you have declared a method as being
mutating, Swift knows it will change values so it won't let you use it with constants. For
example:

var myInt = 10

myInt.plusOne()

let otherInt = 10

otherInt.plusOne()

The first integer will be modified correctly, but the second will fail because Swift won't let you
modify constants.

www.hackingwithswift.com 558

Cleaning up the mess
I've been using the words function and method a lot so far, but haven't stopped to explain
the difference. Well, there is a difference, but it's not really that important despite what many
pedants might tell you. Heck, even Swift uses func for both functions and methods.

The main difference between a function and a method is that a method belongs to a
particular class, struct or enum. Methods that belong to a class have access to all the class's
data, and are useful because they help to encapsulate functionality. This means that an
object owns its data, and the same object is responsible for manipulating that data using its
methods. Functions, however, are global beasts: they don't belong to a particular class, so
they can be called anywhere.

There is one other difference between the two in Swift, and that's how parameters are
handled. In project 14 we used a method called show() to show enemies, and it accepted as
a parameter how long to wait until hiding the enemies. As I said then, this would by default
be callable like this:

show(1)

Problem is, the 1 is meaningless. As a result, Apple makes their own method names longer
to try to describe what the first parameter is doing, for example they would probably have
called that method showWithHideDelay() so that when you call it with 1 you could read the
code aloud and have it make sense.

The solution we used at the time was to force a label on the parameter. In Swift, this is called
an external parameter name, and it means that we had to call show(hideTime: 1) to make
the call work.

This concept of internal parameter name (the name you use inside the method/function) and
external parameter name (the name you use when calling the method/function) is where
Swift's use of methods and functions can get confusing. Here are the rules:

1. By default, methods and functions have automatic external parameter names, but not for
the first parameter. This means you call things like obj.myFunc(1, age: 101, sound: "Moo",
alive: false). The first parameter doesn't have a forced external name because of Apple's
use of veryLongDescriptiveMethodNames().

www.hackingwithswift.com 559

2. Both methods and functions can have external parameter names defined separately for
the internal parameter names.
3. Both methods and functions can be forced to have external parameter names that match
their internal parameter names by repeating the name.

The first and last of these behaviors are automatic: Swift forces external parameters for
functions and methods (except the first one), and we already looked at the fourth one – if you
remember, we ended up defining the show() method like this:

func show(hideTime hideTime: Double) {

Doubling the parameter name means "make this the external parameter name as well as the
internal." What hasn't been covered yet is the second behavior: how to define one parameter
name for external use and one for internal. Well, the good news is that it's really easy to do;
the bad news is that the syntax looks a little clumsy at first because you just use two different
parameter names.

As a working example, let's take the below function, RandomInt():

func RandomInt(min: Int, max: Int) -> Int {

 if max < min { return min }

 return Int(arc4random_uniform(UInt32((max - min) + 1))) + min

}

That's designed to generate a random number in the same way GameplayKit does, except
this code works on iOS versions earlier than 9.0 – helpful if you really need backwards
compatibility.

Remember, Swift already forces users to provide the parameter name for the second and
subsequent parameters, but the first one is used without a parameter name, like this:

RandomInt(10, max: 10)

www.hackingwithswift.com 560

If we wanted to force users to use the parameter name for min as well as max, we'd need to
double the parameter name, like this:

func RandomInt(min min: Int, max: Int) -> Int {

 if max < min { return min }

 return Int(arc4random_uniform(UInt32((max - min) + 1))) + min

}

Using that, the code must now be called using RandomInt(min: 1, max: 10). But if we
wanted to use different external parameter names from internal parameter names, we'd need
to specify them twice:

func RandomInt(minimum min: Int, maximum max: Int) -> Int {

 if max < min { return min }

 return Int(arc4random_uniform(UInt32((max - min) + 1))) + min

}

There are still only two parameters in there, but they now have two names. The first,
minimum min, means "call me using minimum, but inside the method use min," and the
latter means "call me using maximum, but inside the method use max." So, the method body
hasn't changed, but it now must be called using RandomInt(minimum: 1, maximum: 10).

With the parameter names cleaned up nicely, it's time to turn this into an extension so that it
is neatly organised. You've already tried a basic extension, so you should be able to see that
we can make RandomInt() an extension of Int like this:

extension Int {

 mutating func plusOne() {

 self += 1

 }

www.hackingwithswift.com 561

 }

 static func random(min min: Int, max: Int) -> Int {

 if max < min { return min }

 return Int(arc4random_uniform((max - min) + 1)) + min

 }

}

Did you hit a mental speed bump while reading that code? I hope so, because I snuck two
new things in there, both of which are important:

1. I renamed the method to be just random(), because methods must belong to a class,
struct or enum, and this one belongs to Int so we know it's for integers – the "Int" part of
RandomInt() is self-evident. Also, methods always start with a lowercase letter, hence
random()2. I added a new keyword: static. This means "this method belongs to the Int type,
not to specific instances of that type.

You're probably thinking that static doesn't make any sense. But look at this two lines of
code and tell me which one makes more sense:

Int.random(min: 1, max: 10)

10.random(min: 1, max: 10)

The former means "call this method on the Int type," and the latter means "call this method
on the number 5." As you might imagine, 5 is an instance of Int, and that's the difference
static makes: do you want to call this method on the type itself, or do you want to call this
on an instance of the type?

You can extend any data type using this technique. For example, if you wanted to extend
UIColor so that it has another built-in color, you would use this:

extension UIColor {

 static func chartreuseColor() -> UIColor {

 return UIColor(red: 0.875, green: 1, blue: 0, alpha: 1)

www.hackingwithswift.com 562

 return UIColor(red: 0.875, green: 1, blue: 0, alpha: 1)

 }

}

www.hackingwithswift.com 563

Extensions for brevity
Like I said earlier, it's extremely common for developers to use extensions to add
functionality to things. In some ways, extensions are similar to subclasses, because we could
easily subclass UIView and add new methods to it like this:

func fadeOut(duration: NSTimeInterval) {

 UIView.animateWithDuration(duration) { [unowned self] in

 self.alpha = 0

 }

}

So why use extensions at all? The main reason is extensibility: extensions work across all
data types, and they don't conflict when you have more than one. That is, we could make a
UIView subclass that adds fadeOut(), but what if we find some open source code that
contains a spinAround() method? We would have to copy and paste it in to our subclass, or
perhaps even subclass again.

With extensions you can have ten different pieces of functionality in ten different files – they
can all modify UIView directly, and you don't need to subclass anything. A common naming
scheme for naming your extension files is Type+Modifier.swift, for example Array
+Shuffling.swift. That's a file we've used multiple times so far, and now you can look inside it
and see that's an extension to the Array type.

Having extensions in different files also means you can reuse individual extensions just by
copying a file into a project. That's what we've been doing with the array shuffling code:
every time we've needed it, we've just copied the file into our project and immediately the
shuffle() method is available.

If you find yourself wanting to make views fade out often, an extension is perfect for you. If
you find yourself trimming whitespace off strings frequently, you'll probably get tired of using
this monstrosity:

str =
str.stringByTrimmingCharactersInSet(NSCharacterSet.whitespaceAndNewli

www.hackingwithswift.com 564

neCharacterSet())

…so why not just make an extension like this:

extension String {

 mutating func trim() {

 self =
stringByTrimmingCharactersInSet(NSCharacterSet.whitespaceAndNewlineCh
aracterSet())

 }

}

You can extend as much as you want, although it's good practice to keep differing
functionality separated into individual files. That said, "good practice" and "I'm up against a
deadline" are rarely the same, so expect to see extensions named String+Additions.swift that
add a collection of unrelated things to the String struct.

If you want to see what super-charging Swift's built-in data types can look like, look up the
ExSwift extension catalog on GitHub at https://github.com/pNre/ExSwift.

www.hackingwithswift.com 565

Wrap up
Swift extensions are the smart way to add functionality to existing types, and you're going to
meet them time and time again – and hopefully write quite a few of your own too. They aren't
all-encompassing, because they don't let you add properties to a class whereas a full
subclass would, but they are easy to use and easy to share so I'm sure you'll use them
frequently.

In this project, you've also learned a little of how useful Swift playgrounds can be for
prototyping code, because the immediate feedback you get makes it extremely easy to try
things out and make quick adjustments.

www.hackingwithswift.com 566

Project 25
Selfie Share
Make a multipeer photo sharing app in just 150 lines of
code.

www.hackingwithswift.com 567

Setting up
This project is going to give you some practice with collection views, the image picker and
GCD, but at the same time introduce you to a new technology called the multipeer
connectivity framework. This is a way to let users form impromptu connections to each other
and send data, rather like BitTorrent.

The app we're going to make will show photos of your choosing in a collection view. That
much is easy enough, because we did pretty much that already in project 10. But this time
there's a subtle difference: when you add a photo it's going to automatically send it to any
other devices you are currently connected to, and any photos they select will appear for you.

Create a new Single View Application project in Xcode, naming it Project25 and selecting any
device you want. Please note: the nature of peer-to-peer apps is that you need to have at
least two copies of your app running, one to send and one to receive. Because the iOS
simulator only lets you run one simulated app at a time, this means you'll need to have one
physical device alongside your simulator.

www.hackingwithswift.com 568

Importing photos again
We've used the UIImagePickerController class twice now: once in project 10 and again in
project 13, so I hope you're already comfortable with it. We also used a collection view in
project 10, but we haven't used it since so you might not be quite so familiar with it.

Open Main.storyboard in Interface Builder, then embed the default view controller inside a
navigation controller. Now place a collection view so that it fills the screen and set its
background to be white.

With the collection view selected, set cell size to be 145 wide and 145 high, and give all four
section insets a value of 10. Click inside the prototype cell that Xcode made for you and give
it the reuse identifier "ImageView". Finally, drop an image view into the cell so that it occupies
all its space, and give it the tag 1000.

All the constraints in this project can be made automatically, so go to the Editor menu and
choose Resolve Auto Layout Issues > Add Missing Constraints.

Before we're done with the storyboard, please make our view controller the data source and
delegate of the collection view – Ctrl-drag from the collection view to the view controller icon
just above the view. Now use the assistant editor to create an outlet for it called
collectionView.

Go back to the standard editor and open up ViewController.swift, because we're finished with
the user interface and can plug in the code. Note that almost all of this has been covered in
other projects, so we're not going to waste much time here when there are far more
interesting things around the corner!

To start, add a right bar button item that uses the system's camera icon and calls an
importPicture() method that we'll write shortly. I'm also going to customise the title of the
view controller so that it isn't empty, so here's the new viewDidLoad() method:

override func viewDidLoad() {

 super.viewDidLoad()

 title = "Selfie Share"

 navigationItem.rightBarButtonItem =

www.hackingwithswift.com 569

UIBarButtonItem(barButtonSystemItem: .Camera, target: self, action:
"importPicture")

}

Next, let's make the collection view work correctly. You need to make your view controller
conform to the UICollectionViewDataSource and UICollectionViewDelegate protocols,
but while you're there you might as well also add the UINavigationControllerDelegate and
UIImagePickerControllerDelegate protocols too, because we need those to work with the
image picker.

We will store all our apps images inside a UIImage array, so please add this property:

var images = [UIImage]()

We're going to use that array to know how many items are in our collection view, so you
should know to write this method yourself:

func collectionView(collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {

 return images.count

}

Next comes the only thing out of the ordinary in all this code, which is the
cellForItemAtIndexPath method for our collection view. To get us through this part of the
project as quickly as possible, I took a shortcut: when it comes to configuring cells to look
correct, we can dequeue using the identifier "ImageView" then find the UIImageView inside
them without a property.

I asked you to set the tag of the image view to be 1000, and here's why: all UIView
subclasses have a method called viewWithTag(), which searches for any views inside itself
(or indeed itself) with that tag number. We can find our image view just by using this method,
although I'll still use if/let and a conditional typecast to be sure.

www.hackingwithswift.com 570

Here's the code for cellForItemAtIndexPath:

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {

 let cell =
collectionView.dequeueReusableCellWithReuseIdentifier("ImageView",
forIndexPath: indexPath)

 if let imageView = cell.viewWithTag(1000) as? UIImageView {

 imageView.image = images[indexPath.item]

 }

 return cell

}

That makes the collection view work just fine, but we still need three more methods in order
to get our basic app ready, and these are the methods to handle the image picker. If this
code isn't identical to the code we've previously written, it might as well be – check project
10 if your memory is bad!

func importPicture() {

 let picker = UIImagePickerController()

 picker.allowsEditing = true

 picker.delegate = self

 presentViewController(picker, animated: true, completion: nil)

}

func imagePickerController(picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject]) {

 var newImage: UIImage

www.hackingwithswift.com 571

 if let possibleImage = info["UIImagePickerControllerEditedImage"]
as? UIImage {

 newImage = possibleImage

 } else if let possibleImage =
info["UIImagePickerControllerOriginalImage"] as? UIImage {

 newImage = possibleImage

 } else {

 return

 }

 dismissViewControllerAnimated(true, completion: nil)

 images.insert(newImage, atIndex: 0)

 collectionView.reloadData()

}

func imagePickerControllerDidCancel(picker: UIImagePickerController)
{

 dismissViewControllerAnimated(true, completion: nil)

}

Done. No more boring old code now, it's all new from here. You can run the app if you want,
but there's really not much point other than being sure your code works – this is just a cut-
down version of project 10 so far.

www.hackingwithswift.com 572

Going peer to peer
Add a left bar button item to our view controller, using the "add" system icon, and making it
call a method called showConnectionPrompt(). We're going to make that method ask users
whether they want to connect to an existing session with other people, or whether they want
to create their own. Here's the code for the bar button item – put this in viewDidLoad():

navigationItem.leftBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Add, target: self, action:
"showConnectionPrompt")

Asking users to clarify how they want to take an action is of course the purpose of
UIAlertController as an action sheet, and our showConnectionPrompt() method is going to
use one to ask users what kind of connection they want to make. Put this code into your
view controller:

func showConnectionPrompt() {

 let ac = UIAlertController(title: "Connect to others", message:
nil, preferredStyle: .ActionSheet)

 ac.addAction(UIAlertAction(title: "Host a session",
style: .Default, handler: startHosting))

 ac.addAction(UIAlertAction(title: "Join a session",
style: .Default, handler: joinSession))

 ac.addAction(UIAlertAction(title: "Cancel", style: .Cancel,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

Now, here's where it gets trickier. Multipeer connectivity requires four new classes:

1. MCSession is the manager class that handles all multipeer connectivity for us.
2. MCPeerID identifies each user uniquely in a session.
3. MCAdvertiserAssistant is used when creating a session, telling others that we exist and
handling invitations.

www.hackingwithswift.com 573

4. MCBrowserViewController is used when looking for sessions, showing users who is
nearby and letting them join.

We're going to use all four of them in our app, but only three need to be properties – add
these to your view controller:

var peerID: MCPeerID!

var mcSession: MCSession!

var mcAdvertiserAssistant: MCAdvertiserAssistant!

You'll get errors on each of those lines because Xcode doesn't recognise the classes. You
can fix that by asking it to import the multipeer framework – add this line just above import
UIKit:

import MultipeerConnectivity

Depending on what users select in our alert controller, we need to call one of two methods:
startHosting() or joinSession(). Because both of these are coming from the result of a
UIAction being tapped, both methods must accept a UIAlertAction! as their only parameter.

Before I show you the code to get multipeer connectivity up and running, I want to go over
what they will do. Most important of all is that all multipeer services on iOS must declare a
service type, which is a 15-digit string that uniquely identify your service. Those 15 digits can
contain only the letters A-Z, numbers and hyphens, and it's usually preferred to include your
company in there somehow.

Apple's example is, "a text chat app made by ABC company could use the service type abc-
txtchat"; for this project I'll be using hws-project25.

This service type is used by both MCAdvertiserAssistant and MCBrowserViewController
to make sure your users only see other users of the same app. They both also want a
reference to your MCSession instance so they can take care of connections for you.

We're going to start by initialising our MCSession so that we're able to make connections.

www.hackingwithswift.com 574

We're going to start by initialising our MCSession so that we're able to make connections.
Put this code into viewDidLoad():

peerID = MCPeerID(displayName: UIDevice.currentDevice().name)

mcSession = MCSession(peer: peerID, securityIdentity: nil,
encryptionPreference: .Required)

mcSession.delegate = self

As you can see in that code, we're creating an MCPeerID object using the name of the
current device, which will usually be something like "Paul's iPhone". That ID is then used to
create the session, along with the encryption option of .Required to ensure that any data
transferred is kept safe.

Don't worry about conforming to any extra protocols just yet; we'll do that in just a minute.

At this point, the code for startHosting() and joinSession() will look quite trivial. Here goes:

func startHosting(action: UIAlertAction!) {

 mcAdvertiserAssistant = MCAdvertiserAssistant(serviceType: "hws-
project25", discoveryInfo: nil, session: mcSession)

 mcAdvertiserAssistant.start()

}

func joinSession(action: UIAlertAction!) {

 let mcBrowser = MCBrowserViewController(serviceType: "hws-
project25", session: mcSession)

 mcBrowser.delegate = self

 presentViewController(mcBrowser, animated: true, completion: nil)

}

We're making our view controller the delegate of a second object, so that's two protocols we
need to conform to in order to fix our current compile failures. Easily done: add
MCSessionDelegate and MCBrowserViewControllerDelegate to your class definition…

www.hackingwithswift.com 575

and now there are even more errors, because we need to implement lots of new methods.

www.hackingwithswift.com 576

Invitation only
Merely by saying that we conform to the MCSessionDelegate and
MCBrowserViewControllerDelegate protocols, your code won't build any more. This is
because the two protocols combined have seven required methods that you need to
implement just to be compatible.

Helpfully, for this project you can effectively ignore three of them, two more are trivial, and
one further is just for diagnostic information in this project. That leaves only one method that
is non-trivial and important to the program.

Let's tackle the ones we can effectively ignore. Of course, you can't ignore required
methods, otherwise they wouldn't be required. But these methods aren't ones that do
anything useful to our program, so we can just create empty methods. Remember, once
you've said you conform to a protocol, Xcode's code completion is updated so you can just
start typing the first few letters of a method name in order to have Xcode prompt you with a
list to choose from.

Here are the three methods that we need to provide, but don't actually need any code inside
them:

func session(session: MCSession, didReceiveStream stream:
NSInputStream, withName streamName: String, fromPeer peerID:
MCPeerID) {

}

func session(session: MCSession, didStartReceivingResourceWithName
resourceName: String, fromPeer peerID: MCPeerID, withProgress
progress: NSProgress) {

}

func session(session: MCSession, didFinishReceivingResourceWithName
resourceName: String, fromPeer peerID: MCPeerID, atURL localURL:
NSURL, withError error: NSError?) {

www.hackingwithswift.com 577

}

They are really long, so make sure you use code completion!

The two methods we're going to implement that are trivial are both for the multipeer browser:
one is called when it finishes successfully, and one when the user cancels. Both methods
just need to dismiss the view controller that is currently being presented, which means this is
their entire code:

func browserViewControllerDidFinish(browserViewController:
MCBrowserViewController) {

 dismissViewControllerAnimated(true, completion: nil)

}

func browserViewControllerWasCancelled(browserViewController:
MCBrowserViewController) {

 dismissViewControllerAnimated(true, completion: nil)

}

Brilliant! Isn't it easy being a coder?

There are two methods left: one that is used in this project only for diagnostic information,
and one that's actually useful. Let's eliminate the diagnostic method first so that we can
focus on the interesting bit.

When a user connects or disconnects from our session, the method
session(_:peer:didChangeState:) is called so you know what's changed – is someone
connecting, are they now connected, or have they just disconnected? We're not going to be
using this information in the project, but I do want to show you how it might be used by
printing out some diagnostics. This is helpful for debugging, because it means you can look
in Xcode's debug console to see these messages and know your code is working.

When this method is called, you'll be told what peer changed state, and what their new state
is. There are only three possible session states: not connected, connecting, and connected.

www.hackingwithswift.com 578

So, we can make our app print out useful information just by using switch/case and a bit of
println():

func session(session: MCSession, peer peerID: MCPeerID,
didChangeState state: MCSessionState) {

 switch state {

 case MCSessionState.Connected:

 print("Connected: \(peerID.displayName)")

 case MCSessionState.Connecting:

 print("Connecting: \(peerID.displayName)")

 case MCSessionState.NotConnected:

 print("Not Connected: \(peerID.displayName)")

 }

}

That just leaves one more method that must be implemented before you're fully compliant
with the protocols, but before I talk you through it you need to know how the core of this app
works. It's not hard, but it is important, so listen carefully!

Right now, when we add a picture to the collection view it is shown on our screen but
doesn't go anywhere. We're going to add some code to the image picker's
didFinishPickingMediaWithInfo method so that when an image is added it also gets sent
out to peers.

Sending images across a multipeer connection is remarkably easy. In project 10 you met the
function UIImageJPEGRepresentation(), which converts a UIImage object into an NSData
so it can be saved to disk. Well, MCSession objects have a sendData() method that will
ensure that data gets transmitted reliably to your peers.

Once the data arrives at each peer, the method session(_:didReceiveData:fromPeer:) will
get called with that data, at which point we can create a UIImage from it and add it to our

www.hackingwithswift.com 579

images array. There is one catch: when you receive data it might not be on the main thread,
and you never manipulate user interfaces anywhere but the main thread, right? Right.

Here's the final protocol method, to catch data being received in our session:

func session(session: MCSession, didReceiveData data: NSData,
fromPeer peerID: MCPeerID) {

 if let image = UIImage(data: data) {

 dispatch_async(dispatch_get_main_queue()) { [unowned self] in

 self.images.insert(image, atIndex: 0)

 self.collectionView.reloadData()

 }

 }

}

Take note of the call to dispatch_async() to ensure we definitely only manipulate the user
interface on the main thread!

The final piece of code to finish up this whole project is the bit that sends image data to
peers. This is so easy you might not even believe me. In fact, the code is only as long as it is
because there's some error checking in there.

This final code needs to:

1. Check if there are any peers to send to.
2. Convert the new image to an NSData object.
3. Send it to all peers, ensuring it gets delivered.
4. Show an error message if there's a problem.

Converting that into code, you get the below. Put this into your
didFinishPickingMediaWithInfo method, just after the call to reloadData():

// 1

if mcSession.connectedPeers.count > 0 {

www.hackingwithswift.com 580

if mcSession.connectedPeers.count > 0 {

 // 2

 if let imageData = UIImagePNGRepresentation(newImage) {

 // 3

 do {

 try mcSession.sendData(imageData, toPeers:
mcSession.connectedPeers, withMode: .Reliable)

 } catch let error as NSError {

 let ac = UIAlertController(title: "Send error", message:
error.localizedDescription, preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

 }

 }

}

Yes, the code to ensure data gets sent intact to all peers, as opposed to having some parts
lost in the ether, is just to use transmission mode .Reliable – nothing more.

Now, that code does something new: you've seen try! and try? before, but this time I'm
using plain old try without a question or exclamation mark. This means "try running this
code, and let me know if it fails." To make this work, you need to surround your code in a do/
catch block as shown above. When any error is thrown in the do block, your program
immediately jumps straight to the catch block where you can handle it – or in our case show
a message.

Anyway, I hope you'll agree that the multipeer connectivity framework is super easy to use.
The advertiser assistant takes care of telling the world that our app is looking for
connections, as well as handling people who want to join. The browser controller takes care
of finding all compatible sessions, and sending invitations. Our job is just to hook it all
together with a nice user interface, then relax and wait for the App Store riches to come in.
Sort of.

Remember: to test your project, you'll need to either run it on multiple devices, or use one
device and one simulator.

www.hackingwithswift.com 581

www.hackingwithswift.com 582

Wrap up
Multipeer connectivity is something that used to be awfully hard, but in iOS it's only 150 lines
of code to produce this entire app – and over half of that is code for the collection view and
the image picker! The advantage it has compared to traditional data sharing over Wi-Fi is that
multipeer can use an existing Wi-Fi network, or can silently create a new Wi-Fi network or
even a Bluetooth network depending on what's available. All this is an implementation detail
that Apple solves on your behalf.

If you'd like to take this project further, add a button that will show a table view listing the
names of all devices currently connected to the session. You could also try sending text
messages across the wire – there's a dataUsingEncoding() method for strings that
converting a string to an NSData. Use it with the parameters NSUTF8Encoding and false.

www.hackingwithswift.com 583

Project 26
Marble Maze
Respond to device tilting by steering a ball around a vortex
maze.

www.hackingwithswift.com 584

Setting up
In this game project you'll create a rolling ball game for iPad, using the accelerometer – you
tip your device, and the balls rolls in that direction, hopefully avoiding holes as you go.

Along with the accelerometer, you're also going to learn how to load levels, how to have fine-
grained contact bitmasks, how to reverse arrays, and how to write code that executes in the
simulator but not on devices (or vice versa). So, you learn things, you make a cool game, and
I get to bask in the warmth of knowing that your Swift mastery is growing more than ever.

Create a new SpriteKit project, name it Project26, and set it for iPad only. Make sure it uses a
fixed landscape right orientation, which is more restrictive than we usually use. We can't
enable landscape left because we'll be tilting the device in all directions, and it would be
annoying to have the device rotate because we tipped the iPad too far!

Please delete the spaceship picture and delete the contents of the didMoveToView() and
touchesBegan() methods in GameScene.swift. Now download the files for this project from
GitHub and copy its Content folder into your project.

In this project we're going to use the accelerometer, which is not supported in the iOS
Simulator. To make things easier, we're going to add some code that lets you control the
game through touch – it's nowhere near as fun, but at least it can be tested in the simulator.

Warning: When working with SpriteKit projects, I strongly recommend you use the iPad 2
simulator rather than iPad Air – you'll get much faster frame rates, making it much more
suitable for testing.

www.hackingwithswift.com 585

Loading a level
We're going to start this project by looking at the biggest method in the project, and perhaps
even the entire Hacking with Swift series. It's called loadLevel() and is responsible for
loading a level file from disk and creating SpriteKit nodes onscreen.

The method isn't long because it's complicated, it's long just because it does a lot. When
you finish this project one of the suggested ways to improve the code is to split this method
off into small methods, so you should pay close attention to how it works!

At the core of the method it loads a level file from disk, then splits it up by line. Each line will
become one row of level data on the screen, so the method will loop over every character in
the row and see what letter it is. Our game will recognise five possible options: a space will
mean empty space, "x" means a wall, "v" means a vortex (deadly to players), "s" means a
star (awards points), and "f" means level finish.

Using this kind of very simple level text format means that you can write your levels in a text
editor, and visually see exactly how they will look in your game. You've already tackled most
of the code required for the skeleton of loadLevel(), but there are a few things I want to
highlight:

 • We'll be using the enumerate() function again. In case you've forgotten, this loops over an
array, extracting each item and its position in the array.
 • We'll be positioning items as we go. Each square in the game world occupies a 64x64
space, so we can find its position by multiplying its row and column by 32. But: remember
that SpriteKit calculates its positions from the center of objects, so we need to add 32 to the
X and Y coordinates in order to make everything lines up on our screen.
 • You might also remember that SpriteKit uses an inverted Y axis to UIKit, which means for
SpriteKit Y:0 is the bottom of the screen whereas for UIKit Y:0 is the top. When it comes to
loading level rows, this means we need to read them in reverse so that the last row is created
at the bottom of the screen and so on upwards.

Here's the initial code for loadLevel():

func loadLevel() {

 if let levelPath = NSBundle.mainBundle().pathForResource("level1",
ofType: "txt") {

 if let levelString = try? String(contentsOfFile: levelPath,

www.hackingwithswift.com 586

usedEncoding: nil) {

 let lines = levelString.componentsSeparatedByString("\n")

 for (row, line) in lines.reverse().enumerate() {

 for (column, letter) in line.characters.enumerate() {

 let position = CGPoint(x: (64 * column) + 32, y: (64 * row)
+ 32)

 if letter == "x" {

 // load wall

 } else if letter == "v" {

 // load vortex

 } else if letter == "s" {

 // load star

 } else if letter == "f" {

 // load finish

 }

 }

 }

 }

 }

}

There are lots of comments in there where we're going to do work to load the various level
components. Much of the code for these is the same: load in an image, position it, give it a
physics body, then add it to the scene. But they do vary, because we want the player to be
able to collide with some, we want to notified of collisions with some, and so on.

But first: we're going to be using the categoryBitMask, contactTestBitMask and
collisionBitMask properties in their fullest for this project, because we have very precise
rules that make the game work. To clarify, here's what each of them mean:

www.hackingwithswift.com 587

 • categoryBitMask is a number defining the type of object this is for considering collisions.
 • collisionBitMask is a number defining what categories of object this node should collide
with,
 • contactTestBitMask is a number defining which collisions we want to be notified about.

They all do very different things, although the distinction might seem fine before you fully
understand. Category is simple enough: every node you want to reference in your collision
bitmasks or your contact test bitmasks must have a category attached. If you give a node a
collision bitmask but not a contact test bitmask, it means they will bounce off each other but
you won't be notified. If you do the opposite (contact test but not collision) it means they
won't bounce off each other but you will be told when they overlap.

By default, physics bodies have a collision bitmask that means "everything", so everything
bounces off everything else. By default, they also have a contact test bitmask that means
"nothing", so you'll never get told about collisions.

A bitmask is a complicated beast to explain, but what it means in practice is that you can
combine values together. In our game, vortexes, stars and the finish flag all have the player
set for their contact test bitmask, and the player has star and vortex and finish flag.

SpriteKit expects these three bitmasks to be described using a UInt32, which we met briefly
in project 2. It's a particular way of storing numbers, but rather than using numbers we're
going to use enums with a raw value like we did in project 17. This means we can refer to the
various options using names. Put this enum definition above your class in GameScene.swift:

enum CollisionTypes: UInt32 {

 case Player = 1

 case Wall = 2

 case Star = 4

 case Vortex = 8

 case Finish = 16

}

Note that your bitmasks should start at 1 then double each time. With that, let's start
replacing the comments in the loadLevel() method with real code. First, here's how to create

www.hackingwithswift.com 588

a wall – replace the // load wall comment with this:

let node = SKSpriteNode(imageNamed: "block")

node.position = position

node.physicsBody = SKPhysicsBody(rectangleOfSize: node.size)

node.physicsBody!.categoryBitMask = CollisionTypes.Wall.rawValue

node.physicsBody!.dynamic = false

addChild(node)

It uses rectangle physics, it's not dynamic because the walls should be fixed… this is all
child's play to you now, right? In project 17 you saw how to create an enum from a number,
but here we're getting the number from the enum using its rawValue property.

Next, replace the // load vortex comment with this:

let node = SKSpriteNode(imageNamed: "vortex")

node.name = "vortex"

node.position = position

node.runAction(SKAction.repeatActionForever(SKAction.rotateByAngle(CG
Float(M_PI), duration: 1)))

node.physicsBody = SKPhysicsBody(circleOfRadius: node.size.width / 2)

node.physicsBody!.dynamic = false

node.physicsBody!.categoryBitMask = CollisionTypes.Vortex.rawValue

node.physicsBody!.contactTestBitMask = CollisionTypes.Player.rawValue

node.physicsBody!.collisionBitMask = 0

addChild(node)

This is a little more interesting, becauses it uses rotateByAngle() and repeatActionForever()

www.hackingwithswift.com 589

to make each vortex rotate around and around for as long the game lasts. It also sets the
contactTestBitMask property to the value of the player's category, which means we want to
be notified when these two touch.

The code to load stars and the finish flag are almost identical and quite trivial for you at this
point, so here's the code to load stars:

let node = SKSpriteNode(imageNamed: "star")

node.name = "star"

node.physicsBody = SKPhysicsBody(circleOfRadius: node.size.width / 2)

node.physicsBody!.dynamic = false

node.physicsBody!.categoryBitMask = CollisionTypes.Star.rawValue

node.physicsBody!.contactTestBitMask = CollisionTypes.Player.rawValue

node.physicsBody!.collisionBitMask = 0

node.position = position

addChild(node)

And the code to load the finish flag:

let node = SKSpriteNode(imageNamed: "finish")

node.name = "finish"

node.physicsBody = SKPhysicsBody(circleOfRadius: node.size.width / 2)

node.physicsBody!.dynamic = false

node.physicsBody!.categoryBitMask = CollisionTypes.Finish.rawValue

node.physicsBody!.contactTestBitMask = CollisionTypes.Player.rawValue

node.physicsBody!.collisionBitMask = 0

node.position = position

addChild(node)

www.hackingwithswift.com 590

That completes the method. It's long, but it's quite repetitive – there are several ways it could
be refactored into something neater, but that would be cheating for later!

To see the fruits of your labor, add a call to loadLevel() in didMoveToView() then run your
game. Remember to use the iPad 2 simulator, because iPad Air will be slow!

Our code has successfully parsed the level text file into something playable.

To finish off the level-loading code, we should add a background picture. You've done this
many times so far, so please just go ahead and put this code into didMoveToView(), before
the loadLevel() call:

let background = SKSpriteNode(imageNamed: "background.jpg")

background.position = CGPoint(x: 512, y: 384)

background.blendMode = .Replace

background.zPosition = -1

www.hackingwithswift.com 591

background.zPosition = -1

addChild(background)

www.hackingwithswift.com 592

Tilt to move
We're going to control this game using the accelerometer that comes as standard on all
iPads, but it has a problem: it doesn't come as standard on any Macs, which means we
either resign ourselves to testing only on devices or we put in a little hack. This course isn't
calling Giving Up with Swift, so we're going to add a hack – in the simulator you'll be able to
use touch, and on devices you'll have to use tilting.

To get started, add this property so we can reference the player throughout the game:

var player: SKSpriteNode!

We're going to add a dedicated createPlayer() method that loads the sprite, gives it circle
physics, and adds it to the scene, but it's going to do three other things that are important.

First, it's going to set the physics body's allowsRotation property to be false. We haven't
changed that so far, but it does what you might expect – when false, the body no longer
rotates. This is useful here because the ball looks like a marble: it's shiny, and those
reflections wouldn't rotate in real life.

Second, we're going to give the ball a linearDamping value of 0.5, which applies a lot of
friction to its movement. The game will still be hard, but this does help a little by slowing the
ball down naturally.

Finally, we'll be combining three values together to get the ball's contactTestBitMask: the
star, the vortex and the finish.

Here's the code for createPlayer():

func createPlayer() {

 player = SKSpriteNode(imageNamed: "player")

 player.position = CGPoint(x: 96, y: 672)

 player.physicsBody = SKPhysicsBody(circleOfRadius:
player.size.width / 2)

 player.physicsBody!.allowsRotation = false

 player.physicsBody!.linearDamping = 0.5

www.hackingwithswift.com 593

 player.physicsBody!.linearDamping = 0.5

 player.physicsBody!.categoryBitMask =
CollisionTypes.Player.rawValue

 player.physicsBody!.contactTestBitMask =
CollisionTypes.Star.rawValue | CollisionTypes.Vortex.rawValue |
CollisionTypes.Finish.rawValue

 player.physicsBody!.collisionBitMask = CollisionTypes.Wall.rawValue

 addChild(player)

}

You can go ahead and add a call to createPlayer() directly after the call to loadLevel() inside
viewDidLoad(). Note: you must create the player after the level, otherwise it will appear
below vortexes and other level objects.

If you try running the game now, you'll see the ball drop straight down until it hits a wall, then
it bounces briefly and stops. This game has players looking down on their iPad, so by default
there ought to be no movement – it's only if the player tilts their iPad down that the ball
should move downwards.

The ball is moving because the scene's physics world has a default gravity roughly
equivalent to Earth's. We don't want that, so in didMoveToView() add this somewhere:

physicsWorld.gravity = CGVector(dx: 0, dy: 0)

Playing the game now hasn't really solved much: sure, the ball isn't moving now, but… the
ball isn't moving now! This would make for a pretty terrible game on the App Store.

Before we get onto how to work with the accelerometer, we're going to put together a hack
that lets you simulate the experience of moving the ball using touch. What we're going to do
is catch touchesBegan(), touchesMoved(), touchesEnded() and touchesCancelled() and
use them to set or unset a new property called lastTouchPosition. Then in the update()
method we'll subtract that touch position from the player's position, and use it set the
world's gravity.

www.hackingwithswift.com 594

world's gravity.

It's a hack. And if you're happy to test on a device, you don't really need it. But if you're
stuck with the iOS Simulator or are just curious, let's put in the hack. First, declare the new
property:

var lastTouchPosition: CGPoint?

Now use touchesBegan() and touchesMoved() to set the value of that property using the
same three lines of code, like this:

override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 if let touch = touches.first {

 let location = touch.locationInNode(self)

 lastTouchPosition = location

 }

}

override func touchesMoved(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 if let touch = touches.first {

 let location = touch.locationInNode(self)

 lastTouchPosition = location

 }

}

When touchesEnded() or touchesCancelled() are called, we need to set the property to be
nil – it is optional, after all:

override func touchesEnded(touches: Set<UITouch>, withEvent event:
UIEvent?) {

www.hackingwithswift.com 595

UIEvent?) {

 lastTouchPosition = nil

}

override func touchesCancelled(touches: Set<UITouch>?, withEvent
event: UIEvent?) {

 lastTouchPosition = nil

}

Easy, I know, but it gets (only a little!) trickier in the update() method. This needs to unwrap
our optional property, calculate the difference between the current touch and the player's
position, then use that to change the gravity value of the physics world. Here it is:

override func update(currentTime: CFTimeInterval) {

 if let currentTouch = lastTouchPosition {

 let diff = CGPoint(x: currentTouch.x - player.position.x, y:
currentTouch.y - player.position.y)

 physicsWorld.gravity = CGVector(dx: diff.x / 100, dy: diff.y /
100)

 }

}

This is clearly not a permanent solution, but it's good enough that you can run the app now
and test it out.

Now for the new bit: working with the accelerometer. This is easy to do, which is remarkable
when you think how much is happening behind the scenes.

All motion detection is done with an Apple framework called Core Motion, and most of the
work is done by a class called CMMotionManager. Using it here won't require any special
user permissions, so all we need to do is create an instance of the class and ask it to start
collecting information. We can then read from that information whenever and wherever we
need to, and in this project the best place is update().

www.hackingwithswift.com 596

Add import CoreMotion just above the import SpriteKit line at the top of your game scene,
then add this property:

var motionManager: CMMotionManager!

Now it's just a matter of creating the object and asking it start collecting accelerometer data.
This is done using the startAccelerometerUpdates() method, which instructs Core Motion
to start collecting accelerometer information we can read later. Put this this into
didMoveToView():

motionManager = CMMotionManager()

motionManager.startAccelerometerUpdates()

The last thing to do is to poll the motion manager inside our update() method, checking to
see what the current tilt data is. But there's a complication: we already have a hack in there
that lets us test in the simulator, so we want one set of code for the simulator and one set of
code for devices.

Swift solves this problem by adding special compiler instructions. If the instruction evaluates
to true it will compile one set of code, otherwise it will compile the other. This is particularly
helpful once you realise that any code wrapped in compiler instructions that evaluate to false
never get seen – it's like they never existed. So, this is a great way to include debug
information or activity in the simulator that never sees the light on devices.

The compiler directives we care about are: #if (arch(i386) || arch(x86_64)), #else and #endif.
As you can see, this is mostly the same as a standard Swift if/else block, although here you
don't need braces because everything until the #else or #endif will execute.

The code to read from the accelerometer and apply its tilt data to the world gravity look like
this:

if let accelerometerData = motionManager.accelerometerData {

 physicsWorld.gravity = CGVector(dx:

www.hackingwithswift.com 597

accelerometerData.acceleration.y * -50, dy:
accelerometerData.acceleration.x * 50)

}

The first line safely unwraps the optional accelerometer data, because there might not be any
available. The second line changes the gravity of our game world so that it reflects the
accelerometer data. You're welcome to adjust the speed multipliers as you please; I found a
value of 50 worked well.

Note that I passed accelerometer Y to CGVector's X and accelerometer X to CGVector's Y.
This is not a typo! Remember, your device is rotated to landscape right now, which means
you also need to flip your coordinates around.

We need to put that code inside the current update() method, wrapped inside the new
compiler directives. Here's how the method should look now:

override func update(currentTime: CFTimeInterval) {

#if (arch(i386) || arch(x86_64))

 if let currentTouch = lastTouchPosition {

 let diff = CGPoint(x: currentTouch.x - player.position.x, y:
currentTouch.y - player.position.y)

 physicsWorld.gravity = CGVector(dx: diff.x / 100, dy: diff.y /
100)

 }

#else

 if let accelerometerData = motionManager.accelerometerData {

 physicsWorld.gravity = CGVector(dx:
accelerometerData.acceleration.y * -50, dy:
accelerometerData.acceleration.x * 50)

 }

#endif

}

www.hackingwithswift.com 598

If you can test on a device, please do. It took only a few lines of code, but the game is now
adapting beautifully to device tilting!

www.hackingwithswift.com 599

Contacting but not colliding
All the game is missing now is some challenge, and that's where our star and vortex level
elements come in. Players will get one point for every star they collect, and lose one point
every time they fall into a vortex. To track scores, we need a property to hold the score and a
label to show it, so add these now:

var scoreLabel: SKLabelNode!

var score: Int = 0 {

 didSet {

 scoreLabel.text = "Score: \(score)"

 }

}

We're going to show the label in the top-left corner of the screen, so add this to
didMoveToView():

scoreLabel = SKLabelNode(fontNamed: "Chalkduster")

scoreLabel.text = "Score: 0"

scoreLabel.horizontalAlignmentMode = .Left

scoreLabel.position = CGPoint(x: 16, y: 16)

addChild(scoreLabel)

When a collision happens, we need to figure out whether it was the player colliding with a
star, or the star colliding with a player – the same semi-philosophical problem we had in
project 11. And our solution is identical too: figure out which is which, then call another
method.

First, we need to make ourselves the contact delegate for the physics world, so make your
class conform to SKPhysicsContactDelegate then add this line in didMoveToView():

www.hackingwithswift.com 600

physicsWorld.contactDelegate = self

We already know which node is our player, which means we know which node isn't our
player. This means our didBeginContact() method is easy:

func didBeginContact(contact: SKPhysicsContact) {

 if contact.bodyA.node == player {

 playerCollidedWithNode(contact.bodyB.node!)

 } else if contact.bodyB.node == player {

 playerCollidedWithNode(contact.bodyA.node!)

 }

}

There are three types of collision we care about: when the player hits a vortex they should be
penalised, when the player hits a star they should score a point, and when the player hits the
finish flag the next level should be loaded. I'll deal with the first two here, and you can think
about the third one yourself!

When a player hits a vortex, a few things need to happen. Chief among them is that we need
to stop the player controlling the ball, which will be done using a single boolean property
called gameOver. Add this property now:

var gameOver = false

You'll need to modify your update() method so that it works only when gameOver is false,
like this:

override func update(currentTime: CFTimeInterval) {

 if !gameOver {

#if (arch(i386) || arch(x86_64))

www.hackingwithswift.com 601

#if (arch(i386) || arch(x86_64))

 if let currentTouch = lastTouchPosition {

 let diff = CGPoint(x: currentTouch.x - player.position.x, y:
currentTouch.y - player.position.y)

 physicsWorld.gravity = CGVector(dx: diff.x / 100, dy: diff.y /
100)

 }

#else

 if let accelerometerData = motionManager.accelerometerData {

 physicsWorld.gravity = CGVector(dx:
accelerometerData.acceleration.y * -50, dy:
accelerometerData.acceleration.x * 50)

 }

#endif

 }

}

Of course, a number of other things need to be done when a player collides with a vortex:

 • We need to stop the ball from being a dynamic physics body so that it stops moving once
it's sucked in.
 • We need to move the ball over the vortex, to simulate it being sucked in. It will also be
scaled down at the same time.
 • Once the move and scale has completed, we need to remove the ball from the game.
 • After all the actions complete, we need to create the player ball again and re-enable
control.

We'll put that together using an SKAction sequence, followed by a trailing closure that will
execute when the actions finish. When colliding with a star, we just remove the star node
from the scene and add one to the score.

func playerCollidedWithNode(node: SKNode) {

 if node.name == "vortex" {

 player.physicsBody!.dynamic = false

 gameOver = true

www.hackingwithswift.com 602

 gameOver = true

 score -= 1

 let move = SKAction.moveTo(node.position, duration: 0.25)

 let scale = SKAction.scaleTo(0.0001, duration: 0.25)

 let remove = SKAction.removeFromParent()

 let sequence = SKAction.sequence([move, scale, remove])

 player.runAction(sequence) { [unowned self] in

 self.createPlayer()

 self.gameOver = false

 }

 } else if node.name == "star" {

 node.removeFromParent()

 score += 1

 } else if node.name == "finish" {

 // next level?

 }

}

That method finishes the game, so it's down to you now to try and play the whole level
without falling into a vortex. What happens when you hit the finish flag? Nothing… yet.

www.hackingwithswift.com 603

Wrap up
There's something wonderfully tactile about using the accelerometer to affect gravity in a
game, because it feels incredibly realistic even though we're not using particularly good
graphics. SpriteKit is of course doing most of the hard work of collision detection, and Core
Motion takes away all the complexity of working with accelerometers, so again it's our job to
sew the components together to make something bigger than the sum of its parts.

There are two things you should immediately tackle if you want to continue working on this
project. First, have a go at refactoring the loadLevel() method so that it's made up of
multiple smaller methods. This will make your code easier to read and easier to maintain, at
least it will do if you do a good job!

Second, when the player finally makes it to the finish marker, nothing happens. What should
happen? Well, that's down to you now. You could easily design several new levels and have
them progress through, but could you add things that make the new levels different –
perhaps a teleport that moves the player from one point in the level to another? Add a new
letter type in loadLevel(), add another collision type to our enum, then see what you can do.
Have fun!

www.hackingwithswift.com 604

Project 27
Core Graphics
Draw 2D shapes using Apple's high-speed drawing
framework.

www.hackingwithswift.com 605

Setting up
You're probably tired of me saying this: iOS is full of powerful and easy to use programming
frameworks. It's true, and you've already met UIKit, SpriteKit, Core Animation, Core Motion,
Core Image, Core Location, Grand Central Dispatch and more. But how would you feel if I
said that we've yet to use one of the biggest, most powerful and most important frameworks
of all?

Well, it's true. And in this technique project we're going to right that wrong. The framework is
called Core Graphics, and it's responsible for device-independent 2D drawing – when you
want to draw shapes, paths, shadows, colors or so on, you'll want Core Graphics. Being
device-independent means you can draw things to the screen or draw them a PDF without
having to change your code.

Create a new Single View Application project, name it Project27 and set its target to be iPad.
We're going to create a Core Graphics sandbox that's similar to project 15's Core Animation
sandbox – a button you can type will trigger Core Graphics drawing in different ways.

If you haven't already downloaded the files for this project, please do so now from GitHub,
then copy the mouse picture into your project.

www.hackingwithswift.com 606

Creating the sandbox
Open Main.storyboard in Interface Builder, then place an image view in there that's 512x512
in size, with X:44 and Y:44. Now place a button centered beneath it, and give it the title
"Redraw".

For constraints, please place a width and height constraint on the image view so that it's
always 512x512, then make it center vertically and horizontally inside the view controller. The
button should be centered horizontally, but place a vertical space constraint between it and
the image view so that it always stays just below it.

We're going to need to reference the image view in code, so please switch to the assistant
editor and create an outlet for it called imageView. While you're there, you should also
create an action for the button being tapped, called redrawTapped().

Switch back to the standard editor, and open up ViewController.swift because that's our user
interface done; the rest is code!

Here's our basic layout: a big UIImageView with a UIButton underneath.

We're going to use a similar code structure to project 15: a property that we increment

www.hackingwithswift.com 607

through, using a switch/case to call different methods each time. In addition, we need
viewDidLoad() to call an initial method so that we start by drawing something. Start by
adding this property to your view controller:

var currentDrawType = 0

And now create this empty method – we'll be filling it shortly:

func drawRectangle() {

}

As with project 15, the button we placed needs to add one to the property, wrapping it back
to zero when it reaches a certain point. The property is then used to decide what method to
call, although right now we're only going to have one useful case: drawRectangle().

Here's the initial code for redrawTapped(); we'll be adding more cases over time:

@IBAction func redrawTapped(sender: AnyObject) {

 currentDrawType += 1

 if currentDrawType > 5 {

 currentDrawType = 0

 }

 switch currentDrawType {

 case 0:

 drawRectangle()

 default:

www.hackingwithswift.com 608

 default:

 break

 }

}

The only remaining step to make our sandbox complete is to have viewDidLoad() call the
drawRectangle() method so that the screen starts by showing something. Change your
viewDidLoad() method to this:

override func viewDidLoad() {

 super.viewDidLoad()

 drawRectangle()

}

Running the app at this point will do very little, because although your user interface works
the code effectively does nothing. We're going to fix that by filling in the drawRectangle()
method, then proceed to add more cases to the switch/case block

www.hackingwithswift.com 609

Drawing into a context
Carl Sagan once said, "if you wish to make an apple pie from scratch, you must first invent
the universe." Filling in the drawRectangle() method doesn't require you to invent the
universe, but it does require a fair amount of Core Graphics learning before you get to the
actual drawing part. I will, of course, try to remove as much of it as I can so that the
remaining bits are important.

The most important thing to understand is that, like Core Animation, Core Graphics sits at a
lower technical level than UIKit. This means it doesn't understand classes you know like
UIColor and UIBezierPath, so you either need to use their counterparts (CGColor and
CGPath respectively), or use helper methods from UIKit that convert between the two.

To be fair to Apple, they have written some great helper code that seamlessly blends UIKit
and Core Graphics, so a lot of the time you don't need to worry about it. Take for example
creating a 256x256 image. Using UIImage you don't need to care whether it's retina or not,
but when you're creating a Core Graphics context you need to tell it whether you want 1x, 2x
or 3x scale. Helpfully, Apple also lets you specify 0 for scale, to mean "use whatever is right
for the current device."

Another important thing to understand about Core Graphics is that it's written in C, not in
Objective C. That doesn't mean you need to code in C any more than using SpriteKit means
you need to write in Objective C, but you'll find it uses different data types from what you're
used to. Being a C framework also means that everything is a function; there aren't any
methods around here.

Thirdly, you need to understand that Core Graphics differentiates between creating a path
and drawing a path. That is, you can add lines, squares and other shapes to a path as much
as you want to, but none of it will do anything until you actually draw the path. Think of it like
a simple state machine: you configure a set of states you want (colors, transforms, and so
on), then perform actions. You can even maintain multiple states at a time by pushing and
popping in order to backup and restore specific states.

Finally, you should know that Core Graphics is extremely fast: you can use it for updating
drawing in real time, and you'll be very impressed. Core Graphics can work on a background
thread – something that UIKit can't do – which means you can do complicated drawing
without locking up your user interface.

It's time to start looking at some code, so here are the four functions you'll be using lots of

www.hackingwithswift.com 610

times in this project:

1. UIGraphicsBeginImageContextWithOptions() creates a new Core Graphics drawing
context.
2. UIGraphicsGetCurrentContext() returns a reference to the Core Graphics context we just
created.
3. UIGraphicsGetImageFromCurrentImageContext() converts the Core Graphics context
to a UIImage.
4. UIGraphicsEndImageContext() terminates our Core Graphics context.

Now, wait a minute… all those functions start with "UI", so what makes them Core Graphics
functions? Well, they aren't Core Graphics functions – they are UIKit functions, but they act
as a gateway to and from Core Graphics for UIKit-based apps like ours. The first two are
used to set up drawing and the last two are used to tear down drawing; everything between
will be Core Graphics functions or UIKit methods that are designed to work with Core
Graphics contexts.

Speaking of contexts, you'll notice that all four of those functions have the word "context" in
there. In Core Graphics, a context is a canvas upon which we can draw, but it also stores
information about how we want to draw (e.g., what should our line thickness be?) and
information about the device we are drawing to. So, it's a combination of canvas and
metadata all in one, and it's what you'll be using for all your drawing.

When you create a context, you get to specify how big it should be, whether it should be
opaque or not, and what pixel to point scale you want. You'll then pull out a reference to the
current context using UIGraphicsGetCurrentContext(), and do your drawing. When you're
finished, you should use UIGraphicsGetImageFromCurrentImageContext() to get the
contents of your drawing as a UIImage, then end drawing by calling
UIGraphicsEndImageContext().

Armed with this knowledge, you can write the first version of drawRectangle():

func drawRectangle() {

 UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

 let context = UIGraphicsGetCurrentContext()

 // awesome drawing code

www.hackingwithswift.com 611

 // awesome drawing code

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 imageView.image = img

}

In that code, we use UIGraphicsBeginImageContextWithOptions() to create a context with
the same size as our image view, make it not opaque by passing false as its second
parameter, and tell it to match the scale of whatever screen we're on. So on non-retina iPads,
it'll be 512x512 pixels and on retina iPads it will be 1024x1024 pixels.

Creating the context doesn't give us a reference to it, which is what the second line of the
method does – we store our reference in a constant called context. Finally, drawing is ended
by pulling out a UIImage then ending the Core Graphics context, at which point we can
assign our new image to the image view.

That code still does nothing, at least not visibly. This is because it does all the setup and tear
down of Core Graphics, but doesn't do any actual drawing. Let's fix that by making the
drawRectangle() method actually draw a rectangle. And not just any rectangle – a stroked
rectangle, which is a rectangle with a line around it.

There are a number of ways of drawing boxes in Core Graphics, but I've chosen the easiest:
we'll define a CGRect structure that holds the bounds of our rectangle, we'll set the
context's fill color to be red and its stroke color to be black, we'll set the context's line
drawing width to be 10 points, then add a rectangle path to the context and draw it.

The part that might seem strange is the way we're adding a path then drawing it. This is
because you can actually add multiple paths to your context before drawing, which means
Core Graphics batches them all together. Your path can be as simple or as complicated as
you want, you still need to set up your Core Graphics state as you want it then draw the
path.

Let's take a look at the five new functions you'll need to use to draw our box:

www.hackingwithswift.com 612

1. CGContextSetFillColorWithColor() sets the fill color of our context, which is the color
used on the insides of the rectangle we'll draw. It also sounds like a typo, after all what else
what you want to use for a fill color other than a color? The reason for the curious name is
because there's an older function called CGContextSetFillColor() that let you set colors in a
rather arcane way. It's not recommended any more!
2. CGContextSetStrokeColorWithColor() sets the stroke color of our context, which is the
color used on the line around the edge of the rectangle we'll draw. Yes, it's named strangely
for the same reason.
3. CGContextSetLineWidth() adjusts the line width that will be used to stroke our rectangle.
Note that the line is drawn centered on the edge of the rectangle, so a value of 10 will draw 5
points inside the rectangle and five points outside.
4. CGContextAddRect() adds a CGRect rectangle to the context's current path to be
drawn.
5. CGContextDrawPath() draws the context's current path using the state you have
configured.

All five of those take a Core Graphics context was their first parameter, then a second
parameter that does the actual work. So for setting colors the second parameter is the color
to set (remember how to convert UIColor values to CGColor values? I hope so!), for setting
the line width it's a number in points, for adding a rectangle path it's the CGRect of your
rectangle, and for drawing it's a special constant that says whether you want just the fill, just
the stroke, or both.

Time for some code: replace // awesome drawing code with this:

let rectangle = CGRect(x: 0, y: 0, width: 512, height: 512)

CGContextSetFillColorWithColor(context, UIColor.redColor().CGColor)

CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

CGContextSetLineWidth(context, 10)

CGContextAddRect(context, rectangle)

CGContextDrawPath(context, .FillStroke)

www.hackingwithswift.com 613

At long last, this project does something useful: when you run it, you'll see a red box with a
black line around it. Again, the black line will be just five points across, because it's centered
on the edge of its path and therefore is cropped. You'll see this more clearly in a moment.

www.hackingwithswift.com 614

Ellipses and checkerboards
Add a case to your redrawTapped() method to call a new method: drawCircle(). This will…
wait for it… draw a circle. So, your switch/case should look like this:

switch currentDrawType {

case 0:

 drawRectangle()

case 1:

 drawCircle()

default:

 break

}

There are several ways of drawing rectangles using Core Graphics, but the method we used
in drawRectangle() is particularly useful because in order to draw a circle we need to
change just one line of code. This is because drawing circles (or indeed any elliptical shape)
in Core Graphics is done by specifying its rectangular bounds.

So, where before you had:

CGContextAddRect(context, rectangle)

…you can now use this:

CGContextAddEllipseInRect(context, rectangle)

It even has the same parameters! So, the full drawCircle() method is this:

www.hackingwithswift.com 615

func drawCircle() {

 UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

 let context = UIGraphicsGetCurrentContext()

 let rectangle = CGRect(x: 0, y: 0, width: 512, height: 512)

 CGContextSetFillColorWithColor(context, UIColor.redColor().CGColor)

 CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

 CGContextSetLineWidth(context, 10)

 CGContextAddEllipseInRect(context, rectangle)

 CGContextDrawPath(context, .FillStroke)

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 imageView.image = img

}

Run the app now and click the button once to make it draw a circle. Notice how the stroke
around the edge appears to be clipped at the top, right, bottom and left edges? This is a
direct result of what I was saying about stroke positioning: the stroke is centered on the edge
of the path, meaning that a 10 point stroke is 5 points inside the path and 5 points outside.

www.hackingwithswift.com 616

Now that we're drawing a circle, you can see how Core Graphics is clipping our border at the
edges.

The rectangle being used to define our circle is the same size as the whole context, meaning
that it goes edge to edge – and thus the stroke gets clipped. To fix the problem, change the
rectangle to this:

let rectangle = CGRect(x: 5, y: 5, width: 502, height: 502)

That indents the circle by 5 points on all sides, so the stroke will now look uniform around the
entire shape.

A different way of drawing rectangles is just to fill them directly with your target color. Add a
"case 2" to your switch/case that calls a method named drawCheckerboard(), and give it
this code:

func drawCheckerboard() {

www.hackingwithswift.com 617

func drawCheckerboard() {

 UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

 let context = UIGraphicsGetCurrentContext()

 CGContextSetFillColorWithColor(context,
UIColor.blackColor().CGColor)

 for row in 0 ..< 8 {

 for col in 0 ..< 8 {

 if row % 2 == 0 {

 if col % 2 == 0 {

 CGContextFillRect(context, CGRect(x: col * 64, y: row * 64,
width: 64, height: 64))

 }

 } else {

 if col % 2 == 1 {

 CGContextFillRect(context, CGRect(x: col * 64, y: row * 64,
width: 64, height: 64))

 }

 }

 }

 }

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 imageView.image = img

}

www.hackingwithswift.com 618

The only piece of code in there that you won't recognise is CGContextFillRect(), which skips
the add path / draw path work and just fills the rectangle given as its second parameter using
whatever the current fill color is. You already know about ranges and modulo, so you should
be able to see that this method makes every other square black, alternating between rows.

There are two things to be aware of with that code. First, we're filling every other square in
black, but leaving the other squares alone. As we've specified that our image is not opaque,
this means those places where we haven't filled anything will be transparent.So, if the view
behind was green, you'd get a black and green checkerboard. Second, you can actually
make checkerboards using a Core Image filter – check out CICheckerboardGenerator to
see how!

Drawing a checkerboard with Core Graphics is just a matter of drawing squares with alternating
colors.

www.hackingwithswift.com 619

Transforms and lines
Add another case to your switch/case block, and make this one call another new method
named drawRotatedSquares(). This is going to demonstrate how we can apply transforms
to our context before drawing, and how you can stroke a path without filling it.

To make this happen, you need to know three new Core Graphics functions:

1. CGContextTranslateCTM() translates (moves) the current transformation matrix (CTM).
2. CGContextRotateCTM() rotates the current transformation matrix.
3. CGContextStrokePath() strokes the path with your specified line width, which is 1 if you
don't set it explicitly.

The current transformation matrix (CTM) is very similar to those CGAffineTransform
modifications we used in project 15, except its application is a little different in Core
Graphics. In UIKit, you rotate drawing around the center of your view, as if a pin was stuck
right through the middle. In Core Graphics, you rotate around the top-left corner, so to avoid
that we're going to move the CTM half way into our image first so that we've effectively
moved the rotation point.

This also means we need to draw our rotated squares so they are centered on our center: for
example, setting their top and left coordinates to be -128 and their width and height to be
256.

Here's the code for the method:

func drawRotatedSquares() {

 UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

 let context = UIGraphicsGetCurrentContext()

 CGContextTranslateCTM(context, 256, 256)

 let rotations = 16

 let amount = M_PI_2 / Double(rotations)

 for _ in 0 ..< rotations {

 CGContextRotateCTM(context, CGFloat(amount))

www.hackingwithswift.com 620

 CGContextRotateCTM(context, CGFloat(amount))

 CGContextAddRect(context, CGRect(x: -128, y: -128, width: 256,
height: 256))

 }

 CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

 CGContextStrokePath(context)

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 imageView.image = img

}

Run the app and look at the output: beautiful, rotated, stroked squares, with no extra
calculations required. I mean, just stop for a moment and consider the math it would take to
calculate the four corners of each of those rectangles. If sine and cosine are distance
memories for you, be glad to have the current transformation matrix!

One thing that I should make clear: modifying the CTM is cumulative, which is what makes
the above code work. That is, when you rotate the CTM, that transformation is applied on top
of what was there already, rather than to a clean slate. So the code works by rotating the
CTM a small amount more every time the loop goes around.

The last shape drawing I want to show you is how to draw lines, and you're going to need
two new functions: CGContextMoveToPoint() and CGContextAddLineToPoint(). These are
the Core Graphics equivalents to the UIBezierPath paths we made in project 20 to move the
fireworks.

Add another case to your switch/case block, this time calling drawLines(). I'm going to make
this translate and rotate the CTM again, although this time the rotation will always be 90
degrees. This method is going to draw boxes inside boxes, always getting smaller, like a
square spiral. It's going to do this by adding a line to more or less the same point inside a
loop, but each time the loop rotates the CTM so the actual point the line ends has moved

www.hackingwithswift.com 621

too. It will also slowly decrease the line length, causing the space between boxes to shrink
like a spiral. Here's the code:

func drawLines() {

 UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

 let context = UIGraphicsGetCurrentContext()

 CGContextTranslateCTM(context, 256, 256)

 var first = true

 var length: CGFloat = 256

 for _ in 0 ..< 256 {

 CGContextRotateCTM(context, CGFloat(M_PI_2))

 if first {

 CGContextMoveToPoint(context, length, 50)

 first = false

 } else {

 CGContextAddLineToPoint(context, length, 50)

 }

 length *= 0.99

 }

 CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

 CGContextStrokePath(context)

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

www.hackingwithswift.com 622

 imageView.image = img

}

The end result looks like one of the hand-crafted effects from the Twilight Zone, but it shows
a little of the power that transforms and lines can bring to your drawing.

www.hackingwithswift.com 623

Images and text
Add one final case to your switch/case statement calling a method drawImagesAndText(),
because no discussion of Core Graphics would be useful without telling you how to draw
images and text to your context.

If you have a string in Swift, how can you place it into a graphic? The answer is simpler than
you think: all strings have a built-in method called drawWithRect() that draws the string in a
rectangle you specify. Even better, you get to customise the font and size, the formatting, the
line wrapping and more all with that one method.

Remarkably, the same is true of UIImage: any image can be drawn straight to a context, and
it will even take into account the coordinate reversal of Core Graphics.

Before you're able to draw a string to the screen, you need to meet two more classes:
UIFont and NSMutableParagraphStyle(). The former defines a font name and size, e.g.
Helvetica Neue size 26, and the latter is used to describe paragraph formatting options, such
as line height, indents and alignment.

When you draw a string to the screen, you do using a dictionary of attributes that describes
all the options you want to apply. We want to apply a custom font and custom paragraph
style – that bit is easy enough. But the keys for the dictionary are special Apple constants:
NSFontAttributeName and NSParagraphStyleAttributeName.

To help make the code clearer, here's a bulleted list of all the things the method needs to do:

1. Create a context, but this time we don't need a reference to it.
2. Define a paragraph style that aligns text to the center.
3. Create an attributes dictionary containing that paragraph style, and also a font.
4. Draw a string to the screen using the attributes dictionary.
5. Load an image from the project and draw it to the context.
6. Retrieve a UIImage of the context's data, the end drawing.
7. Update the image view with the finished result.

Below is that the same process, now coded in Swift. As per usual, the number comments
match the list above:

func drawImagesAndText() {

 // 1

www.hackingwithswift.com 624

 // 1

 UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

 let context = UIGraphicsGetCurrentContext()

 // 2

 let paragraphStyle = NSMutableParagraphStyle()

 paragraphStyle.alignment = .Center

 // 3

 let attrs = [NSFontAttributeName: UIFont(name: "HelveticaNeue-
Thin", size: 36)!, NSParagraphStyleAttributeName: paragraphStyle]

 // 4

 let string = "The best-laid schemes o'\nmice an' men gang aft
agley"

 string.drawWithRect(CGRect(x: 32, y: 32, width: 448, height: 448),
options: .UsesLineFragmentOrigin, attributes: attrs, context: nil)

 // 5

 let mouse = UIImage(named: "mouse")

 mouse?.drawAtPoint(CGPoint(x: 300, y: 150))

 // 6

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 // 7

 imageView.image = img

}

www.hackingwithswift.com 625

That completes our project. If you found Xcode's code completion wasn't filling in
drawWithRect() for you, try giving the string an explicit type of NSString, like this:

let string: NSString = "The best-laid schemes o'\nmice an' men gang
aft agley"

The code works regardless, but having code completion around does help reduce mistakes!

Strings and UIImages have built-in methods that let you draw them to a Core Graphics context.

www.hackingwithswift.com 626

Wrap up
I could easily have written twice as much about Core Graphics, because it's capable of some
extraordinary effects.Clipping paths, gradients, blend modes and more are just a few lines of
code away, so there really is no excuse not to give them a try! And if you don't give it a try
yourself, don't worry: we'll be drawing with Core Graphics in project 29, so you can't avoid it!

This project has given you a sandbox where you can play around with various Core Graphics
techniques easily, so I would highly encourage you to spend another hour or two tinkering
with the code in your project. Use code completion to try new functions, change my values
to others to see what happens, and so on. Playing with code like this can help you to
discover new functionality, and will also help you remember more later. Have fun!

www.hackingwithswift.com 627

Project 28
Secret Swift
Save user data securely using the device keychain and
Touch ID.

www.hackingwithswift.com 628

Setting up
This project will introduce you to two important iOS technologies together: Touch ID and the
keychain. The former is used to identify users biometrically using the fingerprint sensor on
iPhones and iPads; the latter is a secure, encrypted data storage area on every device that
you can read and write to.

Of course, there's little point learning about technologies without using them, so this project
will have you build a secure text editor. Users can type whatever they want and have it
saved, but to read it again they'll need to unlock the app using Touch ID.

You might remember in project 12 that I said NSUserDefaults is great for its simplicity but
isn't good for private data. Well, the keychain is securely encrypted, so we can be assured
that data we put there is safe.

This project is modelled on project 16, the Safari extension where users could type
JavaScript. This means we'll need to use the same keyboard detection and adjustment code
– if you already completed project 16, you might find it easiest to copy and paste your code
as needed.

Make a new Single View Application project in Xcode, named Project28 and targeted at any
device you want.

www.hackingwithswift.com 629

The basic text editor
Open Main.storyboard in Interface Builder, and embed the default view controller inside a
navigation controller. Now place a text view (not a text field!) in the center and use Editor >
Resolve Auto Layout Issues > Add Missing Constraints to place Auto Layout constraints.

Delete the "Lorem ipsum" text in the text view, give it a white background color if it does not
already have one, then use the assistant editor to make an outlet for it called secret. That's
us done with the storyboard for now; switch back to the standard editor and open
ViewController.swift.

We need to add the same code we used in project 16 to make the text view adjust its
content and scroll insets when the keyboard appears and disappears. This code is identical
apart from the outlet is called secret now rather than script. First, put this into
viewDidLoad():

let notificationCenter = NSNotificationCenter.defaultCenter()

notificationCenter.addObserver(self, selector: "adjustForKeyboard:",
name: UIKeyboardWillHideNotification, object: nil)

notificationCenter.addObserver(self, selector: "adjustForKeyboard:",
name: UIKeyboardWillChangeFrameNotification, object: nil)

As a reminder, that asks iOS to tell us when the keyboard changes or when it hides. As a
double reminder: the hide is required because we do a little hack to make the hardware
keyboard toggle work correctly – see project 16 if you don't remember why this is needed.

Here's the adjustKeyboard() method, which again is identical apart from the outlet name to
that seen in project 16:

func adjustForKeyboard(notification: NSNotification) {

 let userInfo = notification.userInfo!

 let keyboardScreenEndFrame =
(userInfo[UIKeyboardFrameEndUserInfoKey] as! NSValue).CGRectValue()

 let keyboardViewEndFrame = view.convertRect(keyboardScreenEndFrame,

www.hackingwithswift.com 630

fromView: view.window)

 if notification.name == UIKeyboardWillHideNotification {

 secret.contentInset = UIEdgeInsetsZero

 } else {

 secret.contentInset = UIEdgeInsets(top: 0, left: 0, bottom:
keyboardViewEndFrame.height, right: 0)

 }

 secret.scrollIndicatorInsets = secret.contentInset

 let selectedRange = secret.selectedRange

 secret.scrollRangeToVisible(selectedRange)

}

None of that is new, so you're probably bored by now. Not to worry: we're going to fix up our
storyboard in preparation for authentication, so re-open Main.storyboard.

Place a button over the text view, give it the title "Authenticate" and dimensions 100 wide by
44 high. For constraints, give it fixed width and height constraints, then make it align
horizontally and vertically with its superview. Now use the assistant editor to create an action
for it called authenticateUser().

Before you leave Interface Builder, you need to do something we haven't done yet, which is
to move views backwards and forwards relative to each other. When the user has
authenticated, we need to show the text box while making sure the button is no longer
visible, and the easiest way to do that is to place the button behind the text view so that
when the text is visible it covers up the button.

To move layers around, go to the document outline then click and drag. In our case, we want
to move the text view behind the authenticate button, so you should click on the button drag
it so that it's just above the text view. When you do this the button will disappear on the
canvas, but that's OK – it's still there, and we can still use it.

www.hackingwithswift.com 631

The last thing to do is ensure the text view starts life hidden, so select it in Interface Builder,
choose the attributes inspector, and check the Hidden box – it's near the bottom, not far
below Tag. That's our layout complete!

www.hackingwithswift.com 632

Writing somewhere safe
When the app first runs, users should see a totally innocuous screen, with nothing secret
visible. But we also don't want secret information to be visible when the user leaves the app
for a moment then comes back, or if they double-tap the home button to multitask – doing
so might mean that the app is left unlocked, which is the last thing we want.

To make this work, let's start by giving the view controller a totally innocuous title that
absolutely won't make anyone wonder what's going on. Put this into viewDidLoad():

title = "Nothing to see here"

Next we're going to create two new methods: unlockSecretMessage() to load the message
into the text view, and saveSecretMessage(). But before we do that, I want to introduce you
to a helpful class called KeychainWrapper, which we'll be using to read and write keychain
values.

This class was not made by Apple; instead, it's open source software released under the MIT
license, which means we can use it in our own projects as long as the copyright message
remains intact. This class is needed because working with the keychain is complicated – far
harder than anything we have done so far. So instead of using it directly, we'll be using this
wrapper class that makes the keychain work like NSUserDefaults.

If you haven't already downloaded this project's files from GitHub, please do so now. In there
you'll find the file KeychainWrapper.swift; please copy that into your Xcode project to make
the class available.

The first of our two new methods, unlockSecretMessage(), needs to show the text view,
then load the keychain's text into it. Loading strings from the keychain using
KeychainWrapper is as simple as using its stringForKey() method, but the result is optional
so you should unwrap it once you know there's a value there.

Here it is:

func unlockSecretMessage() {

 secret.hidden = false

www.hackingwithswift.com 633

 secret.hidden = false

 title = "Secret stuff!"

 if let text = KeychainWrapper.stringForKey("SecretMessage") {

 secret.text = text

 }

}

The second of our two new methods, saveSecretMessage(), needs to write the text view's
text to the keychain, then make it hidden. This is done using the setString(_:forKey:) method
of KeychainWrapper, so it's just as easy as reading. Note that we should only execute this
code if the text view is visible, otherwise if a save happens before the app is unlocked then it
will overwrite the saved text!

Here's the code:

func saveSecretMessage() {

 if !secret.hidden {

 KeychainWrapper.setString(secret.text, forKey: "SecretMessage")

 secret.resignFirstResponder()

 secret.hidden = true

 title = "Nothing to see here"

 }

}

I slipped a new method in there: resignFirstResponder(). This is used to tell a view that has
input focus that it should give up that focus. Or, in Plain English, to tell our text view that
we're finished editing it, so the keyboard can be hidden. This is important because having a
keyboard present might arouse suspicion – as if our rather obvious navigation bar title hadn't
done enough already…

Now, there are still two questions remaining: how should users trigger a save when they are

www.hackingwithswift.com 634

ready, and how do we ensure that as soon as the user starts to leave the app we make their
data safe? For the first problem, consider this: how often do you see a save button in iOS?
Hardly ever, I expect!

It turns out that one answer solves both problems: if we automatically save when the user
leaves the app then the user need never worry about saving because it's done for them, and
our save method above automatically hides the text when it's called so the app becomes
safe as soon as any action is taken to leave it.

We're already using NSNotificationCenter to watch for the keyboard appearing and
disappearing, and we can watch for another notification that will tell us when the application
will stop being active – i.e., when our app has been backgrounded or the user has switched
to multitasking mode. This notification is called UIApplicationWillResignActiveNotification,
and you should make us an observer for it in viewDidLoad() like this:

notificationCenter.addObserver(self, selector: "saveSecretMessage",
name: UIApplicationWillResignActiveNotification, object: nil)

That calls our saveSecretMessage() directly when the notification comes in, which means
the app automatically saves any text and hides it when the app is moving to a background
state.

The last thing to do before the app is actually useful is to make tapping the button call
unlockSecretMessage(), like this:

@IBAction func authenticateUser(sender: AnyObject) {

 unlockSecretMessage()

}

It's not actually secure at this point (other than saving its data in the iOS keychain!), but by
saving and loading its text it is at least useful.

www.hackingwithswift.com 635

Touch to activate
This part of the project requires a Touch ID-capable device, although I'll be showing you a
hack to make it work on the simulator by bypassing checks at two points.

Touch ID is part of the Local Authentication framework, and our code needs to three things:

1. Check whether the device is capable of supporting biometric authentication.
2. If so, request that the Touch ID begin a check now, giving it a string containing the reason
why we're asking.
3. If we get success back from Touch ID it means this is the device's owner so we can unlock
the app, otherwise we show a failure message.

One caveat that you must be careful of: when we're told whether Touch ID was successful or
not, it might not be on the main thread. This means we need to use dispatch_async() to
make sure we execute any user interface code on the main thread.

The job of task 1 is done by the canEvaluatePolicy() method of the LAContext class,
requesting the security policy type .DeviceOwnerAuthenticationWithBiometrics. The job of
task 2 is done by the evaluatePolicy() of that same class, using the same policy type, but it
accepts a trailing closure telling us the result of the policy evaluation: was it successful, and if
not what was the reason?

Like I said, all this is provided by the Local Authentication framework, so the first thing we
need to do is import that framework. Add this above import UIKit:

import LocalAuthentication

And now here's the new code for the authenticateUser() method. We already walked
through what it does, so this shouldn't be too surprising:

@IBAction func authenticateUser(sender: AnyObject) {

 let context = LAContext()

 var error: NSError?

 if

www.hackingwithswift.com 636

 if
context.canEvaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics,
error: &error) {

 let reason = "Identify yourself!"

 context.evaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics,
localizedReason: reason) {

 [unowned self] (success: Bool, authenticationError: NSError?) -
> Void in

 dispatch_async(dispatch_get_main_queue()) {

 if success {

 self.unlockSecretMessage()

 } else {

 // error

 }

 }

 }

 } else {

 // no Touch ID

 }

}

A couple of reminders: we need [unowned self] inside the first closure but not the second
because it's already unowned by that point. You also need to use self. inside the closure to
make capturing clear. Finally, you must provide a reason why you want Touch ID to be used,
so you might want to replace mine ("Identify yourself!") with something a little more
descriptive.

That's enough to get basic Touch ID working, but there are three error cases you need to
catch:

1. The device does not have Touch ID capability or configured. This is true for all iPads

www.hackingwithswift.com 637

before iPad Air 2 and iPad Mini 3, and all iPhones before the iPhone 5s.
2. The user failed Touch ID authentication. This might be because their print wasn't scanning
for whatever reason, but also if the system has to cancel scanning for some reason.
3. The user requested to enter their password instead. Touch ID includes this option on the
screen as a fallback for users who are unable to use fingerprint scanning at this time.

The first two are a matter of showing alerts to the user, but the third requires a specific
check: if the user requested fallback mode (i.e. password) then what Touch ID really wants us
to do is have the user enter a password. But that's not the user's iTunes password or even a
PIN on their phone. Instead, it's a password that we need to have set up beforehand
ourselves, then validate too.

That's a little outside the remit of this project, so if a user asks to use a password instead
we'll deny them with a specific error message. Replace the // error with this:

if let error = authenticationError {

 if error.code == LAError.UserFallback.rawValue {

 let ac = UIAlertController(title: "Passcode? Ha!", message: "It's
Touch ID or nothing – sorry!", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 self.presentViewController(ac, animated: true, completion: nil)

 return

 }

}

let ac = UIAlertController(title: "Authentication failed", message:
"Your fingerprint could not be verified; please try again.",
preferredStyle: .Alert)

ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

self.presentViewController(ac, animated: true, completion: nil)

That code unwraps the optional error we received back Touch ID and checks to see whether

www.hackingwithswift.com 638

it equals LAError.UserFallback.rawValue, which is the number behind the "fallback" enum.
If so, it means the user asked to enter a password, in which case we send them a derisory
message and exit the method.

If the code continues to execute, it means the error wasn't a fallback request, so we show a
generic error message to the user.

Lastly, we need to show an error if Touch ID just isn't available, so replace the // no Touch ID
comment with this:

let ac = UIAlertController(title: "Touch ID not available", message:
"Your device is not configured for Touch ID.",
preferredStyle: .Alert)

ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

self.presentViewController(ac, animated: true, completion: nil)

That completes the Touch ID code, but before we're done I want to add one more thing
before the project is complete: if you don't have a Touch ID-capable device and you want to
make sure the code works OK, you'll need to change a couple of lines of code. Specifically,
you want to change these two lines:

if
context.canEvaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics,
error: &error) {

if success {

…to read this both times:

if true {

www.hackingwithswift.com 639

That condition will always evaluate to true, so it will allow you to test the app inside the
simulator.

www.hackingwithswift.com 640

Wrap up
This was the last app project in the series, and I hope you didn't find it too challenging – you
know a huge amount about iOS 8 and Swift now, so much of what remains is just practice.
The great thing about Touch ID is that you don't get any access to fingerprints or other
secure information. Instead, the system does all the biometric authentication for you, which
keeps both your app and users safe.

If you want to take this project further, try using the #if compiler directives from project 26 to
make the simulator if true hack be in the code at the same time as the real Touch ID code. If
you're looking for something harder, try creating a password system for your app so that the
Touch ID fallback is more useful. You'll need to use the
addTextFieldWithConfigurationHandler() from project 5, and I suggest you save the
password in the keychain!

www.hackingwithswift.com 641

Project 29
Exploding Monkeys
Remake a classic DOS game and learn about destructible
terrain and scene transitions.

www.hackingwithswift.com 642

Setting up
This is the last game project in Hacking with Swift Level 1, so I wanted to make it special:
you're going to build a clone of a game that's almost 25 years old. This game is hugely
recognisable to people over the age of 30 because it was the classic way to waste time
during computer classes at school.

The game? It's called Gorillas, and it first shipped with an old text-based operating system
called MS-DOS 5.0 way back in 1991. Of course, we're going to re-make it using SpriteKit,
but at the same time you're going to learn some new things: how to make colors from hues,
texture atlases, scene transitions, mixing UIKit with SpriteKit, and destructible terrain. You'll
also get a recap on the Core Graphics techniques from project 27.

"Destructible terrain" means "terrain that can be destroyed," which is a key part of Gorillas. If
you've never played it before, you won't know that it pits two players against each other,
both standing on high-rise buildings and both flinging exploding bananas at each other using
physics. Realistic, right? Well, no, but it's certainly fun!

Make a new SpriteKit project named Project29 and targeted at iPad. Please make it use
landscape orientation, then delete the existing spaceship image from Images.xcassets and
the code from inside the didMoveToView() and touchesBegan() methods. You should
download the files for this project from GitHub, but for now please only copy the file
Helper.swift into your project.

Warning: When working with SpriteKit projects, I strongly recommend you use the iPad 2
simulator rather than iPad Air – you'll get much faster frame rates, making it much more
suitable for testing.

www.hackingwithswift.com 643

Building the environment
We're going to start by making the game environment, which means building the night-time,
high-rise skyscraper scene that forms the backdrop for the game. We're going to do most of
this with an SKSpriteNode subclass for buildings that sets up physics, draws the building
graphic, and ultimately handles the building being hit by stray bananas. Are you ready to flex
your Core Graphics muscle a little?

Add a new file, choosing iOS > Source > Cocoa Touch Class, name it "BuildingNode" and
make it a subclass of SKSpriteNode. Open the new file for editing, and add import
SpriteKit just above the UIKit import.

Initially, this class needs to have three methods:

1. setup() will do the basic work required to make this thing a building: setting its name,
texture, and physics.
2. configurePhysics() will set up per-pixel physics for the sprite's current texture.
3. drawBuilding() will do the Core Graphics rendering of a building, and return it as a
UIImage.

In amongst those three points was one small thing that you may have missed: "the sprite's
current texture." This tells you that the texture will change as bits get blown off by those
exploding bananas. To make this work, we're going to keep a copy of the building's texture
as a UIImage so that we can modify it later.

Add this code to your class – it's a property followed by two methods:

var currentImage: UIImage!

func setup() {

 name = "building"

 currentImage = drawBuilding(size)

 texture = SKTexture(image: currentImage)

 configurePhysics()

www.hackingwithswift.com 644

 configurePhysics()

}

func configurePhysics() {

 physicsBody = SKPhysicsBody(texture: texture, size: size)

 physicsBody!.dynamic = false

 physicsBody!.categoryBitMask = CollisionTypes.Building.rawValue

 physicsBody!.contactTestBitMask = CollisionTypes.Banana.rawValue

}

This is using the same "don't override the initializer" hack from project 14, because quite
frankly if I wanted to explain to you how and why Swift's initialization system worked I'd
probably have to add another whole book to this series! Instead, we'll be creating the sprites
as red-colored blocks of the right size, then drawing buildings into them.

As you can see in that code, it calls a drawBuilding() method that returns a UIImage, which
then gets saved into the property and converted into a texture. It also calls
configurePhysics() rather than putting the code straight into its method. Both of these two
methods are separate because they will be called every time the building is hit, so we'll be
using them in two different places.

That code uses two bitmasks that we haven't made yet. This is identical to project 26, except
now we need only three categories: buildings, bananas and players. In the case of buildings,
the only thing they'll collide with is a banana, which triggers our explosion. So, go back to
GameScene.swift and add this enum just above the GameScene class definition:

enum CollisionTypes: UInt32 {

 case Banana = 1

 case Building = 2

 case Player = 4

}

That was the easy bit: you already know about bitmasks, per-pixel physics, textures and so

www.hackingwithswift.com 645

on. The next method is drawBuilding() and it's going to get harder because we're going to
use Core Graphics. You did read project 27, right? If so, this will be a cinch.

This method needs to:

1. Create a new Core Graphics context the size of our building.
2. Fill it with a rectangle that's one of three colors.
3. Draw windows all over the building in one of two colors: there's either a light on (yellow) or
not (gray).
4. Pull out the result as a UIImage and return it for use elsewhere.

There's nothing complicated in there, but just to keep you on your toes I'm going to
introduce a new way to create colors: hue, saturation and brightness, or HSB. Using this
method of creating colors you specify values between 0 and 1 to control how saturated a
color is (from 0 = gray to 1 = pure color) and brightness (from 0 = black to 1 = maximum
brightness), and 0 to 1 for hue.

"Hue" is a value from 0 to 1 also, but it represents a position on a color wheel, like using a
color picker on your Mac. Hues 0 and 1 both represent red, with all other colors lying in
between.

Now, programmers often look at HSB and think it's much clumsier than straight RGB, but
there are reasons for both. The helpful thing about HSB is that if you keep the saturation and
brightness constant, changing the hue value will cycle through all possible colors – it's an
easy way to generate matching pastel colors, for example.

Here's the code for drawBuilding(), with numbered comments lining up to the list above:

func drawBuilding(size: CGSize) -> UIImage {

 // 1

 UIGraphicsBeginImageContextWithOptions(size, false, 0)

 let context = UIGraphicsGetCurrentContext()

 // 2

 let rectangle = CGRect(x: 0, y: 0, width: size.width, height:
size.height)

 var color: UIColor

www.hackingwithswift.com 646

 var color: UIColor

 switch GKRandomSource.sharedRandom().nextIntWithUpperBound(3) {

 case 0:

 color = UIColor(hue: 0.502, saturation: 0.98, brightness: 0.67,
alpha: 1)

 case 1:

 color = UIColor(hue: 0.999, saturation: 0.99, brightness: 0.67,
alpha: 1)

 default:

 color = UIColor(hue: 0, saturation: 0, brightness: 0.67, alpha:
1)

 }

 CGContextSetFillColorWithColor(context, color.CGColor)

 CGContextAddRect(context, rectangle)

 CGContextDrawPath(context, .Fill)

 // 3

 let lightOnColor = UIColor(hue: 0.190, saturation: 0.67,
brightness: 0.99, alpha: 1)

 let lightOffColor = UIColor(hue: 0, saturation: 0, brightness:
0.34, alpha: 1)

 for var row: CGFloat = 10; row < size.height - 10; row += 40 {

 for var col: CGFloat = 10; col < size.width - 10; col += 40 {

 if RandomInt(min: 0, max: 1) == 0 {

 CGContextSetFillColorWithColor(context, lightOnColor.CGColor)

 } else {

 CGContextSetFillColorWithColor(context,
lightOffColor.CGColor)

 }

www.hackingwithswift.com 647

 CGContextFillRect(context, CGRect(x: col, y: row, width: 15,
height: 20))

 }

 }

 // 4

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 return img

}

The only thing new in there – and it's so tiny you probably didn't even notice – is my use
of .Fill rather than .Stroke to draw the rectangles. Using what you learned in project 27, can
you think of another way of doing this? (Hint: have a look at the way the windows are drawn!)

That's the BuildingNode class finished for now; we'll return to it later to add a method that
will be called whenever it gets hit by a banana.

Go back to GameScene.swift because we have a small amount of work to do in order to use
these new building nodes to build the night sky scene.

First, add a property that will store an array of buildings. We'll be using this to figure out
where to place players later on:

var buildings = [BuildingNode]()

At this point, the didMoveToView() method needs to do only two things: give the scene a
dark blue color to represent the night sky, then call a method called createBuildings() that
will create the buildings. Here it is:

override func didMoveToView(view: SKView) {

www.hackingwithswift.com 648

override func didMoveToView(view: SKView) {

 backgroundColor = UIColor(hue: 0.669, saturation: 0.99, brightness:
0.67, alpha: 1)

 createBuildings()

}

All those HSB values aren't an accident, by the way – I've chosen them so they look similar
to the original design.

The createBuildings() method is the important one here, and calling it will finish our
background scene. It needs to move horizontally across the screen, filling space with
buildings of various sizes until it hits the far edge of the screen. I'm going to make it start at
-15 rather than the left edge so that the buildings look like they keep on going past the
screen's edge. I'm also going to leave a 2-point gap between the buildings to distinguish
their edges slightly more.

Each building needs to be a random size. For the height, it can be anything between 300 and
600 points high; for the width, I want to make sure it divides evenly into 40 so that our
window-drawing code is simple, so we'll generate a random number between 2 and 4 then
multiply that by 40 to give us buildings that are 80, 120 or 160 points wide.

As I said earlier, we'll be creating each building node with a solid red color to begin with, then
drawing over it with the building texture once it's generated. Remember: SpriteKit positions
nodes based on their center, so we need to do a little division of width and height to place
these buildings correctly. Here's the createBuildings() method – please put this directly
beneath didMoveToView():

func createBuildings() {

 var currentX: CGFloat = -15

 while currentX < 1024 {

 let size = CGSize(width: RandomInt(min: 2, max: 4) * 40, height:
RandomInt(min: 300, max: 600))

 currentX += size.width + 2

www.hackingwithswift.com 649

 currentX += size.width + 2

 let building = BuildingNode(color: UIColor.redColor(), size:
size)

 building.position = CGPoint(x: currentX - (size.width / 2), y:
size.height / 2)

 building.setup()

 addChild(building)

 buildings.append(building)

 }

}

Make sure you select iPad 2 and not iPad Air from the list of simulator options, then press
Play to see the results of your hard work – a random set of buildings will be generated each
time you run the game. Well done!

Because we draw the buildings in code, our game level is different every time it runs.

www.hackingwithswift.com 650

Because we draw the buildings in code, our game level is different every time it runs.

www.hackingwithswift.com 651

Mixing UIKit and SpriteKit
We've been mixing UIKit and SpriteKit ever since our first SpriteKit project, way back in
project 11. Don't believe me? Look inside GameViewController.swift and you'll see a plain
old UIViewController do all the work of loading and showing our GameScene code. There's
a Main.storyboard file containing that view controller, and if you go to the identity inspector
(Alt+Cmd+3) you'll see it has SKView set for its custom class – that's the view holding our
scene.

This UIKit setup existed all along, but so far we've been ignoring it. No more: we're going to
add some controls to that view so that players can fire bananas. The way the game works,
each player gets to enter an angle and a velocity for their throw. We'll be recreating this with
a UISlider for both of these numbers, along with a UILabel so players can see exactly what
numbers they chose. We'll also add a "Launch" button that makes the magic happen.

Now, think about this for a moment: our game view controller needs to house and manage
the user interface, and the game scene needs to manage everything inside the game. But
they also need to talk to each other: the view controller needs to tell the game scene to fire a
banana when the launch button is clicked, and the game scene needs to tell the view
controller when a player's turn has finished so that another banana can be launched again.

This two-way communication could be done using NSNotificationCenter, but it's not very
pleasant: we know the sender and receiver, and we know exactly what kind of data they will
send and receive, so the easiest solution here is to give the view controller a property that
holds the game scene, and give the game scene a property that holds the view controller.

In the very first project, I explained that outlet properties should be declared weak "because
the object has been placed inside a view, so the view owns it." That's true, but using weak to
declare properties is a bit more generalised: it means "I want to hold a reference to this, but I
don't own it so I don't care if the reference goes away."

When we discussed closures in project 5, I explained that you needed to make self either
unowned or weak so that you avoided strong reference cycles – where a view controller
owns a closure and the closure owns the view controller so that neither of them ever get
destroyed. Well, with our game scene and game view controller have the same problem: if
they both own each other using a property, we have a problem.

The solution is to make one of them have a weak reference to the other: either the game
controller owns the game scene strongly, or the game scene owns the game controller

www.hackingwithswift.com 652

strongly, but not both. As it so happens, the game controller already strongly owns the game
scene, albeit indirectly: it owns the SKView inside itself, and the view owns the game scene.
So, it's owned, we just don't have a reference to it.

So, our solution is straightforward: add a strong reference to the game scene inside the view
controller, and add a weak reference to the view controller from the game scene. Add this
property to the game scene:

weak var viewController: GameViewController!

Now add this property to the game view controller:

var currentGame: GameScene!

Like I said, the game controller already owns the game scene, but it's a pain to get to.
Adding that property means we have direct access to the game scene whenever we need it.
To set the property, put this into the viewDidLoad() method of the game view controller, just
after the call to presentScene():

currentGame = scene

scene.viewController = self

The first line sets the property to the initial game scene so that we can start using it. The
second line makes sure that the reverse is true so that the scene knows about the view
controller too.

Now to design the user interface: this needs two sliders, each with two labels, plus a launch
button and one more label that will show whose turn it is. When you open Main.storyboard
you'll see that it's a square, as per usual. In project 1 I said this square layout was a result of
Auto Layout, which isn't strictly true: it's actually a result of size classes, which are a way of
defining Auto Layout constraints that are restricted to specific categories of device.

www.hackingwithswift.com 653

The square layout is helpful because there are no square iOS devices, so you're always
designing in a very abstract sense. But it's going to make our job here rather difficult, so for
once we're going to disable Size Classes and design specifically for iPad-sized screens.
Click inside the view controller then go to the file inspector (Alt+Cmd+1). About half way
down you'll see a checkbox for "Use Size Classes". Please deselect that, then choose iPad
when prompted.

You'll now see a black view the size of a portrait iPad screen. Our project is landscape only,
so select the view controller (not the view) by clicking the orange and white icon above the
canvas, then go to the attributes inspector and change orientation from "Inferred" to
"Landscape". That's it: we now have an iPad-sized screen to work on. You might need to
scroll around a bit depending on the resolution of your Mac's display!

Drop two sliders into your layout, both 300 points wide. The first should be at X:20, the
second should be at X:480, and both should be at Y:20. Now place two labels in there, both
120 points wide. The first should be at X:325, the second should be at X:785, and both
should be at Y:24 – this is slightly lower than the sliders so that everything is centered neatly.

For the launch button, place a button at X:910 Y:13, with width 100 and height 44; for the
"which player is it?" button, place a label at X:370 Y:64 with width 285 and height 35.

That's the basic layout, but to make it all perfect we need a few tweaks. Using the attributes
inspector, change the left-hand slider so that it has a maximum value of 90 and a current
value of 45, then change the right-hand slider so that it has a maximum value of 250 and a
current value of 125.

Make sure all three of your labels have their text color set to white, then give the bottom one
the text "<<< PLAYER ONE". Select the button then give it a system bold font of size 22, a
title of "LAUNCH" and a red text color.

That's the layout all done, but we also need lots of outlets: using the assistant editor, create
these outlets:

 • For the left slider: angleSlider • For the left label: angleLabel • For the right slider:
velocitySlider • For the right label: velocityLabel • For the launch button: launchButton •
For the player number: playerNumber
You'll also need to create actions from the left slider, the right slider and the button:
angleChanged(), velocityChanged() and launch() respectively.

www.hackingwithswift.com 654

That's all the layout done, so we're finished with Interface Builder and you can open up
GameViewController.swift.

We need to fill in three methods (angleChanged(), velocityChanged() and launch()), write
one new method, then make two small changes to viewDidLoad().

The action methods for our two sliders are both simple: they update the correct label with the
slider's current value. A UISlider always stores its values as a Float, but we only care about
the integer value of that float so we're going to convert the values to Ints then use string
interpolation to update the labels. Here's the code for both these methods:

www.hackingwithswift.com 655

Unleash the bananas!
It's time to get down to the nitty-gritty business of writing code: we need to create our
players then fill in the launch() method so that the fun can begin.

We're going to start with the easy bit, which is creating players. This needs to do two things:

1. Create a player sprite and name it "player1".
2. Create a physics body for the player that collides with bananas, and set it to not be
dynamic.
3. Position the player at the top of the second building in the array. (This is why we needed to
keep an array of the buildings.)
4. Add the player to the scene.
5. Repeat all the above for player 2, except they should be on the second to last building.

The player physics body can be made using a circle, because the sprite used (which is the
same for both players) is more or less round. We used the second building for player 1 and
the second to last for player 2 so that they aren't at the very edges of the screen. Positioning
them at the top is just a matter of adding the building's height to the player's height and
dividing by two, then adding that to the building's Y co-ordinate. SpriteKit measures from the
center of nodes, remember!

Before we look at the code, you'll need to create some properties to hold both players, plus
the banana and which player is currently in control:

var player1: SKSpriteNode!

var player2: SKSpriteNode!

var banana: SKSpriteNode!

var currentPlayer = 1

Now here's the code for createPlayers() – please put this in GameScene.swift:

func createPlayers() {

 player1 = SKSpriteNode(imageNamed: "player")

www.hackingwithswift.com 656

 player1 = SKSpriteNode(imageNamed: "player")

 player1.name = "player1"

 player1.physicsBody = SKPhysicsBody(circleOfRadius:
player1.size.width / 2)

 player1.physicsBody!.categoryBitMask =
CollisionTypes.Player.rawValue

 player1.physicsBody!.collisionBitMask =
CollisionTypes.Banana.rawValue

 player1.physicsBody!.contactTestBitMask =
CollisionTypes.Banana.rawValue

 player1.physicsBody!.dynamic = false

 let player1Building = buildings[1]

 player1.position = CGPoint(x: player1Building.position.x, y:
player1Building.position.y + ((player1Building.size.height +
player1.size.height) / 2))

 addChild(player1)

 player2 = SKSpriteNode(imageNamed: "player")

 player2.name = "player2"

 player2.physicsBody = SKPhysicsBody(circleOfRadius:
player2.size.width / 2)

 player2.physicsBody!.categoryBitMask =
CollisionTypes.Player.rawValue

 player2.physicsBody!.collisionBitMask =
CollisionTypes.Banana.rawValue

 player2.physicsBody!.contactTestBitMask =
CollisionTypes.Banana.rawValue

 player2.physicsBody!.dynamic = false

 let player2Building = buildings[buildings.count - 2]

 player2.position = CGPoint(x: player2Building.position.x, y:
player2Building.position.y + ((player2Building.size.height +
player2.size.height) / 2))

 addChild(player2)

}

www.hackingwithswift.com 657

}

Now, one thing we haven't done yet is actually add in the images to be used inside the
game, and the reason for that is because we're going to use a special technique called
texture atlases. SpriteKit doesn't use them by default, which is why we haven't used them
yet – there are bigger things to worry about! But this game is perfect for texture atlases, so
we're going to use them now.

A texture atlas is a folder with the extension .atlas. In Finder, go into your project directory
(where your .swift files are), then create a new folder called assets.atlas. Now go to where
you downloaded the files for this project, and drag all the image assets from there into your
assets.atlas directory. Finally, drag your assets.atlas directory into your Xcode project so that
it gets added to the build.

Warning: you should only put the image assets into your atlas, i.e. the .png files. The
two .sks files – hitBuilding.sks and hitPlayer.sks – should be dragged into your project
directly, not into the texture atlas.

How is that different from adding the pictures individually? To find out, change your launch
destination to be "iOS Device" rather than "iPad 2" then press Cmd+B to build your game
without running it. At the very bottom of the project navigator, you'll see a yellow folder called
Products. Open that up to reveal Project29.app, then right-click on that and choose "Show in
Finder".

This is the actual app that Xcode built from your project, along with some intermediary stuff
alongside. Your app will be selected already, so right click on it and choose Show Package
Contents to see what's inside. You should see a variety of things, including a directory called
assets.atlasc, which is our compiled assets folder. Inside that you'll see just three files: your
textures, your textures at 2x resolution, and a plist file describing them.

What SpriteKit has done is take all the images for our project and sewn them into a single
image file. This means it can draw lots of images without having to load and unload textures
– it effectively just crops the big image as needed. SpriteKit automatically generates these
atlases for us, even rotating sprites to make them fit if needed. And the best bit: just like
using Images.xcassets, you don't need to change your code to make them work; just load
sprites the same way you've always done.

www.hackingwithswift.com 658

SpriteKit's texture atlases are more resource-efficient, so they load faster and take up less
space.

(Note: observant readers may notice that the player images are in fact monkeys not gorillas.
This is largely down to me not being able to find a public domain gorilla picture that was
good enough, and I figured penguins deserved a break.)

With the createPlayers() method in place, all you need to is call it inside didMoveToView(),
just after the createBuildings() line:

override func didMoveToView(view: SKView) {

 backgroundColor = UIColor(hue: 0.669, saturation: 0.99, brightness:
0.67, alpha: 1)

 createBuildings()

 createPlayers()

}

www.hackingwithswift.com 659

It's now time to flesh out the launch() method. This is a complicated method because it
needs to do quite a few things:

1. Figure out how hard to throw the banana. We accept a velocity parameter, but I'll be
dividing that by 10. You can adjust this based on your own playtesting.
2. Convert the input angle to radians. Most people don't think in radians, so the input will
come in as degrees that we will convert to radians.
3. If somehow there's a banana already, we'll remove it then create a new one using circle
physics.
4. If player 1 was throwing the banana, we position it up and to the left of the player and give
it some spin.
5. Animate player 1 throwing their arm up then putting it down again.
6. Make the banana move in the correct direction.
7. If player 2 was throwing the banana, we position it up and to the right, apply the opposite
spin, then make it move in the correct direction.

There are few things you need to know before we translate that long list into Swift. First,
converting degrees to radians is done with a fixed formula that we will put into a method
called deg2rad():

func deg2rad(degrees: Int) -> Double {

 return Double(degrees) * M_PI / 180.0

}

Second, SpriteKit uses a number of optimisations to help its physics simulation work at high
speed. These optimisations don't work well with small, fast-moving objects, and our banana
is just such a thing. To be sure everything works as intended, we're going to enable the
usesPreciseCollisionDetection property for the banana's physics body. This works slower,
but it's fine for occasional use.

Third, I said we needed to make the banana move in "the correct direction" without really
explaining how we get to that. This isn't a trigonometry book, so here's the answer as briefly
as possible: if we calculate the cosine of our angle in radians it will tell us how much
horizontal momentum to apply, and if we calculate the sine of our angle in radians it will tell
us how much vertical momentum to apply.

www.hackingwithswift.com 660

Once that momentum is calculated, we multiply it by the velocity we calculated (or negative
velocity in the case of being player 2, because we want to throw to the left), and turn it into a
CGVector. Remember, a vector is like an arrow where its base is at 0,0 (our current position)
and tip at the point we specify, so this effectively points an arrow in the direction the banana
should move.

To make the banana actually move, we use the applyImpulse() method of its physics body,
which accepts a CGVector as its only parameter and gives it a physical push in that
direction.

Time for the code; so you don't have to flick around so much while reading, here's a repeat
list of what this method will do, with numbers matching comments in the code:

1. Figure out how hard to throw the banana. We accept a velocity parameter, but I'll be
dividing that by 10. You can adjust this based on your own playtesting.
2. Convert the input angle to radians. Most people don't think in radians, so the input will
come in as degrees that we will convert to radians.
3. If somehow there's a banana already, we'll remove it then create a new one using circle
physics.
4. If player 1 was throwing the banana, we position it up and to the left of the player and give
it some spin.
5. Animate player 1 throwing their arm up then putting it down again.
6. Make the banana move in the correct direction.
7. If player 2 was throwing the banana, we position it up and to the right, apply the opposite
spin, then make it move in the correct direction.

And here's the code:

func launch(angle angle: Int, velocity: Int) {

 // 1

 let speed = Double(velocity) / 10.0

 // 2

 let radians = deg2rad(angle)

 // 3

 if banana != nil {

www.hackingwithswift.com 661

 if banana != nil {

 banana.removeFromParent()

 banana = nil

 }

 banana = SKSpriteNode(imageNamed: "banana")

 banana.name = "banana"

 banana.physicsBody = SKPhysicsBody(circleOfRadius:
banana.size.width / 2)

 banana.physicsBody!.categoryBitMask =
CollisionTypes.Banana.rawValue

 banana.physicsBody!.collisionBitMask =
CollisionTypes.Building.rawValue | CollisionTypes.Player.rawValue

 banana.physicsBody!.contactTestBitMask =
CollisionTypes.Building.rawValue | CollisionTypes.Player.rawValue

 banana.physicsBody!.usesPreciseCollisionDetection = true

 addChild(banana)

 if currentPlayer == 1 {

 // 4

 banana.position = CGPoint(x: player1.position.x - 30, y:
player1.position.y + 40)

 banana.physicsBody!.angularVelocity = -20

 // 5

 let raiseArm = SKAction.setTexture(SKTexture(imageNamed:
"player1Throw"))

 let lowerArm = SKAction.setTexture(SKTexture(imageNamed:
"player"))

 let pause = SKAction.waitForDuration(0.15)

 let sequence = SKAction.sequence([raiseArm, pause, lowerArm])

 player1.runAction(sequence)

 // 6

www.hackingwithswift.com 662

 // 6

 let impulse = CGVector(dx: cos(radians) * speed, dy: sin(radians)
* speed)

 banana.physicsBody?.applyImpulse(impulse)

 } else {

 // 7

 banana.position = CGPoint(x: player2.position.x + 30, y:
player2.position.y + 40)

 banana.physicsBody!.angularVelocity = 20

 let raiseArm = SKAction.setTexture(SKTexture(imageNamed:
"player2Throw"))

 let lowerArm = SKAction.setTexture(SKTexture(imageNamed:
"player"))

 let pause = SKAction.waitForDuration(0.15)

 let sequence = SKAction.sequence([raiseArm, pause, lowerArm])

 player2.runAction(sequence)

 let impulse = CGVector(dx: cos(radians) * -speed, dy:
sin(radians) * speed)

 banana.physicsBody?.applyImpulse(impulse)

 }

}

With that code, the game is starting to come together. Sure, the bananas don't actually
explode, and player 2 never actually gets a shot, but all in good time…

www.hackingwithswift.com 663

Destructible terrain
It's time for the most challenging part of our project, but as per usual I've tried to keep things
as simple as possible because the fun is in getting results not in learning algorithms. We're
going to add collision detection to our code so that players can carve chunks out of the
buildings or, better, blow up their opponents.

You will, as always, need to assign self to be the delegate of your scene's physics world so
that you can get notified of collisions. So, put this in didMoveToView():

physicsWorld.contactDelegate = self

Make sure you modify your class definition to say that you conform to the
SKPhysicsContactDelegate protocol.

When it comes to implementing the didBeginContact() method, there are various possible
contacts we need to consider: banana hit building, building hit banana (remember the
philosophy?), banana hit player1, player1 hit banana, banana hit player2 and player2 hit
banana. This is a lot to check, so we're going to eliminate half of them by eliminating whether
"banana hit building" or "building hit banana". Take another look at our category bitmasks:

enum CollisionTypes: UInt32 {

 case Banana = 1

 case Building = 2

 case Player = 4

}

They are ordered numerically and alphabetically, so what we're going to do is create two new
variables of type SKPhysicsBody and assign one object from the collision to each: the first
physics body will contain the lowest number, and the second the highest. So, if we get
banana (collision type 1) and building (collision type 2) we'll put banana in body 1 and
building in body 2, but if we get building (2) and banana (1) then we'll still put banana in body
1 and building in body 2.

www.hackingwithswift.com 664

Once we have eliminated half the checks, we're going to optionally unwrap both the bodies.
They are optional because they might be nil, and this is highly likely in our project. The
reason it's likely is because we might get "banana hit building" and "building hit banana" one
after the other, but when either of these happens we'll destroy the banana so the second one
will definitely be nil.

If the banana hit a player, we're going to call a new method named destroyPlayer(). If the
banana hit a building, we'll call a different new method named bananaHitBuilding(), but we'll
also pass in the contact point. This value tells us where on the screen the impact actually
happened, and it's important because we're going to destroy the building at that point.

That's all you need to know, so here's the code for didBeginContact():

func didBeginContact(contact: SKPhysicsContact) {

 var firstBody: SKPhysicsBody

 var secondBody: SKPhysicsBody

 if contact.bodyA.categoryBitMask < contact.bodyB.categoryBitMask {

 firstBody = contact.bodyA

 secondBody = contact.bodyB

 } else {

 firstBody = contact.bodyB

 secondBody = contact.bodyA

 }

 if let firstNode = firstBody.node {

 if let secondNode = secondBody.node {

 if firstNode.name == "banana" && secondNode.name ==
"building" {

 bananaHitBuilding(secondNode as! BuildingNode, atPoint:
contact.contactPoint)

 }

www.hackingwithswift.com 665

 if firstNode.name == "banana" && secondNode.name == "player1" {

 destroyPlayer(player1)

 }

 if firstNode.name == "banana" && secondNode.name == "player2" {

 destroyPlayer(player2)

 }

 }

 }

}

If a banana hits a player, it means they have lost the game: we need to create an explosion
(yay, particles!), remove the destroyed player and the banana from the scene, then… what?
Well, so far we've just left it there – we haven't looked at how to make games restart.

There are a number of things you could do: take players to a results screen, take them to a
menu screen, and so on. In our case, we're going to reload the level so they can carry on
playing. We could just delete all the buildings and generate it all from scratch, but that would
be passing up a great opportunity to learn something new!

SpriteKit has a super-stylish and built-in way of letting you transition between scenes. This
means you can have one scene for your menu, one for your options, one for your game, and
so on, then transition between them as if they were view controllers in a navigation controller.

To transition from one scene to another, you first create the scene, then create a transition
using the list available from SKTransition, then finally use the presentScene() method of our
scene's view, passing in the new scene and the transition you created. For example, this will
cross-fade in a new scene over 2 seconds:

let newGame = GameScene(size: self.size)

let transition = SKTransition.crossFadeWithDuration(2)

self.view?.presentScene(newGame, transition: transition)

www.hackingwithswift.com 666

In the destroyPlayer() method we're going to execute the scene transition after two seconds
so that players have a chance to see who won and, let's face it, laugh at the losing player.
But when we create the new game scene we also need to do something very important: we
need to update the view controller's currentGame property and set the new scene's
viewController property so they can talk to each other once the change has happened.

We also need to call the changePlayer() method when a player is destroyed. We haven't
written this method yet, but it transfers control of the game to the other player, then calls the
activatePlayerNumber() method on the game view controller so that the game controls are
re-shown. Calling this method here ensures that the player who lost gets the first turn in the
new game.

First, here's the code for destroyPlayer():

func destroyPlayer(player: SKSpriteNode) {

 let explosion = SKEmitterNode(fileNamed: "hitPlayer")!

 explosion.position = player.position

 addChild(explosion)

 player.removeFromParent()

 banana?.removeFromParent()

 RunAfterDelay(2) { [unowned self] in

 let newGame = GameScene(size: self.size)

 newGame.viewController = self.viewController

 self.viewController.currentGame = newGame

 self.changePlayer()

 newGame.currentPlayer = self.currentPlayer

 let transition = SKTransition.doorwayWithDuration(1.5)

 self.view?.presentScene(newGame, transition: transition)

www.hackingwithswift.com 667

 self.view?.presentScene(newGame, transition: transition)

 }

}

Important: after calling changePlayer(), we must set the new game's currentPlayer
property to our own currentPlayer property, so that whoever died gets the first shot.

The changePlayer() method is trivial, so here it is:

func changePlayer() {

 if currentPlayer == 1 {

 currentPlayer = 2

 } else {

 currentPlayer = 1

 }

 viewController.activatePlayerNumber(currentPlayer)

}

Now it's time for the real work. How do we allow our exploding bananas to create holes in
buildings? Surprisingly, it's not that hard. I'm going to split it into two parts: a
bananaHitBuilding() game scene method that handles creating the explosion, deleting the
banana and changing players, and a hitAtPoint() building node method that handles
damaging the building. The first one is easy, so put this into the game scene:

func bananaHitBuilding(building: BuildingNode, atPoint contactPoint:
CGPoint) {

 let buildingLocation = convertPoint(contactPoint, toNode: building)

 building.hitAtPoint(buildingLocation)

www.hackingwithswift.com 668

 let explosion = SKEmitterNode(fileNamed: "hitBuilding")!

 explosion.position = contactPoint

 addChild(explosion)

 banana.name = ""

 banana?.removeFromParent()

 banana = nil

 changePlayer()

}

The only new thing in there is the call to convertPoint(), which asks the game scene to
convert the collision contact point into the coordinates relative to the building node. That is, if
the building node was at X:200 and the collision was at X:250, this would return X:50,
because it was 50 points into the building node.

If you're curious why I use banana.name = "", it's to fix a small but annoying bug: if a
banana just so happens to hit two buildings at the same time, then it will explode twice and
thus call changePlayer() twice – effectively giving the player another throw. By clearing the
banana's name here, the second collision won't happen because our didBeginContact()
method won't see the banana as being a banana any more – it's name is gone.

And now for the part where we handle destroying chunks of the building. With your current
knowledge of Core Graphics, this is something you can do by learning only one new thing:
blend modes. When you draw anything to a Core Graphics context, you can set how it
should be drawn. For example, should it be be drawn normally, or should it add to what's
there to create a combination?

Core Graphics has quite a few blend modes that might look similar, but we're going to use
one called .Clear, which means "delete whatever is there already." When combined with the
fact that we already have a property called currentImage you might be able to see how our
destructible terrain technique will work!

Put simply, when we create the building we save its UIImage to a property of the
BuildingNode class. When we want to destroy part of the building, we draw that image into

www.hackingwithswift.com 669

a new context, draw an ellipse using .Clear to blast a hole, then save that back to our
currentImage property and update our sprite's texture.

Here's a full break down of what the method needs to do:

1. Figure out where the building was hit. Remember: SpriteKit's positions things from the
center and Core Graphics from the bottom left!
2. Create a new Core Graphics context the size of our current sprite.
3. Draw our current building image into the context. This will be the full building to begin with,
but it will change when hit.
4. Create an ellipse at the collision point. The exact co-ordinates will be 32 points up and to
the left of the collision, then 64x64 in size - an ellipse centered on the impact point.
5. Set the blend mode .Clear then draw the ellipse, literally cutting an ellipse out of our
image.
6. Convert the contents of the Core Graphics context back to a UIImage, which is saved in
the currentImage property for next time we're hit, and used to update our building texture.
7. Call configurePhysics() again so that SpriteKit will recalculate the per-pixel physics for
our damaged building.

Here's that in code – put this method into the BuildingNode class:

func hitAtPoint(point: CGPoint) {

 let convertedPoint = CGPoint(x: point.x + size.width / 2.0, y:
abs(point.y - (size.height / 2.0)))

 UIGraphicsBeginImageContextWithOptions(size, false, 0)

 let context = UIGraphicsGetCurrentContext()

 currentImage.drawAtPoint(CGPoint(x: 0, y: 0))

 CGContextAddEllipseInRect(context, CGRect(x: convertedPoint.x - 32,
y: convertedPoint.y - 32, width: 64, height: 64))

 CGContextSetBlendMode(context, .Clear)

 CGContextDrawPath(context, .Fill)

 let img = UIGraphicsGetImageFromCurrentImageContext()

www.hackingwithswift.com 670

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 texture = SKTexture(image: img)

 currentImage = img

 configurePhysics()

}

That's it for destructible terrain! There's one curious quirk of SpriteKit's physics
implementation: if you slice a building in two with lots of bananas, only one half will respond
to physics because it won't put two (now separate) physics bodies into one. Fortunately, the
chances of that happening are pretty slim unless you're an appalling shot!

www.hackingwithswift.com 671

Wrap up
This was our final Level 1 game project, and I'd like to think I kept the best for last: lots to
learn about mixing UIKit and SpriteKit, texture atlases, scene transitions, and of course
destructible terrain. If you've followed the series correctly you've now made seven SpriteKit
games of varying complexity, so I hope you have all the knowledge you need to get out there
and make your own.

If you want to extend this project, you might want to consider starting with the art for a
change: I've made it look relatively similar to the original DOS game, but let's face it that will
only appear to fans of retro gaming nowadays! If you're looking to change the code, see if
you can make the game track scores across scenes so that players know who is winning.

If you're looking for something harder, make it best of 5: whoever reaches a score of 3 first
wins, showing a "you win!" screen of your choosing. And for a real challenge, try to modify
the collision detection so that exploding bananas damage all buildings the explosion would
have touched rather than just the building the banana touched.

One last thing: when you're making amateur games, don't let yourself get bogged down in
boring stuff too much – you're doing it for fun, and if it isn't fun to make it's probably not
much fun to play.

www.hackingwithswift.com 672

Project 30
Instruments
Become a bug detective and track down lost memory,
slow drawing and more.

www.hackingwithswift.com 673

Setting up
This is the last technique project and indeed the last project in the series, so it's going to be
quite different. You see, I've already written all the code for you and I'm giving you a working
app. Sure it has a few bugs here and there, but it's not too bad. Well, OK: perhaps it's full of
bugs, and perhaps this whole project is about showing you how to find and fix those bugs!

We're going to be using a tool called Instruments. It ships as part of Xcode, and is
responsible for profiling your app. "Profiling" is the term used when we monitor performance,
memory usage and other information of an app, with the aim of improving efficiency. I'm not
going to make you a master of Instruments, but I can at least show you how it helps you find
problems with your code. Plus, along the way you'll learn a few extra bits about how iOS
works, including shadows, image caching, cell reuse and more.

Please note: it's recommended you use physical devices when profiling your apps because
their performance characteristics are very different from those of the iOS simulator. It's not
required, just strongly recommended. If you're going to choose a device, I recommend
choosing the least powerful device you support. All our apps are written for iOS 8, so that
means iPhone 4s and onwards and iPad 2 and onwards. If you have one available, I generally
find iPad 3 the slowest Pad for testing purposes.

You should download the source code for this project from GitHub then modify it as we go.
When you open the project, change the the build destination to be your iOS device if you
have one handy, otherwise use the iPhone 6 simulator.

www.hackingwithswift.com 674

What are we working with?
This is a really simple app, albeit quite a broken on. Obviously the breakages are deliberate,
but they are all things I have seen in real, shipping code. The app shows a table view
containing images from Greek mythology. When one of the rows is tapped, a detail view
controller appears, showing the image at full size.

Every time you tap on the big image, it adds one to a count of how many times that image
was tapped, and that count is shown in the original view controller. All the images in the app
are deliberately blurry – I use them in my Mythology app, so although I've kept them at their
original size I have dramatically lowered the quality. Sorry!

Anyway, that's all the app does. I haven't even used a storyboard, because I want all the
problems to be visible (and fixable!) in Swift code.

And how bad are the problems? Well, if you run the app on a device, you'll see that it
crashes after viewing just a few pictures. Regardless of whether you're running on a device
or a simulator, press Cmd+6 to bring up the debug gauges on the left of the Xcode window if
you don't see them already – it will say "CPU", "Memory", "Disk" and "Network".

Depending on whether you're using the iOS simulator or a device, you might see memory in
the debug gauges start low but then build up as you use the app more and more, never
going back down after you load an image. Soon the app will crash because it runs out of
memory, which is of course A Very Bad Thing.

You might also notice that in the iOS Simulator (running with the full power of your Mac
behind it!) table scrolling is still slow. What gives? This is a really broken app, and with so few
lines of code!

www.hackingwithswift.com 675

What can Instruments tell us?
Press Cmd+I to run your app using Instruments, and after a few seconds a window will
appear offering you a variety of profiling templates. Please select Time Profiler then click
Choose. When the new window appears, click the red circle in the top-left corner to start
recording of the app.

Your app will launch on your device (or in the simulator) and Instruments will begin
monitoring its usage in realtime. You'll see a spike in Instruments' readings to begin with,
which reflect the huge amount of work any app does just to start up. We don't care about
that for now, we're more interested in the workload of the app once it's running.

So, scroll around a bit, tap an image, go back, scroll around some more, tap another image,
and so on. Aim to get about 10 seconds or so of real app usage, then press the Stop button,
which is where the record button was earlier.

The top half of your Instruments window is showing readings from your app; the bottom half
is showing details on those readings. By default, the detail view shows everything in the app
run that was captured, but I want you to click and drag in the top window to select part of
the readings when you tapped on an image. All being well (or as well as can be expected in
this broken code!) you should see the readings noticeably spike.

When you select an area of the readings like this, the detail view now shows information just
on the part you chose. You should see that the vast majority of the time that was selected
was spent on the main thread, which means we're not taking much advantage of having
multiple CPU cores.

Immediately to the left of "Main thread" in the detail view is a disclosure arrow. You can click
that to open up all the top-level calls maid on the Main Thread, which will just be "Start",
which in turn has its own calls under its own arrow. You can if you want hold down Alt and
click on these arrows, which causes all the children (and their children's children) to be
opened up, but that gets messy!

Instead, there are two options. First, you should have a right-hand detail pane with three
options: record settings, display settings and extended detail (accessible through Cmd+1,
Cmd+2 and Cmd+3). Select "Main thread" in the detail view then press Cmd+3 to choose
the extended detail view: this will automatically show you the "heaviest" stack trace, which is
the code that took the most time to run.

www.hackingwithswift.com 676

In the picture below you can see the bottom half of Instruments after running a time profile.
The pane on the right is showing the heaviest stack trace, and on the left you can see all the
threads that were executing as well as what they were doing.

Instruments can show you the heaviest stack trace in your app, which gives you your first
optimization target.

If you scroll down to the bottom, you'll see it's probably all around either
copyImageBlockSetPNG or copyImageBlockSetAppleJPEG depending on whether you
spent more of your time flicking through the table view or going into the detail controller.

Now, we didn't write that code, so you won't find it anywhere in the project. But we didn't
need to write it, because some of our own code triggered it inside Apple's frameworks. This
heaviest stack trace might not always be your problem; sometimes it's just something that's
always going to be slow. That said, it's always a good place to start!

The second option is inside the display settings view (Cmd+2) and is called Invert Call Tree.
This will show you the heaviest code first, with a disclosure arrow revealing what called it,
and so on. This is the same view as before, just reversed.

www.hackingwithswift.com 677

There is a third option, but it's of mixed help. It's called "Hide system libraries" and is near to
the "Invert Call Tree" checkbox. This eliminates all time being used by Apple's frameworks so
you can focus on your own code. This is great if you have lots of complicated code that
could be slow, but it doesn't help at all if your app is slow because you're using the system
libraries poorly!

Quit Instruments and return to Xcode, then press Cmd+I again to re-run Instruments. This
time I'd like you to choose the Core Animation instrument then press record to begin. The
Core Animation instrument at the top will show a few FPS (frames per second) to begin with,
then settle at 0 – that doesn't mean your app is running at zero frames per second, just that
it's not doing anything right now.

Scroll around the table view a little and watch how the Core Animation instrument responds.
Ideally you'll get a constant 60fps, but that's only likely on the very latest generations of
iPhones – iPhone 5 and 5s will struggle to come close, and iPhone 4 has no chance.

Under the display settings for the CA instrument (Cmd+2) you'll see three very helpful
options:

 • Color Blended Layers shows views that are opaque in green and translucent in red. If
there are multiple transparent views inside each other, you'll see more and more red.
 • Color Offscreen-Rendered Yellow shows views that require an extra drawing pass in
yellow. Some special drawing work must be drawn individually off screen then drawn again
onto the screen, which means a lot more work.
 • Color Hits Green and Misses Red tells you how well image caching is working. We
haven't used image caching yet, but it basically means "do all this complicated work once,
then reuse the result." If you get it wrong, you cache the result then throw it away very often.

Broadly speaking, you want "Color Blended Layers" to show as little red as possible, "Color
Offscreen-Rendered Yellow" to show no yellow, and "Color Hits Green and Misses Red" to
either show no color or show green.

Try all three of these options on both the table view and the detail view to see how things
look.

(Fun tip: you can turn these settings on then unplug a device – it's a great way to prank
friends!)

www.hackingwithswift.com 678

Fixing the bugs
It's time for us to use instruments to spot and fix some problems. Important: when making
performance changes you should change only one thing at a time, then re-test to make sure
your change helped. If you changed two or more things and performance got better, which
one worked? Or, if performance got worse, perhaps one thing worked and one didn't!

Let's begin with the table view: you should have seen nearly all the table view turn yellow
when Color Offscreen-Rendered Yellow was selected. This is because each of the pictures
has a shadow effect behind them that's being done on the CALayer belonging to the image.

You can find the code for this in SelectionViewController.swift, inside the
cellForRowAtIndexPath method:

// give the images a nice shadow to make them look a bit more
dramatic

cell.imageView!.layer.shadowColor = UIColor.blackColor().CGColor

cell.imageView!.layer.shadowOpacity = 1

cell.imageView!.layer.shadowRadius = 10

iOS lets you add a basic shadow to any of its views, and it's a simple way to make
something stand out on the screen. But it's not fast: it literally scans the pixels in the image
to figure out what's transparent, then uses that information to draw the shadow correctly.
When you hit a performance problem, you either drop the code that triggers the problem or
you make it run faster.

In our case, we'll assume the designer insists the drop shadow is gorgeous (they are wrong!)
so we need to make the code faster. Fortunately, if we give iOS a little more information it
can do substantially less work. Calculating the shadow is hard, because iOS needs to see
what's transparent. But we know nothing is transparent; our images are solid rectangles!

We can tell iOS not to automatically calculate the shadow path for our images by giving it the
exact shadow path to use. The easiest way to do this is to create a new UIBezierPath that
describes our images (a rectangle with width 320 and height 240), then convert it to a
CGPath because CALayer doesn't understand what UIBezierPath is.

www.hackingwithswift.com 679

Here's the updated code:

// give the images a nice shadow to make them look a bit more
dramatic

cell.imageView!.layer.shadowColor = UIColor.blackColor().CGColor

cell.imageView!.layer.shadowOpacity = 1

cell.imageView!.layer.shadowRadius = 10

cell.imageView!.layer.shadowPath = UIBezierPath(rect: CGRect(x: 0, y:
0, width: 320, height: 240)).CGPath

When you run that, you'll still see the same shadows everywhere, but the yellow color is
gone. You can turn off Color Offscreen-Rendered Yellow now and quit Instruments.

Back in Xcode, press Cmd+I to launch a fresh instance of Instruments, and this time I want
you to choose the Allocations instrument. This tells you how many objects you're creating
and what happens to them. Press record, then scroll around the table view a few times to get
a complete picture of the app running. At the very least, you should go all the way down to
the bottom and back up five or six times.

What you'll see is a huge collection of information being shown – lots of "malloc", lots of
"CFString", lots of "__NSArrayI" and more. Stuff we just don't care about right now, because
most of the code we have is user interface work. Fortunately, there's a search box just above
the detail pane – it should say "Instrument Detail" but if you type "UI" in there it will only
show information that has "UI" somewhere in there, which just happens to be all of Apple's
user interface libraries!

In the picture below you can see how filtering for "UI" inside Instruments shows only data
that has "UI" in its name somewhere, which primarily restricts the view to things that come
from Apple's UIKit libraries.

www.hackingwithswift.com 680

Use Instruments's filtering system to show only items that matter to you.

Once you filter by "UI" you'll see see UIImage, UIImageView, UITableViewCell and more.
The allocations instrument will tell you how many of these objects are persistent (created and
still exist) and how many are transient (created and since destroyed). Notice how just swiping
around has created a large number of transient UIImageView and UITableViewCell objects?

This is happening because each time the app needs to show a cell, it creates it then creates
all the subviews inside it – namely an image view and a label. This is a common coding
mistake to make when you're not using storyboards and prototype cells, and it's guaranteed
to put a speed bump in your apps.

If you look inside SelectionViewController's cellForRowAtIndexPath method you'll see this
line:

let cell = UITableViewCell(style: .Default, reuseIdentifier: "Cell")

That's the only place where table view cells are being created, so clearly it's the culprit
because it creates a new cell every time the table view asks for one. This has been slow
since the very first days of iOS development, and Apple has always had a solution: ask the
table view to dequeue a cell, and if you get nil back then create a cell yourself.

www.hackingwithswift.com 681

This is different from when we were using prototype cells with a storyboard. With
storyboards, if you dequeue a prototype cell then iOS automatically handles creating them as
needed.

If you're creating table view cells in code, you have two options to fix this intense allocation
of views. First, you could rewrite the above line to be this:

var cell = tableView.dequeueReusableCellWithIdentifier("Cell")

if cell == nil {

 cell = UITableViewCell(style: .Default, reuseIdentifier: "Cell")

}

That dequeues a cell, but if it gets nil back then we create one. Note the force-unwrapped
optional at the end of the first line, meaning "this might be nil, but trust us: it's safe." And we
know it's safe because we explicitly catch the nil scenario just afterwards.

The other solution you could use is to register a class with the table view for the reuse
identifier "Cell". Using this method you could leave the original line of code as-is, but add
this to viewDidLoad():

tableView.registerClass(UITableViewCell.self, forCellReuseIdentifier:
"Cell")

With that line of code, you will never get nil when dequeuing a cell with the identifier "Cell".
As with prototype cells, if there isn't one to dequeue a new cell will be created automatically.

The second solution is substantially newer than the first and can really help cut down the
amount of code you need. But it has two drawbacks: with the first solution you can specify
different kinds of cell styles than just .Default, not least the .Subtitle option we used in
project 7; also, with the first solution you explicitly know when a cell has just been created,
so it's easy to force any one-off work into the if cell == nil { block.

www.hackingwithswift.com 682

Regardless of which solution you chose (you'll use both in your production code, I expect),
you should be able to run the allocations instrument again and see far fewer table view cell
allocations. With this small change, iOS will just reuse cells as they are needed, which makes
your code run faster and operate more efficiently.

Now, why does the app crash when you go the detail view controller enough times? There
are two answers to this question, one code related and one not. For the first answer, look up
one of the images in Finder, such as hephaestus.jpg. What do you notice about it?

Hopefully you spotted that it was 6620x4140 pixels in size, which is ten times more pixels
than even the iPhone 6 Plus screen has. Our designer forgot to scale them down! The end
result is that we're trying to show far, far more detail than is visible, which is putting crazy
pressure on memory and the graphics unit. The solution here: resize those images down to a
sensible size – preferably the smallest they need to be in order to fit the design correctly.

But there's something else subtle here, and it's something we haven't covered yet so this is
the perfect time. When you create a UIImage using UIImage(named:) iOS loads the image
and puts it into an image cache for reuse later. This is sometimes helpful, particularly if you
know the image will be used again. But if you know it's unlikely to be reused or if it's quite
large, then don't bother putting it into the cache – it will just add memory pressure to your
app and probably flush out other more useful images!

If you look in the viewDidLoad() method of ImageViewController you'll see this line of code:

imageView.image = UIImage(named: image)

How likely is it that users will go back and forward to the same image again and again? Not
likely at all, so we can skip the image cache by creating our images using the
UIImage(contentsOfFile:) method. This method isn't as friendly as UIImage(named:)
because you need to specify the exact path to an image rather than just its filename in your
app bundle, but you already know how to use pathForResource() so it's not so hard:

let path = NSBundle.mainBundle().pathForResource(image, ofType: nil)!

imageView.image = UIImage(contentsOfFile: path)

www.hackingwithswift.com 683

Let's take a look at one more problem, this time quite subtle. Loading the images was slow
because they were so big, and iOS was caching them unnecessarily. But UIImage's cache is
intelligent: if it senses memory pressure, it automatically clears itself to make room for other
stuff. So why does our app run out of memory?

To find out, profile the app using Instruments and select the allocations instrument again.
This time filter on "imageviewcontroller" and to begin with you'll see nothing because the app
starts on the table view. But if you tap into a detail view then go back, you'll see one is
created and remains persistent – it hasn't been destroyed. Which means the image it's
showing also hasn't been destroyed, hence the massive memory usage.

What's causing the image view controller to never be destroyed? If you read through
SelectionViewController.swift and ImageViewController.swift you might spot these two things:

1. The selection view controller has a viewControllers array that claims to be a cache of the
detail view controllers. This cache is never actually used, and even if it were used it really
isn't needed.
2. The image view controller has a property var owner: SelectionViewController! – that
makes it a strong reference to the view controller that created it.

The first problem is easily fixed: just delete the viewControllers array and any code that
uses it, because it's just not needed. The second problem smells like a strong reference
cycle, so you should probably change it to this:

weak var owner: SelectionViewController!

Run Instruments again and you'll see that the problem is… still there?! That's right: those two
were either red herrings or weren't enough to solve the problem, because something far
more sneaky is happening.

The view controllers aren't destroyed because of this line of code in
ImageViewController.swift:

self.animTimer = NSTimer.scheduledTimerWithTimeInterval(5, target:
self, selector: "animateImage", userInfo: nil, repeats: true)

www.hackingwithswift.com 684

That timer does a hacky animation on the image, and it could easily be replaced with better
animations as done inside project 15. But even so, why does that cause the image view
controllers to never leak?

The reason is that when you specify a target for your timer (what object should be told when
the timer is up), the timer holds a strong reference to it so that it's definitely there when the
timer is up. We're using self for the target, which means our view controller owns the timer
strongly and the timer owns the view controller strongly, so we have a strong reference cycle.

There are two solutions here: rewrite the code using smarter animations, or destroy the timer
when it's no longer needed, thus breaking the cycle. The second option is easier, because it
avoids having to write too much new code. In fact, all we need to do is detect when the
image view controller is about to disappear and stop the timer. We'll do this in
viewWillDisappear():

override func viewWillDisappear(animated: Bool) {

 super.viewWillDisappear(animated)

 self.animTimer.invalidate()

}

Calling invalidate() on a timer stops it immediately, which also forces it to release its strong
reference on the view controller it belongs to, thus breaking the strong reference cycle. If you
profile again, you'll see all the ImageViewController objects are now transient, and the app
should no longer crash.

www.hackingwithswift.com 685

Wrap up
Hold up your right hand and repeat after me: "I will never ship an app without running it
through Instruments first." It doesn't take long, it's not difficult, and I promise it will pay off –
your user interfaces will be smoother, your code will run faster, and you'll avoid wasting
memory, all using a tool that's completely free and you already have installed.

I have, predictably, only touched briefly on the many features of Instruments here, but I hope
I've inspired you to learn more. Instruments can tell you exactly what each CPU core is doing
at any given time, it can tell you when every object was created and when it was destroyed
along with what code triggered it, and it can even simulate user interface interactions to help
you stress test your apps!

This is the end of the last Level 1 project in the series. I hope you've learned a lot, I hope
you've made a lot, and I hope you've had a lot of fun along the way. I've worked hard to
delete difficult parts, cut corner cases and take out technicalities, so all being well you've
found this series productive.

But – and this is a big but – this is not the end of your Swift learning. There's so much more
you can do with Swift and iOS that I haven't come close to so far, and they are every bit as
exciting as what you've learned so far. To be blunt, I have given you the first 90% of learning
iOS development, so it's time for you to step out into the big world and learn the second
90% by yourself.

What's more, there's a third 90%, and a fourth 90%, and so on – the magic of programming
is that it's always evolving, so just as you think you're starting to know everything even more
stuff comes along to surprise you all over again. Don't let that feeling of joy escape you:
program for fun, and you'll never work a day in your life.

If you'd like to continue your learning on Hacking with Swift – and I hope you do! – then you'll
be pleased to know you can continue right onto Level 2 projects. These are different from
Level 1 because they no longer follow a sequence – now that you've finished all the Level 1
projects, you can tackle the Level 2 projects in any order you want.

Have fun, and happy Swifting!

www.hackingwithswift.com 686

Project 31
Multibrowser
Get started with UIStackView and see just how easy iPad
multitasking is in iOS 9.

www.hackingwithswift.com 687

Setting up
This is the first chapter of Hacking with Swift Level 2. Chapters 1 to 30 all formed a
structured tutorial series teaching you Swift, UIKit, SpriteKit, Auto Layout, MapKit, iBeacons,
Core Graphics, Core Image and more all from scratch, using incremental learning and real
projects to make the experience fun and productive. That's Level 1, and you should have
completed it all. From here on it's Level 2, and projects are designed to be standalone: as
long as you have finished projects 1 to 30 already, you can complete any of Level 2 in any
order you want.

If you have not already completed projects 1 to 30 of Hacking with Swift, please don't
complain if you don't understand a concept! Click here to return to the homepage and
browse the list of Swift projects, then work through them in order.

Now for the important stuff: what are we going to build? Well, I want to use this first Level 2
project to show you how to use two great features in iOS 9: UIStackView and iPad
multitasking. Both of these are stand out technologies in iOS 9, and, remarkably, both are so
easy to adopt that we can make this entire project in about 20 minutes. We're also going to
touch on Size Classes briefly for the first time, so there's a lot to learn.

The project itself is called Multibrowser, and it shows one or more web views that the user
can simultaneously browse. So, you could have one pane with live sports results, one pane
with the latest news, and another on Reddit – just like Safari tabs, except they are all visible
at the same time. I'll be using UIWebView for this project rather than WKWebView, but it's
easy enough to change in your own project if you want to.

Please go ahead and create a new project in Xcode 7, choosing the Single View Application
template. Name it Project 31, choose Swift for your language, and iPad for the device. We're
using iPad here because multitasking is only available as an iPad feature.

www.hackingwithswift.com 688

UIStackView by example
iOS 9 did not introduce many new user interface components, but it did bring us
UIStackView and that's more than enough – once you understand what it does and how it
works, you'll be able to use it in your own apps in just a few minutes, because it's
extraordinarily simple.

It's very rare I say this, but Android does have some features that are enviable, and one of
them is called LinearLayout. When you add views to a LinearLayout, they automatically
stack up vertically one above the other, or horizontally, side by side. You don't have to worry
about sizing them to fit correctly because they automatically fill the space, and you don't
have to worry about moving other things around when you remove a view. Well, that's exactly
what UIStackView gives us: a flexible, Auto Layout-powered view container that makes it
even easier to build complex user interfaces.

As an example, lets say you want users to fill in a short form: you have a label saying "Name"
then a UITextField to the right of it; beneath that you have another label saying "Address"
and a UITextView beneath it; below that you have a label saying "Opt-in to marketing" and
to the right of that a switch; and so on. This isn't uncommon, and to be fair it's not exactly
hard to make this in Auto Layout, but you do still need to do a lot grunt work for not much
benefit.

The problems usually occur if you want to make changes later: what if there's no longer
enough space to show your Name label and its UITextField side by side? Previously this
would happen if your app was running on iPhone, but with the new multitasking system in
iPad it can happen if your user activates Slide Over or uses your app in Split View.

If you missed the WWDC15 keynote:

 • Slide Over is when your app literally sits over the screen on the right edge, with the original
application remaining full screen but dimmed. This is supported on iPad Air, Air 2, Mini and
Mini 2.
 • Split View is activated if the user drags the Slide Over divider to the left slightly, and it
causes your app to be pinned to the screen edge while the original application is resized to
take up less space. This is supported only on iPad Air 2.

In both these scenarios, your app now has much less space to work with, so your label and
text field won't sit well side by side. Fortunately, UIStackView can fix this problem: you can
tell it to place items side by side when your app has lots of space, or placed vertically when

www.hackingwithswift.com 689

space is restricted. So, your app will look great on iPhone, iPad, in Slide Over and in Split
View, all with a single layout.

What's more, UIStackViews can be nested, meaning that you can have stack views inside
stack views to create a flexible grid-like layout in no time at all.

In our app, we're going to have a UIStackView take up nearly all the screen, and it will host
multiple web views inside it. Our interface will also need a UITextField in there so users can
enter a URL to visit. We'll use Auto Layout to pin these views in place and resize to fill the
screen, but that's all.

So, open Main.storyboard in Interface Builder, then embed the existing view controller inside
a navigation controller and move it across so you can see it fully. Using the object library,
drag a Text Field anywhere into your view, then drag a Horizontal Stack View directly below
it. Don't worry about size and position: all that matters is that the text field is above the stack
view.

The beginnings of our layout: just place a text field above a horizontal stack view.

www.hackingwithswift.com 690

With the text field selected, click to bring up the Pin menu. If you've forgotten where this is,
it's in the set of buttons at the bottom of the Interface Builder window, to the right "w Any h
Any" and looks like a square with two vertical lines either side.

Using the Pin menu, deselect Constrain to Margins, then type 5 in each of the four text
boxes. This will color the four pin lines as solid red rather than dashed lines, and you can
then click "Add 4 Constraints" at the bottom of the Pin menu to save your changes. If you
see "Add 3 Constraints" you might need to click your mouse in a different text box to have
Xcode recognize your change.

When you click "Add 4 Constraints", four Auto Layout warnings will appear telling you that
your view isn't placed correctly. Ignore them for a moment. Select your stack view, then open
up the Pin menu for that. Deselect Constrain to Margins again, then enter the number 5 for
the top value and 0 for the left, right and bottom values. Again, click "Add 4 Constraints".

You'll see even more Auto Layout warnings, and your view still looks like a mess. We're going
to fix that now: click the Resolve Auto Layout Issues button (one to the right of the Pin menu
button), and choose the Update Frames option from under where it says "All Views in View
Controller". Boom! Your view will re-layout to match our exact requirements: the text field
along the top, and a stack view below, both occupying all the screen. Easy, huh?

Once Auto Layout rules have been added, the text field and stack view automatically jump into

www.hackingwithswift.com 691

Once Auto Layout rules have been added, the text field and stack view automatically jump into
place.

Before we're done with Interface Builder, we're going to make two small changes to the stack
view, so make sure it's selected then open the Attributes inspector (Alt+Command+4). From
the list of attributes, please change Distribution to Fill Equally, then for Spacing enter 5.

There are a few options for the Distribution attribute, and it's worth covering what they do
briefly. If our stack view had four subviews in there, then:

 • Fill will leave three of them their natural size, and make the fourth one take up the most
space. It uses Auto Layout's content hugging priority to decide which one to stretch.
 • Fill Equally will make each subview the same size so they fill all the space available to the
stack view.
 • Fill Proportionally uses the intrinsic content size of each subview to resize them by an
equal amount. So view 1 was designed to have twice as much height as views 2, 3 and 4,
that ratio will remain when they are resized – all the subviews get proportionally bigger or
smaller.
 • Equal Spacing does not resize the subviews, and instead resizes the spacing between the
subviews to fill the space.
 • Equal Centering is the most complicated, but for many people also the most aesthetically
pleasing. It attempts to ensure the centers of each subview are equally spaced. This might
mean that the right edge of view 1 is only 10 points from the left edge of view 2, while the
right edge of view 2 is 50 points from the left edge of view 3, but what matters is that the
centers of view 1, 2, 3 and 4 are all identically spaced.

www.hackingwithswift.com 692

Change your stack view's distribution setting to be Equal to have its subviews take up an equal
amount of space.

As for the Spacing attribute, this just determines how much margin to place between items in
the stack view. We've set it to 5 here so there's a nice gap between our web views.

The last thing to do is create some connections, so hit Alt+Cmd+Return to go to the
Assistant Editor, or click the overlapping circles icon in the top-right of Xcode's window. Now
create IBOutlets for the text field and stack view, called addressBar and stackView
respectively. Please also set the view controller to be the delegate of the text field by Ctrl
+dragging from the text field to the gold and white View Controller icon in the Document
Outline.

We're done with Interface Builder, so press Cmd+Return to return to the Standard Editor,
then open ViewController.swift for editing. Time to write some code! And I hope you're ready
for just how easy this is going to be…

www.hackingwithswift.com 693

UIStackView in Swift 2
With our storyboard designed, it's time to write the code. As you know, our plan is to
produce an app where the user can have multiple web views visible at one time, stacked
together and usable in their own right. We have one address bar, so the user will need to tap
a web view to select it, then enter a URL to visit.

To make this interface work, we need two buttons in our navigation bar: one to add a new
web view, and one to delete whichever one the user doesn't want any more. We're also going
to use the title space in the navigation bar to show the page title of whichever web view is
currently active.

So, modify your viewDidLoad() method to this:

override func viewDidLoad() {

 super.viewDidLoad()

 setDefaultTitle()

 let add = UIBarButtonItem(barButtonSystemItem: .Add, target: self,
action: "addWebView")

 let delete = UIBarButtonItem(barButtonSystemItem: .Trash, target:
self, action: "deleteWebView")

 navigationItem.rightBarButtonItems = [delete, add]

}

That uses three new methods we haven't created yet, but only one will create a compile
error: setDefaultTitle(). This is a fairly simple method in this project, but you're welcome to
extend it later to add more interesting information for users prompting them to get started.
Put this method directly beneath viewDidLoad():

func setDefaultTitle() {

 title = "Multibrowser"

}

www.hackingwithswift.com 694

}

The two bar buttons will crash if you try tapping them, but that's OK – we'll fix one now and
the other later.

First up, the important stuff: adding a new UIWebView to our UIStackView. This is done
using a method on the stack view called addArrangedSubview() and not addSubview().
That's worth repeating, because it's extremely important: you do not call addSubview() on
UIStackView. The stack view has its own subviews that it manages invisibly to you. Instead,
you add to its arranged subviews array, and the stack view will arrange them as needed.

So, our first draft of addWebView() is pretty easy: we create a new UIWebView, set our view
controller to be the web view's delegate, add it to the stack view, then point it at an example
URL to get things started.

Here's the code – put this into ViewController.swift, just below setDefaultTitle():

func addWebView() {

 let webView = UIWebView()

 webView.delegate = self

 stackView.addArrangedSubview(webView)

 let url = NSURL(string: "https://www.hackingwithswift.com")!

 webView.loadRequest(NSURLRequest(URL: url))

}

You can't assign self to webView.delegate without conforming to the UIWebViewDelegate
delegate, so please add that. While you're there, you should also add UITextFieldDelegate
and UIGestureRecognizerDelegate – we'll be using these later. So, your view controller's
class should start like this:

class ViewController: UIViewController, UIWebViewDelegate,

www.hackingwithswift.com 695

class ViewController: UIViewController, UIWebViewDelegate,
UITextFieldDelegate, UIGestureRecognizerDelegate {

Notice that we don't need to give the web view a frame or any Auto Layout constraints –
that's all handled for us by UIStackView. Remember, iOS apps can only load HTTPS
websites by default, and you need to enable App Transport Security exceptions if you want
to load non-secure websites. If you want to learn how to do that, see my guide to App
Transport Security.

Anyway, you can run this project now and try clicking + a couple of times to add new web
views, and you'll see them stack up beautifully. Stack views are amazing, right? If you find
that the web views aren't appearing correctly, make sure you have set the Distribution
attribute of the stack view to be Fill Equally.

Our app so far: users can add multiple web views, and the UIStackView automatically fits them
in equally.

Now that you can see why stack views are perfectly suited to our project, you may notice a
major flaw in the plan: how does the user control each web view? And how do they know

www.hackingwithswift.com 696

which one is currently being controlled?

We're going to fix both these problems at once using something brilliant in its simplicitly:
we're going to let users tap on a web view to activate it, then highlight the selected web view
in blue so the user knows what's in control. When a web view is activated we also want to
show its page title in the navigation bar, and if the user enters a new URL in the address bar
it will be loaded inside the active web view.

We're going to draw a blue line around the selected web view so readers can clearly see their
current status. To make things easier, we'll draw a blue line around every one of the web
views, but because the default line width is 0 it won't be visible until we say so. I'm going to
put the code to select web views inside a method so that it can be called when we create a
new web view (so that each new web view starts life active) and also when a web view is
tapped.

As for handling taps, we'll do that by adding a UITapGestureRecognizer to each web view
as it's created. This has one minor complication, but it's easily fixed: UIWebView already has
a pile of gesture recognizers attached to it, and it will catch and consume any taps before our
own gesture recognizer. The fix is easy, though, and it's just a matter of telling iOS we want
our recognizer and the built-in ones to work at the same time.

So, add this code to the end of addWebView():

webView.layer.borderColor = UIColor.blueColor().CGColor

selectWebView(webView)

let recognizer = UITapGestureRecognizer(target: self, action:
"webViewTapped:")

recognizer.delegate = self

webView.addGestureRecognizer(recognizer)

We haven't written selectWebView() yet, but before we do I just want to recap its job. This
method will get called whenever we want to activate a web view, meaning that we want it to
be the one used to navigate to any URL the user requests, and we also want it to be
highlighted so the user knows which view is in control.

www.hackingwithswift.com 697

We're going to track the active web view inside a property called activeWebView, so add
this now:

weak var activeWebView: UIWebView?

It's weak because it might go away at any time if the user deletes it.

With that property created, the selectWebView() method is straightforward: it needs to loop
through the array of web views belonging to the stack view, updating each of them to have a
zero-width border line, then set the newly selected one to have a border width of three
points. Here's the code – place it below addWebView():

func selectWebView(webView: UIWebView) {

 for view in stackView.arrangedSubviews {

 view.layer.borderWidth = 0

 }

 activeWebView = webView

 webView.layer.borderWidth = 3

}

There are two more things to do before our app starts to become useful: we need to
implement the webViewTapped() method so that our tap gesture recognizers start working,
then we need to detect when users have entered a new URL so we can navigate to it.

First up, here's the webViewTapped() method that gets called by the tap gesture recognizers
when they are triggered:

func webViewTapped(recognizer: UITapGestureRecognizer) {

 if let selectedWebView = recognizer.view as? UIWebView {

 selectWebView(selectedWebView)

www.hackingwithswift.com 698

 selectWebView(selectedWebView)

 }

}

Like I said, you need to tell iOS we want these gesture recognizers to trigger alongside the
recognizers built into the UIWebView, so add this too:

func gestureRecognizer(gestureRecognizer: UIGestureRecognizer,
shouldRecognizeSimultaneouslyWithGestureRecognizer
otherGestureRecognizer: UIGestureRecognizer) -> Bool {

 return true

}

We already set our view controller to be the delegate of the UITapGestureRecognizers we
create for the web views, which means that new method will automatically tell iOS to trigger
all gesture recognizers at the same time.

Finally, at least for this chapter, we need to detect when the user enters a new URL in the
address bar. We already set this view controller to be the delegate of the address bar, so we'll
get sent the textFieldShouldReturn() delegate method when the user presses Return on
their iPad keyboard. We then need to make sure we have an active web view and that there's
a URL to navigate to, and make it happen. We're also going to call resignFirstResponder()
on the text field so that the keyboard hides.

Put this into your code, below selectWebView():

func textFieldShouldReturn(textField: UITextField) -> Bool {

 if let webView = activeWebView, address = addressBar.text {

 if let url = NSURL(string: address) {

 webView.loadRequest(NSURLRequest(URL: url))

 }

 }

www.hackingwithswift.com 699

 textField.resignFirstResponder()

 return true

}

Notice that there are a few if/lets in there to make sure all the data is unwrapped safely, and
particularly important is the URL: if you try to enter a URL without https:// iOS will reject it.
That's something you can fix later!

At this point your project should compile, although we still haven't added any code to the
delete navigation button so don't tap it just yet. You can, though, click + a few times to add
some web views, then select one and enter a URL to navigate. Remember: iOS 9 is a bit
buggy at this stage, but I tried http://www.reddit.com and http://www.imgur.com and both
worked for me. Things are coming together!

www.hackingwithswift.com 700

Removing views from a UIStackView
That was a long chapter, and I hope you learned a lot. But you deserve a break, so I have
some good news: it's trivial to remove views from a UIStackView. Heck, at its simplest it's
just a matter of telling removeArrangedSubview() which view to remove then removing that
view from its superview – the others are automatically resized and re-arranged to fill the
space.

In this particular project, we need to do a little more:

 • We want the delete button to work only if there's a web view selected.
 • We want to find the location of the active web view inside the stack view, then remove it.
 • If there are now no more web views, we want to call setDefaultTitle() to reset the user
interface.
 • We need to find whatever web view immediately follows the one that was removed.
 • We then make that the new selected web view, highlighting it in blue.

We already pointed the delete button at a method called deleteWebView(), so all you need
to do is plug this in. I've added comments to make sure it's all clear:

func deleteWebView() {

 // safely unwrap our webview

 if let webView = activeWebView {

 if let index = stackView.arrangedSubviews.indexOf(webView) {

 // we found the current webview in the stack view! Remove it
from the stack view

 stackView.removeArrangedSubview(webView)

 // now remove it from the view hierarchy – this is important!

 webView.removeFromSuperview()

 if stackView.arrangedSubviews.count == 0 {

 // go back to our default UI

 setDefaultTitle()

 } else {

www.hackingwithswift.com 701

 } else {

 // convert the Index value into an integer

 var currentIndex = Int(index)

 // if that was the last web view in the stack, go back one

 if currentIndex == stackView.arrangedSubviews.count {

 currentIndex = stackView.arrangedSubviews.count - 1

 }

 // find the web view at the new index and select it

 if let newSelectedWebView =
stackView.arrangedSubviews[currentIndex] as? UIWebView {

 selectWebView(newSelectedWebView)

 }

 }

 }

 }

}

So, although the act of removing a view from a UIStackView is just a matter of calling
removeArrangedSubview() and removeFromSuperview(), we need to do a little more to
make sure the user interface updates correctly.

You might be wondering why removeFromSuperview() is required when we're already
calling removeArrangedSubview(). The reason is that you can remove something from a
stack view's arranged subview list then re-add it later, without having to recreate it each time
– it was hidden, not destroyed. We don't want a memory leak, so we want to remove deleted
web views entirely. If you find your memory usage ballooning, you probably forgot this step!

The last thing we're going to do is talk about the new iPad multitasking features in iOS 9, and
add a few user interface clean ups to make the project complete…

www.hackingwithswift.com 702

iPad multitasking in iOS 9
Multitasking is an all-new feature in iOS 9, and I can guarantee you it's going to be adopted
pretty much everywhere. Now is the time to get started upgrading your apps so that you're
ready, otherwise you'll have your users complaining that they can't multitask with your app!

You'll be pleased to know that supporting multitasking is easy. In fact, it's so easy that our
current app already supports it. Don't believe me? Try it out now: launch your app, rotate the
simulator to landscape (Cmd + left or right cursor key), then drag from the right edge of the
screen.

The first time you do this, you'll see a list of various apps to choose from. Please choose
Calendar for now. When you do this, iOS will activate Slide Over, which means your app still
owns the full screen, but it's dimmed as the Calendar app has focus in the right part of the
screen. On the left edge of Calendar you'll see a thin white line, which is the divider – drag
that a little to the left and you'll see the whole interface change as iOS switches from Slide
Over to Split View.

Now, the reason I asked you to change the simulator to landscape mode is because Split
View actually has two snap points. The first, which you probably triggered this time, has your
original app taking up about 2/3rds of the screen on the left and Calendar taking up the
remainder on the right. The second, which you can get to by dragging the divider into the
center of the screen, has both apps taking up half the screen each. If you're in portrait
orientation you have only one mode, which is about 60/40.

So, our app already supports multitasking pretty well, although we'll make it better in a
moment. First, though: what if you're upgrading existing apps? Well, you might not have
such an easy ride, but if your code is modern you're probably still OK. To make multitasking
work, you need to:

1. Have a launch XIB. This is the same thing that enables iPhone 6 support with iOS 8, so
you might already have one. If not, add a new file, choose User Interface, then Launch
Screen. Then, in your plist, add a key for "Launch screen interface file base name" and point
it to the name of your launch XIB, without the ".xib" extension. For example, if your launch
screen is called LaunchScreen.xib, give this key the value of "LaunchScreen".
2. Make sure your app is configured to support all orientations. This may already be
configured this way, but if not make sure you choose all orientations now. As you might
imagine, selectively choosing only some orientations would cause havoc with multitasking!
3. Use Auto Layout everywhere. If your app pre-dates Auto Layout or if you found it

www.hackingwithswift.com 703

intimidating at first, you might still be struggling along with autoresizing masks. Now is the
time to change: the various multitasking sizes make Auto Layout a no-brainer.
4. Use adaptive UI wherever needed. Adaptive layout is Apple's term for technologies like
Size Classes and Dynamic Type, the former of which is a huge advantage when working with
multitasking. Size Classes let you make your interface adjust to two major screen sizes,
compact and regular, which previously were great for working with iPhone and iPad, but are
now also used for iPad multitasking.

Even though this particular project works with multitasking by default, it doesn't have any
adaptive user interface built in. As a result, if we use multitasking the other way – i.e., if it's
our app that is the one occupying 1/3rd of the screen while some other app has the
remainder – then it looks terrible: our vertically stacked web views end up being so thin that
they are unusable.

The solution is simple: we're going to tell the stack view to arrange its web views horizontally
when we have lots of space, and vertically when we don't. This is done using the
traitCollectionDidChange() method, which gets called automatically when our app's size
class has changed. We can then query which size class we now have, and adapt our user
interface.

There is one complication, and that's understanding size classes. There are two axes for size
classes, namely horizontal and vertical, and each of them has two sizes, Compact and
Regular. No matter what orientation or multitasking setup, the vertical size class is always
regular on iPad. For the other possibilities, here are the key rules:

 • An iPad app running by itself in portrait or landscape has a regular horizontal size classes.
 • In landscape where the apps are split 50/50, both are running in a compact horizontal size
class.
 • In landscape where the apps are split 70/30, the app on the left is a regular horizontal size
class and the app on the right is compact.
 • In portrait where the apps are split 60/40, both are running in a compact horizontal size
class.

We're going to use this information so that we detect when the size class has changed and
update our stack view appropriately. When we have a regular horizontal size class we'll use
horizontal stacking, and when we have a compact size class we'll use vertical stacking.
Here's the code:

override func traitCollectionDidChange(previousTraitCollection:

www.hackingwithswift.com 704

override func traitCollectionDidChange(previousTraitCollection:
UITraitCollection?) {

 if traitCollection.horizontalSizeClass == .Compact {

 stackView.axis = .Vertical

 } else {

 stackView.axis = .Horizontal

 }

}

The project is technically finished at this point, but we're going to do two more things just to
make it a bit more polished. First, we're going to create a method that updates the navigation
bar to show the page title from the active web view when it changes. This will use the
stringByEvaluatingJavaScriptFromString() method to execute document.title and pull out
the page's title. This compares very poorly to WKWebView's title property, so you're
welcome to try converting your app to use that instead!

Here's that method:

func updateUIUsingWebView(webView: UIWebView) {

 title =
webView.stringByEvaluatingJavaScriptFromString("document.title")

 addressBar.text = webView.request?.URL?.absoluteString ?? ""

}

Second, we need to call that method in the two places it's needed: whenever we select a
web view, and whenever the web view changes page. The former is just a matter of adding
this line just before the end of selectWebView():

updateUIUsingWebView(webView)

The latter is a matter of implementing the webViewDidFinishLoad() method, which we can

www.hackingwithswift.com 705

receive because we configured our view controller to be the delegate of each of the web
views. So, put this code somewhere in ViewController.swift:

func webViewDidFinishLoad(webView: UIWebView) {

 if webView == activeWebView {

 updateUIUsingWebView(webView)

 }

}

As you can see, we only update the user interface to reflect a page's title if it comes from the
active web view, otherwise it would be confusing. That's it – the project is done!

www.hackingwithswift.com 706

Wrap up
With UIStackView in place that's another UIKit component under your belt – good job! The
addition of multitasking and size classes helps make the app much more polished, and I
think you've got the seeds of a great app here.

If you want to try extending this project, the sensible place to start is in the URL entry: if
users don't type "http://" before their web site addresses the app fails, which isn't very
helpful. Another smart place to improve the app is inside the setDefaultTitle() method: it just
writes Multibrowser in the navigation bar while leaving a large white space in the center –
 hardly intuitive, and it wouldn't be hard to add a placeholder label in there telling users what
to do.

I do intend to do more iOS 9 projects in the future, so please let me know what you'd like to
see: I'm @twostraws on Twitter and I'd love to hear from you. In the meantime, why not
read my guide to the new features in iOS 9 and my other guide to the new features in
Swift 2.0. Have fun!

www.hackingwithswift.com 707

Project 32
SwiftSearcher
Add your app's content to iOS Spotlight and take
advantage of the new Safari integration from iOS 9.

www.hackingwithswift.com 708

Setting up
I hope you're all set for a massive Level 2 project, because this one is going to cram a lot in.
In this project, you're going to make an app for this tutorial series, Hacking with Swift – very
meta, I know. The app is going to list all the projects and let users choose which ones they
favorite, which by itself sounds like the kind of thing we might have done in project 7 or so.

So home come it's a Level 2 project? Simple: when users favorite a project, we're going to
store that in Core Spotlight so they can find it later. And when they view a project, we'll use
the new SFSafariViewController class for them to read. If those two new features from iOS
9 weren't enough for you, I'm going to throw in a little bit of UITableViewCell automatic
sizing, a little bit of Dynamic Type and even some NSAttributedString to handle formatted
string drawing.

Are you feeling it now? I hope so. But if all this talk of Level 2 is confusing you, that probably
means you haven't completed projects 1 to 30 already, and should click here to browse the
projects list. Those first 30 projects comprise Hacking with Swift Level 1 and you really need
to have completed them before tackling projects 31 onwards.

Still here? Great! Make sure you have Xcode 7 installed, because we'll be using iOS 9 in this
tutorial. If you missed my summaries of what's new in Swift 2.0 and new features in iOS 9
for developers click one of those two links.

Please go ahead and create a new project in Xcode 7, choosing the Master-Detail
Application template. Name it Project32, choose Swift for your language, and iPhone for the
device.

www.hackingwithswift.com 709

Automatically resizing UITableViewCells
with Dynamic Type and
NSAttributedString
We're going to make a UITableView with formatted text that matches a user's preferred size,
and where every cell automatically resizes to fit its contents. What's more, it's going to be so
easy that you'll barely notice – Apple really has polished this technology, so you get an
incredible amount of power for free.

First, we need to make two small changes to the default storyboard, so please open
Main.storyboard in Interface Builder. Using the Document Outline, select and delete "Detail
Scene" and "Navigation Controller Scene". Now select and delete DetailViewController.swift
into the Project Navigator pane on the left of your Xcode window.

What you just did was delete the built-in segue from master controller to detail controller, so
you can expect a few errors. This might seem a strange thing to do given that we want to list
Hacking with Swift projects and let users choose one – a perfect example of a master/detail
layout – but actually things are a bit more complicated here. You see, we're going to be using
the new SFSafariViewController class, which is not part of UIKit and so not part of Interface
Builder. Showing one of these is something that's best done in pure Swift, which is why we
removed stuff from the storyboard.

Now get out your shears, choose MasterViewController.swift, and delete the following:

 • var detailViewController: DetailViewController? = nil • In viewDidLoad() everything but
the call to super.viewDidLoad() • All of viewWillAppear() • All of insertNewObject() • All of
prepareForSegue() • From tableView(_:cellForRowAtIndexPath:) the two lines let object =
objects[indexPath.row] as! NSDate and cell.textLabel!.text = object.description • All of
tableView(_:canEditRowAtIndexPath:) • The contents of
tableView(_:commitEditingStyle:forRowAtIndexPath:) but not the method itself

I don't know about you, but I rather like deleting source code – it's cathartic, and gives us a
nice, clean foundation to work from!

If you've followed those instructions, your MasterViewController.swift file should look like this:

import UIKit

www.hackingwithswift.com 710

import UIKit

class MasterViewController: UITableViewController {

 var objects = [AnyObject]()

 override func viewDidLoad() {

 super.viewDidLoad()

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

 // MARK: - Table View

 override func numberOfSectionsInTableView(tableView: UITableView) -
> Int {

 return 1

 }

 override func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {

 return objects.count

 }

 override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 return cell

 }

www.hackingwithswift.com 711

 override func tableView(tableView: UITableView, commitEditingStyle
editingStyle: UITableViewCellEditingStyle, forRowAtIndexPath
indexPath: NSIndexPath) {

 }

}

What we're going to do now is replace the objects array with a new array called projects.
There are lots of pieces of metadata we could store about Hacking with Swift projects, but
the goal here isn't to teach you about custom subclasses – we already did that in the tutorial
on NSUserDefaults and NSCoding. So, we're going to take an epic shortcut here so we can
spend more time focusing on the new stuff: the projects array will hold an array of String
arrays.

Arrays within arrays aren't complicated, but I'm just going to clarify in case some peope
didn't quite understand. Each project will be stored as an array of two elements: the project
name and its subtitle. We'll then store an array of those to contain all the projects. At the end
of this project we'll return to this as homework to test your skills, but for the purpose of this
project it's perfectly fine.

So, remove the objects property and replace it with this:

var projects = [[String]]()

When you do this, you'll get an error in numberOfRowsInSection because we removed the
objects array, so just change it to use projects instead:

override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return projects.count

}

www.hackingwithswift.com 712

And now let's fill up that new property with the first eight projects from Hacking with Swift. I
would do more, but there's no point – you get the idea, and it just takes up more space on
your screen! Put this at the end of your viewDidLoad() method:

projects.append(["Project 1: Storm Viewer", "Constants and variables,
UITableView, UIImageView, NSFileManager, storyboards"])

projects.append(["Project 2: Guess the Flag", "@2x and @3x images,
asset catalogs, integers, doubles, floats, operators (+= and -=),
UIButton, enums, CALayer, UIColor, random numbers, actions, string
interpolation, UIAlertController"])

projects.append(["Project 3: Social Media", "UIBarButtonItem,
UIActivityViewController, the Social framework, NSURL"])

projects.append(["Project 4: Easy Browser", "loadView(), WKWebView,
delegation, classes and structs, NSURLRequest, UIToolbar,
UIProgressView., key-value observing"])

projects.append(["Project 5: Word Scramble", "NSString, closures,
method return values, booleans, NSRange"])

projects.append(["Project 6: Auto Layout", "Get to grips with Auto
Layout using practical examples and code"])

projects.append(["Project 7: Whitehouse Petitions", "JSON, NSData,
UITabBarController"])

projects.append(["Project 8: 7 Swifty Words", "addTarget(),
enumerate(), countElements(), find(), join(), property observers,
range operators."])

So far, so easy. The next step is hardly challenging either: let's show each project's title and
subtitle in the table view cells. We're going to do this in a very basic way at first, but it's
enough to get you started. We need to modify cellForRowAtIndexPath so that it shows
each project's title and subtitle using Swift's string interpolation. Here's the new code:

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 let project = projects[indexPath.row]

www.hackingwithswift.com 713

 let project = projects[indexPath.row]

 cell.textLabel?.text = "\(project[0]): \(project[1])"

 return cell

}

Your project is now good to run, but what you'll see is deeply unsatisfying: each of the table
view cells shows only one line of text, so our summaries get truncated after only a few
letters, making them rather pointless.

The first version of our app shows the project name and title on the same line, so you can't see
very much.

Fortunately, iOS 8 introduced a technology that developers had been requesting for a long
time: automatic sizing of UITableViewCells based on their contents. Even better, this
technology is already baked right into our project!

To make our project titles and subtitles fully visible, we just need to tell the UITableViewCell

www.hackingwithswift.com 714

that its label should show more than one line. Go back to Main.storyboard, look for the
"Master" scene, and click on the table view cell where it says Title. You may need to click
multiple times because the label is several levels deep – you'll know when you have the
correct thing selected because the Attributes inspector will say Label at the top.

Once the label is selected, look for the Lines property – it will be 1 by default, but you should
change that to 0, which means "as many lines as it takes to fit the text."

And now for the hard part: telling the table view to automatically figure out the size for every
cell based on its text. Just kidding: this bit is laughably simple, because Auto Layout does all
the hard work for you.

Go back to MasterViewController.swift and add these two new methods:

override func tableView(tableView: UITableView,
heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

override func tableView(tableView: UITableView,
estimatedHeightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

That's it. No, really: go ahead and run your app now and you'll see every cell now correctly
fits its content. And if you rotate between portrait and landscape you'll even see everything
resize smoothly – it really couldn't be simpler.

www.hackingwithswift.com 715

The second version of our app now wraps text across multiple lines, so at least you can see
what the text says.

But this has exposed another problem: the app looks terrible! All that bold text doesn't help
users see what's important and what's not, so it's terrible user interface design. We're going
to fix this with a technology that was introduced way back in iOS 6: NSAttributedString.
This is a way of adding formatting such as fonts, colors and alignment to text, and can even
be used to add hyperlinks if you want them.

In our case, we're going to make the project titles big and their subtitles small. We could do
this by creating a UIFont at various sizes, but a much smarter (and user friendly!) way is used
to a technology called Dynamic Type. This was introduced in iOS 7 as a way to let users
control font size across all applications to match their preferences.

Apple pre-defined a set of fonts for use with Dynamic Type, all highly optimized for
readability, and all responsive to a user's settings. To use them, all you need to do is use the
preferredFontForTextStyle() method of UIFont and tell it what style you want. In our case
we're going to use UIFontTextStyleHeadline for the project title and
UIFontTextStyleSubheadline for the project subtitle.

www.hackingwithswift.com 716

UIFontTextStyleSubheadline for the project subtitle.

Remarkably enough, that's all you need to handle Dynamic Type in this project, so we can
turn to look at NSAttributedString. Like I said, this class is designed to show text with
formatting, and you can use it all across iOS to show formatted labels, buttons, navigation
bar titles, and more. You create an attributed string by giving it a plain text string plus a
dictionary of the attributes you want to set. If you want finer-grained control you can provide
specific ranges for formatting, e.g. "bold and underline the first 10 characters, then underline
everything else."

For this project, our use of attributed strings isn't complicated: we're going to create one set
of formatting attributes for the title and another for the subtitle, create an attributed string out
of both of them, then merge them together and return. To make things easier to read for the
user, we're going to separate the title and subtitle with a line break, which looks a lot nicer.

To keep our code easy to understand, I put the attributed string work into a new method
called makeAttributedString(). Here's the code:

func makeAttributedString(title title: String, subtitle: String) ->
NSAttributedString {

 let titleAttributes = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleHeadline),
NSForegroundColorAttributeName: UIColor.purpleColor()]

 let subtitleAttributes = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleSubheadline)]

 let titleString = NSMutableAttributedString(string: "\(title)\n",
attributes: titleAttributes)

 let subtitleString = NSAttributedString(string: subtitle,
attributes: subtitleAttributes)

 titleString.appendAttributedString(subtitleString)

 return titleString

}

www.hackingwithswift.com 717

There are some new things in there, so let's go over them quickly:

 • NSFontAttributeName is the dictionary key that specifies what font the attributed text
should use. This should be provided with a UIFont as its value, and like I said already we're
using preferredFontForTextStyle() so we can take advantage of Dynamic Type.
 • NSForegroundColorAttributeName is the dictionary key that specifies what text color to
use. This isn't needed in this project, but I figured it would be boring to have only attribute!
 • Both attributed strings are created by providing a plain text string and the matching
dictionary of attributes. The title string is created as a NSMutableAttributedString because
we append the subtitle to the title to make one attributed string that can be returned.

The last piece of the puzzle is to use the return value from makeAttributedString() inside
cellForRowAtIndexPath so that our interface looks better. This is just a matter of setting the
attributedText property rather than the text property of the cell's text label, like this:

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 let project = projects[indexPath.row]

 cell.textLabel?.attributedText = makeAttributedString(title:
project[0], subtitle: project[1])

 return cell

}

That's it! Go ahead and run the app now and admire your purple headlines!

www.hackingwithswift.com 718

Using multiple lines of text and an attributed string makes our user interface look a lot nicer.

www.hackingwithswift.com 719

How to use SFSafariViewController to
browse a web page
You just learned about automatic cell resizing, NSAttributedString and Dynamic Type, so
you deserve a pat on the back. But there's more: I want to introduce you to one of the new
view controllers in iOS 9, and you'll be pleased to know that, once again, Apple has made it
startlingly simple to use.

When a user taps on one of our table rows, we want to show the Hacking with Swift project
that matches their selection. In Ye Olden Days we would do this either with UIWebView or
WKWebView, adding our own user interface to handle navigation. But this had a few
problems: everyone's user interface was different, features such as cookies and Auto Fill
were unavailable for security reasons, and inevitably users looked for an "Open in Safari"
button because that was what they trusted.

Apple fixed all these problems in iOS 9 using a new class called SFSafariViewController,
which effectively embeds all of Safari inside your app using an opaque view controller. That
is, you can't style it, you can't interact with it, and you certainly can't pull any private data out
of it, and as a result SFSafariViewController can take advantage of the user's secure web
data in ways that UIWebView and WKWebView never could.

What's more, Apple builds the new iOS 9 power features right into SFSafariViewController,
so you get things like content blocking free of charge – and users get consistent features,
consistent UI, and consistent security. Everybody wins!

SFSafariViewController is not part of UIKit, so you need to import a new framework to use
it. Add this to the existing import UIKit line at the top of MasterViewController.swift:

import SafariServices

We're going to create a method that accepts an integer and shows the matching tutorial. All
the Hacking with Swift tutorials are numbered from 1 upwards, so we can match that up to
our projects array (which is zero-based) just by adding 1. We'll convert that to an NSURL
then pass that to a new SFSafariViewController to show to the user.

When working with SFSafariViewController there are two things you need to know. First,

www.hackingwithswift.com 720

you can either create it just with a URL or with a URL and the instruction to use reader mode
if available. "Reader mode" is Apple's name for a text-only view of web pages. This doesn't
work on Hacking with Swift, but I'm including it here so you can see how it works.

Second, the SFSafariViewController is dismissed when a user taps a Done button in its
user interface. This calls a safariViewControllerDidFinish() method on the delegate of the
SFSafariViewController, which you can use to run any code to handle picking up where the
user left off. We won't be using it here, but if you want it in your own projects make sure you
conform to the SFSafariViewControllerDelegate protocol.

Bringing all that together, let's write some code. Go ahead and add this new method
somewhere in the class:

func showTutorial(which: Int) {

 if let url = NSURL(string: "https://www.hackingwithswift.com/read/\
(which + 1)") {

 let vc = SFSafariViewController(URL: url,
entersReaderIfAvailable: true)

 presentViewController(vc, animated: true, completion: nil)

 }

}

You can see how easy it is to control reader mode – just set the entersReaderIfAvailable
flag to be true or false as needed.

There's only one more thing to do to finish this stage of the project: when any table row is
tapped, we need to call that new showTutorial() method and pass in the index path of the
row so the correct tutorial can be shown. This is as simple as adding a
didSelectRowAtIndexPath method like this:

override func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath) {

 showTutorial(indexPath.row)

}

www.hackingwithswift.com 721

That's it for the new SFSafariViewController – easy, huh?

www.hackingwithswift.com 722

How to add Core Spotlight to index your
app content
One of the most important additions in iOS 9 is the ability for apps to communicate
bidirectionally with Spotlight, the iOS system-wide search feature. What this means is that
iOS 9 apps can ask for their content to be shown in the Spotlight search results and, if the
user taps one of those search results, the app gets launched and told what was tapped so it
can load the right content.

In this project, we're going to have users favorite the Hacking with Swift projects that most
interest them. When they do that, we'll store the project title and subtitle in Spotlight so they
can search for things like "wk" and find the WKWebView tutorial that is project 4.

We're going to tackle this problem in three stages: updating the user interface to reflect
saved favorites, adding and removing items from Core Spotlight, then responding to deep
links when our app is launched from a search result in Spotlight.

First up: creating a user interface that lets user favorite and unfavorite projects, and saving
those choices. There are various ways of doing this, but I've chosen the simplest: we're
going to set the table to be in editing mode, use the "Insert" and "Delete" icons to let users
select their favorites, and use a checkmark accessory type to show which projects are
already favorited.

Behind the scenes we'll also need an array of Ints that tracks which project numbers are
currently favorited, and that will be saved to NSUserDefaults whenever a change is made.

That's all we have to do in theory, but in practise there are two catches:

 • When a table is in editing mode, you can't tap the cells any more. Given that this is our way
of reading the projects, that's a big problem! Fortunately, we can just set the
allowsSelectionDuringEditing property to true to fix this.
 • When a table is in editing mode, you can't just set the accessoryType because that isn't
shown. Instead, you need to set editingAccessoryType, which functions the same but is
visible while editing.

Let's do the easy stuff first: add this property to your class:

var favorites = [Int]()

www.hackingwithswift.com 723

var favorites = [Int]()

We need to load that from NSUserDefaults if it exists there already, which means using if/let
to conditionally unwrap the result of objectForKey() as an Int array. Put this just before the
end of viewDidLoad():

let defaults = NSUserDefaults.standardUserDefaults()

if let savedFavorites = defaults.objectForKey("favorites") as? [Int]
{

 favorites = savedFavorites

}

To make the list of favorites work in our user interface, we need to add two more lines to
viewDidLoad(). Like I said already, these set the table view to be in editing mode, and tell it
to let users tap on rows to select them. Add these lines now:

tableView.editing = true

tableView.allowsSelectionDuringEditing = true

Next we need to update cellForRowAtIndexPath so that cells show a checkmark if they
exist in the favorites array, or nothing otherwise. This is done just by using the contains()
method of the favorites array, like this:

if favorites.contains(indexPath.row) {

 cell.editingAccessoryType = .Checkmark

} else {

 cell.editingAccessoryType = .None

}

www.hackingwithswift.com 724

You should put that inside cellForRowAtIndexPath, just before the return cell line.

Now it's just a matter of telling the table view that some rows should have the "insert" icon
and others the "delete" icon. To do that, you just need to implement the
editingStyleForRowAtIndexPath method and check whether the item in question is in the
favorites array. Put this into your class:

override func tableView(tableView: UITableView,
editingStyleForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCellEditingStyle {

 if favorites.contains(indexPath.row) {

 return .Delete

 } else {

 return .Insert

 }

}

If you run the app now all the rows will have a green + symbol to their left and no checkmark
on the right, because no projects have been marked as a favorite. If you click the + nothing
will happen, because we haven't told the app what to do in that situation. To make this work,
we need to handle the tableView(_:commitEditingStyle:forRowAtIndexPath:) method,
checking whether the user is trying to insert or delete their favorite.

If the user is adding a favorite, we're going to call a method called indexItem() that we'll
write in a moment. We'll also add it to the favorites array, save it to NSUserDefaults then
reload the table to reflect the change. If they are deleting a favorite, we do pretty much the
opposite: call deindexItem() (also not yet written), remove it from the favorites array, save
that array and reload the table.

There's one small catch here, which is that removing an item from an array requires you to
know its position in the array. We don't know the position of a project in the favorites array
because they can add any projects they want – the array could contain 5, 2, 4, for example.
We'll solve this by using the indexOf() method to find the position of a project number in the
favorites array, then use that index to remove it.

www.hackingwithswift.com 725

Here's new code for the commitEditingStyle method that's currently empty, plus stubs for
indexItem() and deindexItem():

override func tableView(tableView: UITableView, commitEditingStyle
editingStyle: UITableViewCellEditingStyle, forRowAtIndexPath
indexPath: NSIndexPath) {

 if editingStyle == .Insert {

 favorites.append(indexPath.row)

 indexItem(indexPath.row)

 } else {

 if let index = favorites.indexOf(indexPath.row) {

 favorites.removeAtIndex(index)

 deindexItem(indexPath.row)

 }

 }

 let defaults = NSUserDefaults.standardUserDefaults()

 defaults.setObject(favorites, forKey: "favorites")

 tableView.reloadRowsAtIndexPaths([indexPath],
withRowAnimation: .None)

}

func indexItem(which: Int) {

}

func deindexItem(which: Int) {

}

You should replace your existing commitEditingStyle method with that new one, but the
other two are new.

www.hackingwithswift.com 726

OK, that's our first stage complete: the user user interface now updates to reflect saved
favorites. You could give it a try now if you really wanted, but I suggest you don't to avoid
confusing yourself later on. The next stage is adding and removing items from Core
Spotlight, which means filling out those indexItem() and deindexItem() methods that get
called when favorites are added and deleted.

Using Core Spotlight means importing two extra frameworks: CoreSpotlight and
MobileCoreServices. The former does all the heavy lifting of indexing items; the latter is just
there to identify what type of data we want to store. So, import these two now:

import CoreSpotlight

import MobileCoreServices

Now for the new stuff: indexItem() accepts an Int identifying which project has been
favorited. It needs to look inside the projects array to find that project, then create a
CSSearchableItemAttributeSet object from it. This attribute set can store lots of information
for search, including a title, description and image, as well as use-specific information such
as dates (for events), camera focal length and flash setting (for photos), latitude and
longitude (for places), and much more.

Regardless of what you choose, you wrap up the attribute set inside a CSSearchableItem
object, which contains a unique identifier and a domain identifier. The former must identify
the item absolutely uniquely inside your app, but the latter is a way to group items together.
Grouping items is how you get to say "delete all indexed items from group X" if you choose
to, but in our case we'll just use "com.hackingwithswift" because we don't need grouping. As
for the unique identifier, we can use the project number.

To index an item, you need to call indexSearchableItems() on the default searchable index
of CSSearchableIndex, passing in an array of CSSearchableItem objects. This method
runs asynchronously, so we're going to use a trailing closure to be told whether the indexing
was successful or not.

Here's the code:

func indexItem(which: Int) {

www.hackingwithswift.com 727

func indexItem(which: Int) {

 let project = projects[which]

 let attributeSet = CSSearchableItemAttributeSet(itemContentType:
kUTTypeText as String)

 attributeSet.title = project[0]

 attributeSet.contentDescription = project[1]

 let item = CSSearchableItem(uniqueIdentifier: "\(which)",
domainIdentifier: "com.hackingwithswift", attributeSet: attributeSet)

CSSearchableIndex.defaultSearchableIndex().indexSearchableItems([item
]) { (error: NSError?) -> Void in

 if let error = error {

 print("Indexing error: \(error.localizedDescription)")

 } else {

 print("Search item successfully indexed!")

 }

 }

}

The only thing in there that I haven't explained is kUTTypeText as String, which tells iOS we
want to store text in our indexed record.

By default, content you index has an expiration date of one month after you add it. This is
probably OK for most purposes (although you do need to make sure you re-index items
when your app runs in case they have expired!), but you can change the expiration date if
you want. It's not something that can easily be tested, but this kind of code probably works
to make your items never expire:

let item = CSSearchableItem(uniqueIdentifier: "\(which)",
domainIdentifier: "com.hackingwithswift", attributeSet: attributeSet)

item.expirationDate = NSDate.distantFuture()

www.hackingwithswift.com 728

The last thing we need to do is fill in the deindexItem() method, which is very similar to the
indexItem() in that it receives an Int, calls a method on the default searchable index of
CSSearchableIndex, then has a trailing closure to handle error reporting. Here's the code:

func deindexItem(which: Int) {

CSSearchableIndex.defaultSearchableIndex().deleteSearchableItemsWithI
dentifiers(["\(which)"]) { (error: NSError?) -> Void in

 if let error = error {

 print("Deindexing error: \(error.localizedDescription)")

 } else {

 print("Search item successfully removed!")

 }

 }

}

With that, the second stage of our Core Spotlight integration is complete: adding and
removing items works! That just leaves the final stage, which is responding to deep links
when our app is launched from a search result in Spotlight.

Now that we are indexing our content in Spotlight, users can search for our projects and tap
on results. This will launch our app and pass in the unique identifier of the item that was
tapped, and it's down to the app to do something with it. This is all done using in an
AppDelegate.swift method called
application(_:continueUserActivity:restorationHandler:), with the important part being
what's given to us as the continueUserActivity parameter.

This app delegate method is called when the application has finished launching and it's time
to launch the activity requested by the user. If the user activity has the type
CSSearchableItemActionType it means we're being launched as a result of a Spotlight
search, so we need to unwrap the value of the CSSearchableItemActivityIdentifier that was
passed in – that's the unique identifier of the indexed item that was tapped. In this project,
that's the project number.

www.hackingwithswift.com 729

that's the project number.

Once we know which project caused the app to be launched, we need to do a little view
controller dance. This isn't particularly pretty, but if you look at the
didFinishLaunchingWithOptions method (also in AppDelegate.swift) you'll see the code is
identical – it's not pretty, but at least it's consistent!

This view controller dance is a matter of typecasting the window's root view controller to a
UISplitViewController, finding the navigation controller it contains, then finding the
MasterViewController inside that. In short, it lets the app delegate find our
MasterViewController object, and once that's done we're able to call showTutorial()
directly. If you remember, this takes the project number to launch, and because we're also
using project numbers as our unique identifier it makes our code easy.

Put this into AppDelegate.swift:

func application(application: UIApplication, continueUserActivity
userActivity: NSUserActivity, restorationHandler: ([AnyObject]?) ->
Void) -> Bool {

 if userActivity.activityType == CSSearchableItemActionType {

 if let uniqueIdentifier = userActivity.userInfo?
[CSSearchableItemActivityIdentifier] as? String {

 let splitViewController = self.window!.rootViewController as!
UISplitViewController

 let navigationController =
splitViewController.viewControllers[splitViewController.viewControlle
rs.count-1] as! UINavigationController

 if let masterVC = navigationController.topViewController as?
MasterViewController {

 masterVC.showTutorial(Int(uniqueIdentifier)!)

 }

 }

 }

 return true

}

www.hackingwithswift.com 730

}

You'll get an error at first, but that's easily fixed by adding import CoreSpotlight to the top
of the file.

That's the third and final stage complete, which means the project is also complete. Run it
now, and try clicking the + button next to Project 4. Now press Shift+Cmd+H to return to the
home screen in the simulator and swipe to the left until you reach the Spotlight search tab.
You should be able to type "uit" into the search box to have it find the reference to UIToolbar
in project 4's description.

Now, before you go off indexing all sorts of information, be warned: Apple has said that iOS
will automatically monitor how frequently users interact with your search results, and if you
consistently serve up unhelpful results because you indexed your data badly then your
results may stop appearing. Index only what's important!

www.hackingwithswift.com 731

Wrap up
This project covered a huge amount, including Core Spotlight, SFSafariViewController,
NSAttributedString, automatically sized table view cells, and also Dynamic Type. Plus, you
have another project complete, and you're now able to customize it to fit your needs – as
nice as a Hacking with Swift browser is, I'm sure you have better ideas!

If you want to work on this project some more, a great place to start is to convert the
projects array to contain objects of a custom subclass rather than just an array. Not only is it
safer coding, but it's also more extensible – you might want to add images or other data, and
our array stops being so simple when you add more to it! You should follow much the same
technique as taught in project 12 to handle loading and saving.

I'd also recommend you investigate some of the many other formatting options you can use
with NSAttributedString. Right-click on NSFontAttributeName and choose Jump to
Definition to see a list, and just try things out! You'll see that Apple has put comments next to
each key so you can see what kind of data to provide.

There's one more thing, which is the user changing their Dynamic Type size. This won't
happen very often, but if it happens while your app is running you'll receive the
UIContentSizeCategoryDidChangeNotification if you subscribe to it using
NSNotificationCenter. This is your chance to refresh your user interface so that fonts are
drawn at the new size.

www.hackingwithswift.com 732

Project 33
What's that Whistle?
Build a crowd-sourced song recognition app using Apple's
free platform as a service: CloudKit.

www.hackingwithswift.com 733

Setting up
As I write these initial words, I already know this is going to be one of the most expansive
and useful Hacking with Swift tutorials to date. We're going to be using CloudKit to load and
save user data, we'll read from the microphone using AVAudioRecorder, we'll add
UIStackView and NSAttributedString for great layout, and we're going to tie in push
messaging for dynamic updates.

This tutorial is going to show you CloudKit to a depth you won't see much elsewhere. Yes,
we're going to be loading and saving text data, but we're also going to be loading and saving
binary data, registering for updates, and delivering push messages – in short, we're going to
be covering the majority of CloudKit in one project, and you'll learn a huge amount along the
way. We're even going to be covering the simple and advanced methods of working with
CloudKit, because it gives a much better user experience.

As you know, my usual plan is to pick which technologies I want to teach, then strap a real
project around it. In this case, the project is called "What's that Whistle?" It's an app where
users can whistle or hum into their microphone, and upload it to iCloud. Other users can then
download whistles and try to identify what song it's from. This is a genuinely useful app:
think how often you know how a song goes but just can't remember its name, and boom:
this app is for you. Of course, you could also turn it into a game – who can guess the song
first? It's down to you.

To make things more exciting, we'll let users choose which music genres they specialize in,
and we'll deliver them a push message whenever a new whistle comes in for that genre. They
can then swipe to unlock and launch the app, and start posting suggestions for the song
name.

CloudKit is something that was announced with iOS 8, but it had some remarkably low limits
that made it so unappealing I decided not to write a tutorial about it. Back then, each app got
just 25MB per day of data transfer, growing at 0.5MB – yes, half a megabyte – per user per
day, which was absurdly low. But with iOS 9 Apple announced they were raising the limits so
that every app now gets 2GB per month plus a further 50MB per user per month. Even
better, database transfer is now judged on requests per second rather than an arbitrary data
cap.

If you're not aware of what CloudKit does, I'll be going into much more detail later. For now,
the least you need to know is that CloudKit lets you send and retrieve data for your app,
effectively providing a server back-end for your app to talk to. Even better, unless you go

www.hackingwithswift.com 734

over Apple's new generous limits, it's completely free.

This is a Hacking with Swift Level 2 project, which means I'm expecting you to have
completed projects 1 to 30 already. Please don't complain if you find something
unexplained, because it was almost certainly covered earlier. It's also going to built using
Swift 2 and iOS 9, so please ensure you have Xcode 7 installed before continuing.

Important warning: this project requires an active Apple developer program account,
because CloudKit requires iCloud developer access. Although everything except push
messaging works great in the simulator, you'll find CloudKit responds much faster on devices
so you might find it easier to work from a device the entire time.

Please go ahead and create a new project in Xcode 7, choosing the Single View Application
template. Name it Project 33, choose Swift for your language, and iPhone for the device.
Now strap yourself in, because this is going to be awesome…

www.hackingwithswift.com 735

Recording from the microphone with
AVAudioRecorder
We're going to start off this project easily enough by looking at AVAudioRecorder: the iOS
way of recording audio from the microphone. You might be tempted to skip past this so you
can focus on the CloudKit parts, but please don't – I didn't put audio recording in here just
for fun! Instead, it's used to demonstrate how to store binary assets (i.e., data files) inside
CloudKit, so it's an integral part of the project.

The built-in Xcode template will have given you one empty view controller inside
Main.storyboard, plus a ViewController.swift file. We're going to be doing almost all the user
interface in code for this project, so you can almost ignore the storyboard entirely – in fact, all
you need to do is select the view controller that was created and embed it inside a navigation
controller. Now go to ViewController.swift and add these lines to viewDidLoad():

title = "What's that Whistle?"

navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Add, target: self, action:
"addWhistle")

navigationItem.backBarButtonItem = UIBarButtonItem(title: "Home",
style: .Plain, target: nil, action: nil)

That gives us a button to tap to add a whistle to the app, then customizes the title of the
navigation bar's back button to say "Home" rather than "What's that Whistle?" which is a bit
too long. We're going to return to this view controller much later to add a table view and
other bits, but for now let's write the very simple addWhistle() method:

func addWhistle() {

 let vc = RecordWhistleViewController()

 navigationController?.pushViewController(vc, animated: true)

}

So, that creates a new object of type RecordWhistleViewController (not yet written), and

www.hackingwithswift.com 736

pushes it onto the view controller stack. That's it for ViewController.swift for now – trust me,
we'll be adding a lot more code to it later!

Add a new file to your project, choosing Cocoa Touch Class. Make it a subclass of
UIViewController and name it RecordWhistleViewController. Make sure "Also create XIB
file" is not selected and that "Swift" is chosen for your language, then click Next to save it.

To begin with, we're going to place a UIStackView into the view, along with a button saying
"Tap to record". You might think the stack view isn't necessary, but once we've got the
recording working we're going to add a playback button and have UIStackView animate it all
nicely for us, so it is definitely needed.

First things first: let's create the stack view, then use Auto Layout to pin it horizontally and
center it vertically. This way, the stack view will automatically grow as more views are added
to it, which can be animated to look extra slick. If you haven't already read my previous
UIStackView tutorial you might want to refer to that now.

Add this property to the new RecordWhistleViewController class:

var stackView: UIStackView!

Like I said, we're going to be doing all the view layout in code to make it easier to follow.
UIStackView takes care of all the layout of its subviews, so all we need to do is position and
size the stack view correctly. Put this into your class to load the view:

override func loadView() {

 super.loadView()

 view.backgroundColor = UIColor.grayColor()

 stackView = UIStackView()

 stackView.spacing = 30

 stackView.translatesAutoresizingMaskIntoConstraints = false

 stackView.distribution = UIStackViewDistribution.FillEqually

www.hackingwithswift.com 737

 stackView.distribution = UIStackViewDistribution.FillEqually

 stackView.alignment = UIStackViewAlignment.Center

 stackView.axis = .Vertical

 view.addSubview(stackView)

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[stackView]|", options: NSLayoutFormatOptions.AlignAllCenterX,
metrics: nil, views: ["stackView": stackView]))

 view.addConstraint(NSLayoutConstraint(item: stackView,
attribute: .CenterY, relatedBy: .Equal, toItem: view,
attribute: .CenterY, multiplier: 1, constant:0))

}

You'll notice I use Visual Format Language (VFL) for horizontal pinning, then a regular Auto
Layout constraint for the vertical centering – that's not something you can easily express in
VFL, which is why it's done in straight code. The stack view is set up to have its subviews
size themselves equally with a 30-point space between them, which looked pretty good in
my testing.

I've covered all that in previous projects, but now for the new stuff: using AVAudioRecorder
to record audio from the microphone. If you're using the simulator this will automatically use
your Mac's built-in microphone, so you can test either on device or in the simulator.

Recording audio in iOS 9 uses two classes: AVAudioSession and AVAudioRecorder.
AVAudioSession is there to enable and track sound recording as a whole, and
AVAudioRecorder is there to track one individual recording. That is, the session is the bit
that ensures we are able to record, the recorder is the bit that actual pulls data from the
microphone and writes it to disk.

Use of the microphone is restricted by access controls, as you might imagine, so when we
use AVAudioSession to request access it will automatically display a warning to the user,
prompting them to confirm the access. Once we have access, we can record as much data
as we want at whatever quality we want, and iOS will do most of the work.

To make the interface user friendly we're going to allow users to re-record their whistle as
many times as it takes, so we'll need a button to handle that. We're also going to change the

www.hackingwithswift.com 738

background color of the view to either red or green, to show the recording or not recording
state in a more visually obvious way.

First up, we need to import the AVFoundation framework for this class, so please add this
import now:

import AVFoundation

We're also going to track three new properties: the record button, the recording session, and
the AVAudioRecorder itself. Please add these three properties to your class:

var recordButton: UIButton!

var recordingSession: AVAudioSession!

var whistleRecorder: AVAudioRecorder!

Now for the complicated part: setting up the recording environment. To do this, we're going
to get hold of the built-in system audio session and ask for play and record privileges –
record so we can grab audio from the microphone, and play so users can previous what was
recorded. We'll use the requestRecordPermission() method of the audio session to ask the
user whether we can record or not, and give that a trailing closure to execute when the user
makes a choice.

If the user grants us access to the microphone, we'll execute a new method called
loadRecordingUI(), otherwise we'll call loadFailUI(). Both of these need to be pushed onto
the main thread because the callback from requestRecordPermission() can happen on any
thread. I'll provide you with method stubs for loadRecordingUI() and loadFailUI() for now,
but we'll add to them shortly. Replace your current viewDidLoad() with this:

override func viewDidLoad() {

 super.viewDidLoad()

 title = "Record your whistle"

www.hackingwithswift.com 739

 title = "Record your whistle"

 navigationItem.backBarButtonItem = UIBarButtonItem(title: "Record",
style: .Plain, target: nil, action: nil)

 recordingSession = AVAudioSession.sharedInstance()

 do {

 try
recordingSession.setCategory(AVAudioSessionCategoryPlayAndRecord)

 try recordingSession.setActive(true)

 recordingSession.requestRecordPermission() { [unowned self]
(allowed: Bool) -> Void in

 dispatch_async(dispatch_get_main_queue()) {

 if allowed {

 self.loadRecordingUI()

 } else {

 self.loadFailUI()

 }

 }

 }

 } catch {

 self.loadFailUI()

 }

}

func loadRecordingUI() {

}

func loadFailUI() {

}

www.hackingwithswift.com 740

If you haven't met the new try/catch/do/throw error handling syntax in Swift 2, you
should really click that link now. Short version: if we fail to request access to the microphone,
or if we request access and are denied, we load the fail UI, otherwise we load the recording
UI.

To help the interface adapt to each user's preferences, we're going to use Dynamic Type to
control our fonts. This means users can adjust the font size in the Settings app and have it
reflected in our app. We don't need to worry about sizing up or positioning the buttons – just
by using UIFontTextStyleTitle1 and UIFontTextStyleHeadline we give the labels enough
information to size themselves, and the stack view will do the rest.

Here's some new code for loadRecordingUI() and loadFailUI(); replace the previous stubs
with this:

func loadRecordingUI() {

 recordButton = UIButton()

 recordButton.translatesAutoresizingMaskIntoConstraints = false

 recordButton.setTitle("Tap to Record", forState: .Normal)

 recordButton.titleLabel?.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleTitle1)

 recordButton.addTarget(self, action: "recordTapped",
forControlEvents: .TouchUpInside)

 stackView.addArrangedSubview(recordButton)

}

func loadFailUI() {

 let failLabel = UILabel()

 failLabel.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleHeadline)

 failLabel.text = "Recording failed: please ensure the app has
access to your microphone."

 failLabel.numberOfLines = 0

 stackView.addArrangedSubview(failLabel)

}

www.hackingwithswift.com 741

}

As you should know by now, setting numberOfLines to 0 means "wrap over as many lines
as you need." Also, and this is important, you should also be aware that you never add a
subview to a UIStackView directly. Instead, you use its addArrangedSubview() method,
which is what triggers the layout work.

Tapping that button will trigger a method that we haven't written yet: recordTapped(). But
before we get onto that, you need to know a little about how recording works:

 • You need to tell iOS where to save the recording. This is done when you create the
AVAudioRecorder object because iOS streams the audio to the file as it goes so it can write
large files.
 • Before recording begins, you need to decide on a format, bit rate, channel number and
quality. We'll be using Apple's AAC format because it gets the most quality for the lowest
bitrate. For bitrate we'll use 12,000Hz, which, when combined with the High AAC quality,
sounds good in my testing. We'll specify 1 for the number of channels, because iPhones only
have mono input.
 • If you set your view controller as the delegate of a recording, you'll be told when recording
stops and whether it finished successfully or not.
 • Recording won't stop if your app goes into the background briefly. Instead, it's things like a
call coming in that might make it stop unexpectedly.

As our app is simple, we don't need a complicated method to figure out where to save our
whistle audio. In project 10 I gave you a simple helper method called
getDocumentsDirectory(), which returns the path to a writeable directory owned by your
app. This is a great place to save the audio, so we'll take that and append "whistle.m4a" for
our filename. Put these two new methods into your code:

class func getDocumentsDirectory() -> NSString {

 let paths =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMa
sk, true) as [String]

 let documentsDirectory = paths[0]

 return documentsDirectory

}

www.hackingwithswift.com 742

class func getWhistleURL() -> NSURL {

 let audioFilename =
getDocumentsDirectory().stringByAppendingPathComponent("whistle.m4a")

 let audioURL = NSURL(fileURLWithPath: audioFilename)

 return audioURL

}

Note that both of those methods have the class keyword at the beginning, which means you
call them on the class not on instances of the class. This is important, because it means we
can find the whistle URL from anywhere in our app rather than typing it in everywhere.

When we want to start recording, the app needs to do a few things:

1. Make the view have a red background color so the user knows they are in recording mode.
2. Change the title of the record button to say "Tap to Stop".
3. Use the getWhistleURL() method we just wrote to find where to save the whistle.
4. Create a settings dictionary describing the format, sample rate, channels and quality.
5. Create an AVAudioRecorder object pointing at our whistle URL, set ourselves as the
delegate, then call its record() method.

Before I show you the code for that, there are two other important things to know. First, when
working in the simulator I usually like to print out the URL to a file using print(), because it
means I can look at it in Finder and be sure it's working correctly. Second, creating an
AVAudioRecorder can throw an error, so we need to wrap it in a do/try/catch block.

That's it – here's the code for startRecording(), with numbers added to match the list above:

func startRecording() {

 // 1

 view.backgroundColor = UIColor(red: 0.6, green: 0, blue: 0, alpha:
1)

 // 2

www.hackingwithswift.com 743

 // 2

 recordButton.setTitle("Tap to Stop", forState: .Normal)

 // 3

 let audioURL = RecordWhistleViewController.getWhistleURL()

 print(audioURL.absoluteString)

 // 4

 let settings = [

 AVFormatIDKey: Int(kAudioFormatMPEG4AAC),

 AVSampleRateKey: 12000.0,

 AVNumberOfChannelsKey: 1 as NSNumber,

 AVEncoderAudioQualityKey: AVAudioQuality.High.rawValue

]

 do {

 // 5

 whistleRecorder = try AVAudioRecorder(URL: audioURL, settings:
settings)

 whistleRecorder.delegate = self

 whistleRecorder.record()

 } catch {

 finishRecording(success: false)

 }

}

Note: as soon as you try to set self for whistleRecorder.delegate, you'll need to conform to
the AVAudioRecorderDelegate protocol, like this:

class RecordWhistleViewController: UIViewController,

www.hackingwithswift.com 744

AVAudioRecorderDelegate {

Once recording has started, we naturally want to stop it at some point. For that, we're going
to create a finishRecord() method, which will take one boolean parameter saying whether
the recording was successful or not. It will make the view's background color green to show
that recording is finished, then it will destroy the AVAudioRecorder object.

The special part of this method lies in whether the recording was a success or not. If it was a
success, we're going to set the record button's title to be "Tap to Re-record", but then show
a new right bar button item in the navigation bar, letting users progress to the next stage of
submission. So, they can submit what they have, or re-record as often as they want. If the
record wasn't a success, we'll put the button's title back to being "Tap to Record" then show
an error message.

Here's the new method:

func finishRecording(success success: Bool) {

 view.backgroundColor = UIColor(red: 0, green: 0.6, blue: 0, alpha:
1)

 whistleRecorder.stop()

 whistleRecorder = nil

 if success {

 recordButton.setTitle("Tap to Re-record", forState: .Normal)

 navigationItem.rightBarButtonItem = UIBarButtonItem(title:
"Next", style: .Plain, target: self, action: "nextTapped")

 } else {

 recordButton.setTitle("Tap to Record", forState: .Normal)

 let ac = UIAlertController(title: "Record failed", message:
"There was a problem recording your whistle; please try again.",
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:

www.hackingwithswift.com 745

nil))

 presentViewController(ac, animated: true, completion: nil)

 }

}

So, that's the code to start and stop recording – amazingly you're most of the way there! Our
one button will be used to trigger both events, so we need to write recordTapped(). All this
will do is call startRecording() or finishRecording() depending on the current state of the
app. And that's it! Here's the code:

func recordTapped() {

 if whistleRecorder == nil {

 startRecording()

 } else {

 finishRecording(success: true)

 }

}

The last thing to do before we're done with recording is to catch the scenario where
recording ends with a problem. We already set our view controller to be the delegate of our
AVAudioRecorder object, so we'll get sent a audioRecorderDidFinishRecording()
message when recording finished. If the recording wasn't a success, we'll call
finishRecording() so it can clean up and restore the view to its pre-recording state.

Here's the code:

func audioRecorderDidFinishRecording(recorder: AVAudioRecorder,
successfully flag: Bool) {

 if !flag {

 finishRecording(success: false)

 }

}

www.hackingwithswift.com 746

}

At this point your code will run, and I encourage you to try it in the iOS Simulator so you can
see that it's working – if you kept my print() call in there, you can open that folder in Finder
and see the finished m4a if everything has gone well.

Adding our buttons into a UIStackView means we can animate them appearing and
disappearing without much work.

Note: if you're a less experienced OS X user, you might not know how to navigate to a folder
like the one the iOS Simulator uses, because it's hidden by default. For example, you'll get
something like this: file:///Users/twostraws/Library/Developer/CoreSimulator/Devices/
E470B24D-5C0C-455F-9726-DC1EAF30D5A4/data/Containers/Data/Application/
D5E4C08C-2B1E-40BC-8EBE-97F136D0AFC0/Documents/whistle.m4a – which hardly
trips off the tongue!

The easiest thing to do is copy that to a clipboard, open a Finder window, press Shift+Cmd
+G, and paste it into the box. Now delete the "file://" from the start so that it reads "/Users/

www.hackingwithswift.com 747

yourusername/.....", and "whistle.m4a" from the end, then press Return.

www.hackingwithswift.com 748

Animating UIStackView subview layout
Before we get onto the CloudKit part of this tutorial, we're going to add a bit more to our user
interface. Specifically, we're going to add a "Tap to Play" button into the stack view, and have
it animate so that it slides out when recording has finished. This is the work of only a few
minutes thanks to UIStackView, and I'm sure you'll agree the results look marvellous.

While we're finishing up the user interface, we're going to quickly add a couple more simple
view controllers to let the user attach some metadata to their whistle: they'll be able to select
what genre it is, then enter some free text with any comments – something like "I definitely
remember hearing it in the early 90s" to help listeners narrow the scope a little.

First, the play button. Add this new property:

var playButton: UIButton!

Now create it by placing this just before the end of loadRecordingUI():

playButton = UIButton()

playButton.translatesAutoresizingMaskIntoConstraints = false

playButton.setTitle("Tap to Play", forState: .Normal)

playButton.hidden = true

playButton.alpha = 0

playButton.titleLabel?.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleTitle1)

playButton.addTarget(self, action: "playTapped",
forControlEvents: .TouchUpInside)

stackView.addArrangedSubview(playButton)

That's almost identical to the code for creating the record button, except the play button is
set to hidden and alpha 0. Normally you need only one of these, but with stack views it's a
little different: a view that is not hidden but has an alpha of 0 appears hidden (i.e., the user
can't see it) but still occupies space in the stack view. By setting the button to be hidden and

www.hackingwithswift.com 749

have alpha 0, we're saying "don't show it to the user, and don't let it take up any space in the
stack view."

We want to show and hide that play button when needed, meaning that we show it when
recording finished successfully and hide it if the user taps to re-record. To solve the first of
those, put this code into the finishRecording() method, just before setting the right bar
button item:

if playButton.hidden {

 UIView.animateWithDuration(0.35) { [unowned self] in

 self.playButton.hidden = false

 self.playButton.alpha = 1

 }

}

To solve the second, put this into recordTapped(), just after the call to startRecording():

if !playButton.hidden {

 UIView.animateWithDuration(0.35) { [unowned self] in

 self.playButton.hidden = true

 self.playButton.alpha = 0

 }

}

The hidden property of any UIView subclass is a simple boolean, meaning that it's either
true or false: a view is either hidden or it's not. As a result, if we had put this code anywhere
else it would be meaningless to try to animate it, because there are no intermediate steps
between "visible" and "invisible" to animate. But with UIStackView it has a meaning, and
that meaning is brilliant: the stack view will animate the play button being shown, making it
slide out neatly. Changing the alpha at the same time is the perfect finishing touch.

www.hackingwithswift.com 750

When we created the play button we attached a method called playTapped() to it, which
isn't written yet. But now that you've seen how to use AVAudioRecorder, the code to play
using AVAudioPlayer should be second nature. Just in case you don't fancy writing the code
for yourself, I'll walk you through the steps.

First, create a new property to hold the audio player:

var whistlePlayer: AVAudioPlayer!

Now, add a playTapped() method using the code below. This grabs the shared whistle URL,
creates an AVAudioPlayer inside a do/try/catch block, and makes it play. If there's an error
loading the sound it shows an alert message to the user. Easy, right?

func playTapped() {

 let audioURL = RecordWhistleViewController.getWhistleURL()

 do {

 whistlePlayer = try AVAudioPlayer(contentsOfURL: audioURL)

 whistlePlayer.play()

 } catch {

 let ac = UIAlertController(title: "Playback failed", message:
"There was a problem playing your whistle; please try re-recording.",
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

 }

}

If you run the app now I think you'll agree it looks good, particularly as the play button slides
out in the stack view. Being able to hear what you recorded is of course a nice touch!

www.hackingwithswift.com 751

Once the user has a recording they are happy with, we're going to ask them to choose which
genre they think it belongs to, and add any comments. Both of these are very simple view
controllers that we can make in just a few minutes. As I made clear earlier, you should
already have finished projects 1 to 30 of Hacking with Swift before getting this far, so I'm
going to assume you know everything that was taught there and will explain only things that
are new or interesting!

Add a new file to your project, choosing Cocoa Touch Class. Make it a subclass of
UITableViewController and name it SelectGenreViewController. Open the file for editing,
and give it this property:

static var genres = ["Unknown", "Blues", "Classical", "Electronic",
"Jazz", "Metal", "Pop", "Reggae", "RnB", "Rock", "Soul"]

This is marked as static so that we can use it in lots of other places – it's a shared list of all
the music categories we want to work with. I added "Unknown" in there for people like me
who struggle to tell the difference between some music types!

In this class's viewDidLoad() method we're going to give it a title, configure the back button
to take up less space, then register a cell for re-use. All old stuff:

override func viewDidLoad() {

 super.viewDidLoad()

 title = "Select genre"

 navigationItem.backBarButtonItem = UIBarButtonItem(title: "Genre",
style: .Plain, target: nil, action: nil)

 tableView.registerClass(UITableViewCell.self,
forCellReuseIdentifier: "Cell")

}

For handling the content of the table view, it's all code you've seen in previous projects, but I
want to point out three things:

www.hackingwithswift.com 752

1. When referencing the genres array we need to use SelectGenreViewController.genres
because the array belongs to the class, not to our instance of the class.
2. When reading the text of the cell that was tapped, we're going to use the nil coalescing
operator. The nil coalescing operator was covered in project 12, and in this situation it
guarantees we have a genre.
3. When the user has selected a genre, we're going to create an instance of the class
AddCommentsViewController, store that genre there, then push it onto our navigation
stack.

That's it – here are the methods for handling the table view data source and delegate:

override func numberOfSectionsInTableView(tableView: UITableView) ->
Int {

 return 1

}

override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return SelectGenreViewController.genres.count

}

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 cell.textLabel?.text =
SelectGenreViewController.genres[indexPath.row]

 cell.accessoryType = .DisclosureIndicator

 return cell

}

override func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath) {

 if let cell = tableView.cellForRowAtIndexPath(indexPath) {

www.hackingwithswift.com 753

 if let cell = tableView.cellForRowAtIndexPath(indexPath) {

 let genre = cell.textLabel?.text ??
SelectGenreViewController.genres[0]

 let vc = AddCommentsViewController()

 vc.genre = genre

 navigationController?.pushViewController(vc, animated: true)

 }

}

That completes the class – I've deliberately kept it simple because this tutorial is about
CloudKit rather than tables! You can now return to RecordWhistleViewController.swift and
add this method to the end:

func nextTapped() {

 let vc = SelectGenreViewController()

 navigationController?.pushViewController(vc, animated: true)

}

There's one more easy class to add before we get onto CloudKit, and that's
AddCommentsViewController. This will show a full-screen UITextView for the user to type
any extra comments into. Create it now, making it a subclass of UIViewController, then
select it for editing.

We're going to give this new class three properties: one to hold the genre that gets passed in
from SelectGenreViewController, one to hold a reference to the UITextView, and one to
hold a placeholder string. That last property will be used to solve a long-standing UITextView
annoyance: unlike UITextField, you cannot give a UITextView a placeholder string, which is
a piece of text telling users what to type in there. We'll replicate this behaviour by putting a
default string into the text view and removing it when the user taps it.

So, add these three properties to AddCommentsViewController:

var genre: String!

www.hackingwithswift.com 754

var genre: String!

var comments: UITextView!

let placeholder = "If you have any additional comments that might
help identify your tune, enter them here."

We're going to override the loadView() method of this class, using it to create a new
UITextView that is pinned to all edges using Auto Layout. The only vaguely interesting thing
here is that we'll use Dynamic Type to make the font size adjustable for the user. Here's the
code:

override func loadView() {

 super.loadView()

 comments = UITextView()

 comments.translatesAutoresizingMaskIntoConstraints = false

 comments.delegate = self

 comments.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleBody)

 view.addSubview(comments)

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[comments]|", options: .AlignAllCenterX, metrics: nil, views:
["comments": comments]))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:|[comments]|", options: .AlignAllCenterX, metrics: nil, views:
["comments": comments]))

}

As per usual, assigning the view controller to be a delegate of something requires conforming
to a protocol. In this case, it means conforming to UITextViewDelegate, so please add that

www.hackingwithswift.com 755

now.

The absolute least we need to do to make this class work is to fill in the viewDidLoad()
method with a title for the view controller and a right bar button item to let the user proceed
with their submission, then to write a submitTapped() method that gets triggered when the
button is tapped.

Submitting will use another new class that we'll define shortly, called SubmitViewController,
and will pass in the genre we got from SelectGenreViewController and the user's
comments if there are any. If they kept the placeholder intact, we'll send an empty string on.
Here's the code:

override func viewDidLoad() {

 super.viewDidLoad()

 title = "Comments"

 navigationItem.rightBarButtonItem = UIBarButtonItem(title:
"Submit", style: .Plain, target: self, action: "submitTapped")

 comments.text = placeholder

}

func submitTapped() {

 let vc = SubmitViewController()

 vc.genre = genre

 if comments.text == placeholder {

 vc.comments = ""

 } else {

 vc.comments = comments.text

 }

 navigationController?.pushViewController(vc, animated: true)

}

www.hackingwithswift.com 756

}

We could easily leave it there and get onto to the CloudKit work, but there's one small tweak
we can make to improve the whole experience. As this view controller is the delegate for the
comments text view, iOS will send us the textViewDidBeginEditing() message when the
user starts editing it. We can then compare the text view's current text against the
placeholder, and clear it if they match. Here's that code:

func textViewDidBeginEditing(textView: UITextView) {

 if textView.text == placeholder {

 textView.text = ""

 }

}

That's it: it's time for CloudKit.

www.hackingwithswift.com 757

Writing to iCloud with CloudKit:
CKRecord and CKAsset
We still have an error in our code, because we haven't created the SubmitViewController
class yet. This is where CloudKit comes into play, because this view controller has only one
job: to show the user that iCloud submission is happening until it completes, at which point
we'll show a "Done" button.

To make the view a little more interesting, we're going to use another UIStackView to
arrange a text label and an activity spinner to keep the user informed. We're also going to
hide the back button so the user can't escape until iCloud finishes, successfully or otherwise.

The last two view controllers have been collecting and passing on metadata, specifically a
genre and user comments. We'll need to add these as properties for SubmitViewController,
along with properties for the stack view, the label and the activity spinner. So, create a new
class called SubmitViewController, make it a subclass of UIViewController, then add these
properties:

var genre: String!

var comments: String!

var stackView: UIStackView!

var status: UILabel!

var spinner: UIActivityIndicatorView!

As for the loadView() method, this is very similar to what we did with
RecordWhistleViewController: we'll use a stack view that is pinned to the left and right
edges then centered vertically. We'll add to this a UILabel to show the send status, and a
UIActivityIndicatorView to show the user that something is happening, but otherwise
there's nothing surprising in this code:

override func loadView() {

 super.loadView()

www.hackingwithswift.com 758

 view.backgroundColor = UIColor.grayColor()

 stackView = UIStackView()

 stackView.spacing = 10

 stackView.translatesAutoresizingMaskIntoConstraints = false

 stackView.distribution = UIStackViewDistribution.FillEqually

 stackView.alignment = UIStackViewAlignment.Center

 stackView.axis = .Vertical

 view.addSubview(stackView)

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[stackView]|", options: NSLayoutFormatOptions.AlignAllCenterX,
metrics: nil, views: ["stackView": stackView]))

 view.addConstraint(NSLayoutConstraint(item: stackView,
attribute: .CenterY, relatedBy: .Equal, toItem: view,
attribute: .CenterY, multiplier: 1, constant:0))

 status = UILabel()

 status.translatesAutoresizingMaskIntoConstraints = false

 status.text = "Submitting…"

 status.textColor = UIColor.whiteColor()

 status.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleTitle1)

 status.numberOfLines = 0

 status.textAlignment = .Center

 spinner =
UIActivityIndicatorView(activityIndicatorStyle: .WhiteLarge)

 spinner.translatesAutoresizingMaskIntoConstraints = false

 spinner.hidesWhenStopped = true

 spinner.startAnimating()

www.hackingwithswift.com 759

 stackView.addArrangedSubview(status)

 stackView.addArrangedSubview(spinner)

}

As I said already, we're going to hide the navigation bar's back button so the user can't back
out of the view controller until submission has finished. Avoiding multiple submissions is a
whole other discussion that I'll save for another day, so this is the easiest way out. Modify the
existing viewDidLoad() method to this:

override func viewDidLoad() {

 super.viewDidLoad()

 title = "You're all set!"

 navigationItem.hidesBackButton = true

}

There are just three more methods to write before we get onto the real meat of this tutorial:
CloudKit. The first is viewDidAppear(), which we'll use to start the submission process. The
second is a stub for doSubmission(), which is empty for now but we'll fill with CloudKit
goodness shortly. The last one is doneTapped(), which will be called from a bar button item,
which in turn will be created when the submission finishes.

Add this code:

override func viewDidAppear(animated: Bool) {

 super.viewDidAppear(animated)

 doSubmission()

}

www.hackingwithswift.com 760

func doSubmission() {

}

func doneTapped() {

 navigationController?.popToRootViewControllerAnimated(true)

}

I don't think we've used popToRootViewControllerAnimated() before, but it's not a difficult
method: calling it pops off all the view controllers on a navigation controller's stack, returning
us to the original view controller - in our case, that's the "What's that Whistle?" screen with
the + button.

OK, time for CloudKit: add this import to SubmitViewController.swift:

import CloudKit

Once that's done, a whole range of new classes become available for our Swift code, but our
app can't use CloudKit just yet. This is because access to iCloud is restricted by Apple, so
you need to state that your app wants permission to use iCloud. To do that, click the blue
Project33 icon in the Project Navigator pane, then choose your Project33 target. Select the
Capabilities tab, then turn iCloud to ON and make sure the CloudKit box is checked.

By default the iCloud entitlement is turned off for your project.

www.hackingwithswift.com 761

By default the iCloud entitlement is turned off for your project.

Enabling the iCloud entitlement requires a valid Apple developer program account.

Make sure you select the checkbox marked CloudKit inside the iCloud entitlement.

When you do this, Apple will create an iCloud container for you called something like
iCloud.com.hackingwithswift.Project33. Now: on your device (or in the simulator) you should
make sure you are logged into iCloud and have iCloud Drive enabled. That's it: you're all set
to use iCloud!

At this point in the project, here's what you need to know about iCloud and CloudKit:

 • You create CKRecord objects to contain keys and values. They are like a dictionary, just
with some extra smarts built in.
 • You create CKAsset objects to hold binary blobs like our audio recording. You can attach
these to a CKRecord just like any other value.

www.hackingwithswift.com 762

 • Each app has its own CloudKit container (CKContainer), and each container has two
databases (CKDatabase) called the public and the private database.
 • The private database is for storing private user data. Any thing you upload there gets taken
out of that user's iCloud quota. The public database is for storing data anyone can read. Any
thing you upload there gets taken out of your CloudKit quota.
 • When you write data to CloudKit it automatically figures out how to store it based on all the
keys and values you provide, and their data types. You can change this later if you want.
 • All CloudKit calls are asynchronous, so you provide completion blocks to be executed
when the call finishes. This will tell you what went wrong if anything, but the block can be
called on any thread so be careful!

Because CloudKit automatically figures out how to store your data, it means we can go
ahead and start sending it whistles and whistle meta data and have it stored – no back-end
configuration required.

To make things easier to explain, I'm going to split the doSubmission() method in two: a part
that creates the record to send to iCloud, and a part that handles the result.

The first part is straightforward, because like I said the CKRecord class looks and works
much like a dictionary: you set any key to any (valid!) value, and it does the rest. By "valid" I
mean things that you can normally store in a dictionary: strings, numbers, arrays, dates and
so forth. You can even store CLLocations for doing map-based queries – it's surprisingly
simple!

You can also store assets inside CKRecord objects, which is exactly what we're going to do:
the genre and comments are both simple string keys, but the whistle audio itself needs to be
uploaded as a CKAsset before it's attached. This isn't hard to do, because there's a
constructor method for CKAsset that takes a file URL just like we get back from
RecordWhistleViewController.getWhistleURL().

One last thing before I show you the code: each CKRecord has a record type, which is a
string. This is a name you provide and has meaning only to you, but identifies the particular
type of data you're trying to save. We're working with whistles, so we'll use the record type
"Whistles". Make sure you type it correctly, because it needs to match when you write and
read.

That's it – here's the first part of the doSubmission() method:

let whistleRecord = CKRecord(recordType: "Whistles")

www.hackingwithswift.com 763

let whistleRecord = CKRecord(recordType: "Whistles")

whistleRecord["genre"] = genre

whistleRecord["comments"] = comments

let audioURL = RecordWhistleViewController.getWhistleURL()

let whistleAsset = CKAsset(fileURL: audioURL)

whistleRecord["audio"] = whistleAsset

The second part of the method really isn't hard at all, but it does come with a few important
notices. We're going to be using the saveRecord() method of the CloudKit public database,
which sends a CKRecord off to iCloud and tell us how it went. The result of this method is
handed to us in a trailing closure that can be called on any thread, so the first thing you'll see
is that I bounce the code back to the main thread so we can manipulate the user interface.

You'll notice that every CloudKit send method has a NSError being passed in to the closure,
reporting whether there was a problem. It is really important that you don't ignore this: mobile
networks vary in strength so actions might fail at any time, plus iCloud itself is a monstrously
huge beast where a dozen things could go wrong behind the scenes, leading to your code
failing. But that's OK, because you're going to catch the errors and do something sensible,
right? Right.

The last important notice is that we'll be setting a property on ViewController to be true.
This property is called dirty and it doesn't exist just yet, so expect an error.

All set? Here's the second part of doSubmission():

CKContainer.defaultContainer().publicCloudDatabase.saveRecord(whistle
Record) { [unowned self] (record, error) -> Void in

 dispatch_async(dispatch_get_main_queue()) {

 if error == nil {

 self.view.backgroundColor = UIColor(red: 0, green: 0.6, blue:
0, alpha: 1)

 self.status.text = "Done!"

 self.spinner.stopAnimating()

www.hackingwithswift.com 764

 ViewController.dirty = true

 } else {

 self.status.text = "Error: \(error!.localizedDescription)"

 self.spinner.stopAnimating()

 }

 self.navigationItem.rightBarButtonItem = UIBarButtonItem(title:
"Done", style: .Plain, target: self, action: "doneTapped")

 }

}

As you can see, regardless of whether the operation succeeds or fails we show a "Done"
button so the user can escape the screen. This calls the doneTapped() method we already
wrote. Also, the dirty property belongs to ViewController: again, it's a static property so we
can set it on the whole class rather than trying to find the correct instance of the class.

To silence the final warning, and to make your code build and run, add that static property to
ViewController.swift:

static var dirty = true

Please go ahead and build your code now, and try submitting a whistle to iCloud. If you see
an error at the the end asking for an authenticated account, make sure device/simulator has
an iCloud account logged in, with iCloud Drive enabled, then try again.

Before we go any further, it's time for a tangent…

www.hackingwithswift.com 765

A hands-on guide to the CloudKit
dashboard
If you already finished Hacking with Swift projects 1 to 30 (and you did, right?) you'll know I
hate tangents. I'm here to teach you something cool, and I prefer to do that using as little
waffle as possible – and tangents are apt to create the Perfect Storm for waffle. But in this
case it's important, so please bear with me.

If you haven't already done so, you need to run your app, record a whistle, and tap Submit
now. All being well it will work first time (if not you probably missed something!), but how do
you know it's worked? I mean really be sure that's it worked? And what do you do if you
want to change a data type because you made a mistake, or perhaps even delete the whole
thing and start again?

Apple has a solution for this, and it's called the CloudKit Dashboard. Now that you have
submitted your first record to iCloud, you can launch https://icloud.developer.apple.com/
dashboard in your web browser and look behind the iCloud curtain as it were. The CloudKit
dashboard shows you exactly what data your app is storing, who can access it, and how
much of your free quota you're using.

So, just briefly, it's time for a tangent: I want to explain a few things about CloudKit
Dashboard, because it's important. Yes, it is important – later code won't run unless you read
my instructions, so please don't skip ahead.

When you log into CloudKit Dashboard, you may need to select your project in the top-left
corner of the window. The default view you'll see is Schema > Record Types, and you'll see
two Record Types already there: Users and Whistles. The first of those was created
automatically for you by Apple, and tracks anonymised user IDs for your app. The second of
these was created by you just a few minutes ago: as soon as you called saveRecord()
CloudKit transformed your record into a database in iCloud, and added your test whistle
there.

If you select the Whistles record type you'll see that CloudKit has identified that the
comments and genre fields are both strings, and the audio field is an asset. You'll also see a
line saying "Metadata Indexes" with the number 1 and an arrow below it. Please click that
now to reveal some fields that CloudKit has created for you: ID, Created By, Date Created,
Date Modified and Modified By. These are great for searching, but you can't sort usig these
fields by default.

www.hackingwithswift.com 766

Apple's default CloudKit fields aren't enabled for searching and sorting unless you ask.

We're going to want to sort by the Date Created field later on, so please click Sort next to
Date Created. While you're there, please also check Query next to ID so that we can query all
records easily. With that done, click the Save button in the bottom-right of your browser
window to commit that change.

That was the critical stuff needed to continue this tutorial, but there are a few other niceties
while you're here:

 • Any of your rows can be deleted by hovering over them and clicking the X on the right-
hand side. System rows like Created By cannot be deleted.
 • You can add fields by clicking the Add Field button at the end of your own fields, then
giving it a name and type.
 • You can browse all the data that has been uploaded by clicking Default Zone in the left-
hand menu and choosing a schema name.
 • When browsing individual records, you'll see links to download or remove the assets
attached to the record.
 • You'll also see a trash icon above the record, which is what you click when you want to
delete it.

www.hackingwithswift.com 767

delete it.

So, the CloudKit Dashboard is basicaly a miniature CMS that lets you peek into your data
and confirm everything is working OK. But it does one more thing, which is to provide usage
data for your app, which is important because CloudKit is free only if you stay below certain
usage limits.

To see how much of your quota you're using, click Usage now from the left-hand menu.
You'll see a scrolling list of charts that show you how many users you have, how many
requests per second they've made, how much storage data transfer you're using for assets,
and how much database storage you're using. CloudKit shows you a solid line to represent
how much you've actually used, then a dashed line to show its projections about how much
you're likely to use if current trends continue.

CloudKit Dashboard shows you your current and projected usage, helping you stay within
Apple's free quota.

Note that all quota directly depends on the number of users you have – as you add more
users, Apple adds more quota. So, the first graph directly affects all the others.

What these charts don't show is how your usage maps against your quota, and there's a
good reason for that: as soon as you add in your quota, your usage becomes so tiny that you
won't be able to see it! Don't believe me? Try it now: at the top right of each chart are check

www.hackingwithswift.com 768

boxes saying either "Usage" and "Quota", or "Usage" and "Limit" – select the one that is
currently unchecked, and you'll see what I mean.

So, that's CloudKit Dashboard: it's the perfect debugging tool because it shows you exactly
what content is being stored. If the data you see is bad it means your writing code is bad. If
the data there is good but your app isn't showing correctly, it means your reading code is
bad. Simple!

Tangent over. Back to the code!

www.hackingwithswift.com 769

Reading from iCloud with CloudKit:
CKQueryOperation and NSPredicate
So far our app takes a recording from the microphone using AVAudioRecorder and sends it
off to iCloud for storage. You should have just seen that data in the CloudKit Dashboard, so
the next step is to write the code that pulls recordings back down to the device.

This is where things get a little bit more complicated, but only a little. You see, there are two
ways of writing to CloudKit: a core API and a convenience API. The core API exposes every
possible behavior of the system, offering effectively unlimited functionality to do what you
want. The convenience API takes a subset of those features and simplifies them, making it
easier to learn and use but less powerful.

When we wrote records two chapters ago we used the convenience API, but when it comes
to reading we're going to use the core API. This isn't because I enjoy torturing you, there is a
legitimate reason: when you read data using the convenience API it automatically downloads
all the data for each record. Often that's helpful, because it means you have everything you
need to show a record's data. But in our case that would mean downloading the audio for
every record every time we loaded our data – and that's a huge waste of resources.

Remember, CloudKit gives you a basic quota of about 64MB per day of asset transfer, and
you need to be careful not to waste it. One of the features offered by the core API that is
absent from the convenience API is the ability to selectively download records. In our case,
that means we want the genre and user comments, but not the audio – we'll fetch that
separately, as needed.

Go ahead and select ViewController.swift for editing. We're going to be using the CloudKit
framework, so please add this import:

import CloudKit

This view controller is a UIViewController subclass as opposed to a UITableViewController
subclass, which is intentional as you'll see later. But it does mean we need to create and
configure a UITableView, then pin it to the edges of our view. Except this time there's a small
twist: we're going to use the built-in topLayoutGuide property to make the table view pin to
the edge of our navigation bar.

www.hackingwithswift.com 770

First, add this property:

var tableView: UITableView!

Now put in this new loadView() method:

override func loadView() {

 super.loadView()

 view.backgroundColor = UIColor.whiteColor()

 tableView = UITableView()

 tableView.translatesAutoresizingMaskIntoConstraints = false

 tableView.dataSource = self

 tableView.delegate = self

 view.addSubview(tableView)

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[tableView]|", options: .AlignAllCenterX, metrics: nil, views:
["tableView": tableView]))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:|[guide][tableView]|", options: .AlignAllCenterX, metrics: nil,
views: ["guide": topLayoutGuide, "tableView": tableView]))

}

As you will already know, setting the dataSource and delegate properties above requires
that we conform to the UITableViewDataSource and UITableViewDelegate protocols.

Our table is going to show a series of whistles to users, letting them see at a glance the

www.hackingwithswift.com 771

genre and user comments before choosing which whistle to listen to. To make this work
we're going to create a new class called Whistle that will store those two fields, but also an
NSURL for where the audio is stored when it's downloaded, and the CloudKit record ID that
identifies the whistle in iCloud so we can work with it.

In Swift there is usually a discussion as to whether a class or a struct is the right approach
when considering data types, but here we have no choice as you'll see later.

Create a new file, choose Cocoa Touch Class, name it Whistle, then make it subclass from
NSObject. It doesn't need much code in there, but it does need to use the CloudKit
framework. Change the contents of Whistle.swift to this:

import CloudKit

import UIKit

class Whistle: NSObject {

 var recordID: CKRecordID!

 var genre: String!

 var comments: String!

 var audio: NSURL!

}

Back in ViewController.swift, we need a property that will store an array of Whistle objects so
that we can show them in our table view. This is as simple as adding the following property:

var whistles = [Whistle]()

Every time the view is shown we're going to refresh our data from iCloud using a
loadWhistles() method. That one does all the complicated CloudKit work so we're going to
leave it to last, but we can at least write viewDidAppear() and put in a stub for
loadWhistles(). The viewWillAppear() method is going to clear the table view's selection if it
has one, then it will use the dirty flag we made earlier to call loadWhistles() only if it's

www.hackingwithswift.com 772

needed.

Here's the code:

override func viewWillAppear(animated: Bool) {

 super.viewWillAppear(animated)

 if let indexPath = tableView.indexPathForSelectedRow {

 tableView.deselectRowAtIndexPath(indexPath, animated: true)

 }

 if ViewController.dirty {

 loadWhistles()

 }

}

func loadWhistles() {

}

For the table view, we're going to use some techniques first seen in project 32, which was
my Core Spotlight and SFSafariViewController tutorial. Specifically, we're going to use
NSAttributedString to show text neatly formatted, then use automatic UITableViewCell
sizing to make each cell fit its contents.

Let's start by using an almost identical makeAttributedString() method here, except this
version automatically removes user comments if there aren't any:

func makeAttributedString(title title: String, subtitle: String) ->
NSAttributedString {

 let titleAttributes = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleHeadline),
NSForegroundColorAttributeName: UIColor.purpleColor()]

 let subtitleAttributes = [NSFontAttributeName:

www.hackingwithswift.com 773

 let subtitleAttributes = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleSubheadline)]

 let titleString = NSMutableAttributedString(string: "\(title)",
attributes: titleAttributes)

 if subtitle.characters.count > 0 {

 let subtitleString = NSAttributedString(string: "\n\(subtitle)",
attributes: subtitleAttributes)

 titleString.appendAttributedString(subtitleString)

 }

 return titleString

}

Just like in project 32, that uses Dynamic Type to ensure user font choices are respected.
Putting that into each table view cell is identical to project 32, except here we're modifying
the numberOfLines property by hand because we don't have prototype cells to work with:

func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 cell.accessoryType = .DisclosureIndicator

 cell.textLabel?.attributedText = makeAttributedString(title:
whistles[indexPath.row].genre, subtitle:
whistles[indexPath.row].comments)

 cell.textLabel?.numberOfLines = 0

 return cell

}

To make that code work, you'll need to register the "Cell" re-use identifier in viewDidLoad(),

www.hackingwithswift.com 774

like this:

tableView.registerClass(UITableViewCell.self, forCellReuseIdentifier:
"Cell")

And now we need four very simple methods to tell iOS how many rows and sections we
need, plus how high they need to be. We'll be using UITableViewAutomaticDimension for
the height, so all these four are simple:

func numberOfSectionsInTableView(tableView: UITableView) -> Int {

 return 1

}

func tableView(tableView: UITableView, numberOfRowsInSection section:
Int) -> Int {

 return self.whistles.count

}

func tableView(tableView: UITableView,
estimatedHeightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

func tableView(tableView: UITableView, heightForRowAtIndexPath
indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

I know – this is all a bit easy now, right? Well, the next part isn't, because the next part is
where CloudKit comes in. To make this work you're going to need to meet a few new
classes:

www.hackingwithswift.com 775

 • NSPredicate describes a filter that we'll use to decide which results to show.
 • NSSortDescriptor tels CloudKit which field we want to sort on, and whether we want it
ascending or descending.
 • CKQuery combines a predicate and sort descriptors with the name of the record type we
want to query. That will be "Whistles" for us, if you remember.
 • CKQueryOperation is the work horse of CloudKit data fetching, executing a query and
returning results.

What complicates CKQueryOperation – and at the same time makes it so incredibly
powerful – is that is has two separate closures attached to it. One streams records to you as
they are downloaded, and one is called when all the records have been downloaded. To
handle this, we're going to create a new array that will hold the whistles as they are parsed,
and use it inside both closures.

As I said already, one of the advantages of this core API is that we can request only the
record keys we want, but it also lets us specify how many results we want to receive from
iCloud. Putting all this together, we can write the first part of loadWhistles():

func loadWhistles() {

 let pred = NSPredicate(value: true)

 let sort = NSSortDescriptor(key: "creationDate", ascending: false)

 let query = CKQuery(recordType: "Whistles", predicate: pred)

 query.sortDescriptors = [sort]

 let operation = CKQueryOperation(query: query)

 operation.desiredKeys = ["genre", "comments"]

 operation.resultsLimit = 50

 var newWhistles = [Whistle]()

Our use of NSPredicate is trivial right now: we just say "all records that match true," which
means "all records." Notice how we set the desiredKeys property to be an array of the
record keys we want – that's what makes this API so useful.

www.hackingwithswift.com 776

record keys we want – that's what makes this API so useful.

The next part of the method is going to set a recordFetchedBlock closure on our
CKQueryOperation object. This will be given a one CKRecord value for every record that
gets downloaded, and we'll convert that into a Whistle object. This means pulling out the
record ID for the recordID property, then reading the genre and comments values of the
dictionary. Both those two values must be converted to strings, because by default they
come out as the data type CKRecordValue?.

Here's the next part of loadWhistles():

operation.recordFetchedBlock = { (record) in

 let whistle = Whistle()

 whistle.recordID = record.recordID

 whistle.genre = record["genre"] as! String

 whistle.comments = record["comments"] as! String

 newWhistles.append(whistle)

}

At this point, the last part isn't too hard: we're going to set a queryCompletionBlock closure
for the query operation. This will be called by CloudKit when all records have been
downloaded, and will be given two parameters: a query cursor and an error if there was one.
The query cursor is useful if you want to implement paging, because you can use that query
cursor to have CloudKit show the next 50 rows, then the next 50 rows, and so on.

We won't be using the cursor here, but we do want to know whether there was any error.
Additionally, error or not, we're going to be doing user interface work and this closure might
be run on any thread, so we need to push all the work onto the main thread.

And what is that work? Well, if there was no error we're going to overwrite our current
whistles array with the newWhistles array that was built up from downloaded records. We
also need to clear the dirty flag so we know the update was fetch, then reload the table view.
If there was an error, we'll show a UIAlertController with a meaningful message to help you
debug.

Here's the next part of loadWhistles():

www.hackingwithswift.com 777

operation.queryCompletionBlock = { [unowned self] (cursor, error) in

 dispatch_async(dispatch_get_main_queue()) {

 if error == nil {

 ViewController.dirty = false

 self.whistles = newWhistles

 self.tableView.reloadData()

 } else {

 let ac = UIAlertController(title: "Fetch failed", message:
"There was a problem fetching the list of whistles; please try again:
\(error!.localizedDescription)", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))

 self.presentViewController(ac, animated: true, completion: nil)

 }

 }

}

The last part of the method is the easiest: now that we've created a query, added it to a
CKQueryOperation, then configured its two closures to handle downloading data, it's just a
matter of asking CloudKit to run it. Put this at the end of the method, and you're done:

CKContainer.defaultContainer().publicCloudDatabase.addOperation(opera
tion)

At this point you're code is in a working state, so you should be able to run the app now and
see the whistle you submitted earlier listed in the table. If not, you should see an error that
gives you an idea of what went wrong. Some things to check:

 • Did you see your data in the CloudKit Dashboard?
 • Did you name your record type "Whistles" when writing and reading?
 • For the Metadata Indexes, did you select Query next to ID, and Sort next to Date Created?

www.hackingwithswift.com 778

 • Is your device definitely online?

www.hackingwithswift.com 779

Working with CloudKit records:
CKReference, fetchRecordWithID, and
saveRecord
I promised this was going to be a thorough CloudKit tutorial, and I'm going to keep that
promise over the next two chapters, starting here: we're going to learn about references and
records, as well as the fetchRecordWithID() convenience API.

So far, our app records whistles using AVAudioRecorder, submits it to CloudKit, then shows
all whistles into a table view. The next step is to let users tap a whistle that interests them so
they can see more information, and in our case that will show the user's comments, any
suggestions submitted by other users, and a Listen button that downloads the whistle.

The valuable thing about this screen is that it gives me a chance to show you the
CKReference class, which is used to link records together. Specifically, we're going to build
what's called a one-to-many relationship: one whistle can have many suggestions attached
to it. Using CKReference let us query to find all suggestions for a specific whistle, but it has
another brilliant advantage known as cascade deletes: if we delete a whistle from our
database, iCloud will automatically delete any suggestions that belong to it.

Now, an important warning: as each whistle holds multiple suggestions, and each suggestion
is just going to be a string saying something like "I think this is the theme tune from Star
Wars," you might be tempted to think "ah, that means our whistle should have an array of
strings attached to its record." If you try that, it'll work, and it'll work great – in testing. But
when it comes to shipping apps, this approach hits a core problem: conflicts.

A conflict occurs when CloudKit receives two sets of different information, and it's something
that record arrays are particularly prone to. You see, if I get the record and it has no
suggestions, I might write "that's the Star Wars theme tune." But before I hit Submit, you
also download the record, see that it has no suggestions, and write "That's totally the theme
tune to a big movie, but I can't remember which one," then hit Submit straight away. In
iCloud, that record is now updated to have your (quite useless!) suggestion, so when I submit
mine there's a conflict: I'm telling CloudKit the record has one suggestion (mine) and
CloudKit thinks it already had one suggestion (yours), so it isn't sure what to do.

Conflict resolution isn't something CloudKit handles for you, because the correct answer
depends on your app. In this case, the correct answer is to merge both the arrays, but really

www.hackingwithswift.com 780

the whole premise is bad – using arrays to reference child objects like this is a terrible idea.
This method of referencing is known as forward references, and as you can see it's error-
prone. A much better solution are back references, which are where our Whistle record
doesn't keep track of its suggestions; instead, the suggestions all know which whistle own it.
So, the references go from the child back to the parent, rather than from the parent forward
to its child.

Enough theory – time for action. Create a new UITableViewController subclass called
ResultsViewController. This will need to import AVFoundation so we can listen to whistles,
and also CloudKit so we can download whistle audio and any user suggestions. So, add
these imports now:

import AVFoundation

import CloudKit

The view controller will need three extra properties: a Whistle object that will pass in
whichever whistle object was selected in the main view controller, an array of strings for the
suggestions (these are not stored in the whistle record, remember!), and an AVAudioPlayer
object that will be used to play the downloaded whistle. Add these now:

var whistle: Whistle!

var suggestions = [String]()

var whistlePlayer: AVAudioPlayer!

Now let's talk about user interface. This is a UITableViewController subclass, because we
have structured data that fits neatly into a table view. It's going to have two sections: one for
showing the user's comments in big text, and one for showing user suggestions.

We're going to use titleForHeaderInSection to provide a title for the second section so that
users can see what it's supposed to do. More importantly, the second section is going to
have as many rows as there are suggestions, with one extra: a row that says "Add
suggestion" so that users can tap that and suggest their own matches for the whistle. That

www.hackingwithswift.com 781

last row will be the only one that responds to taps, so we'll set the selectionStyle of the
other cells to be .None.

All the cells in this table view wil have their numberOfLines property set to 0 so that lines
wrap, and we'll use UITableViewAutomaticDimension yet again to have table cells figure
out their height as needed. That explains all the code, but remember: watch out for the call to
max(), which ensures the second section always has room for the "Add suggestion" row. Put
this code into ResultsViewController.swift:

override func numberOfSectionsInTableView(tableView: UITableView) ->
Int {

 return 2

}

override func tableView(tableView: UITableView,
titleForHeaderInSection section: Int) -> String? {

 if section == 1 {

 return "Suggested songs"

 }

 return nil

}

override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 if section == 0 {

 return 1

 } else {

 return max(1, suggestions.count + 1)

 }

}

override func tableView(tableView: UITableView, cellForRowAtIndexPath

www.hackingwithswift.com 782

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 cell.selectionStyle = .None

 cell.textLabel?.numberOfLines = 0

 if indexPath.section == 0 {

 // the user's comments about this whistle

 cell.textLabel?.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleTitle1)

 if whistle.comments.characters.count == 0 {

 cell.textLabel?.text = "Comments: None"

 } else {

 cell.textLabel?.text = whistle.comments

 }

 } else {

 cell.textLabel?.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleBody)

 if indexPath.row == suggestions.count {

 // this is our extra row

 cell.textLabel?.text = "Add suggestion"

 cell.selectionStyle = .Gray

 } else {

 cell.textLabel?.text = suggestions[indexPath.row]

 }

 }

 return cell

}

www.hackingwithswift.com 783

override func tableView(tableView: UITableView,
estimatedHeightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

override func tableView(tableView: UITableView,
heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

At this point your iOS career, every line of that should be second nature – I'm only repeating
it here to help jog your memory. The real work happens when a user taps on the "Add
suggestion" table view cell. This code needs to show a UIAlertController with a text field
prompting the user to enter their suggestion. This code is a bit clumsy: if you haven't already
ready my addTextFieldWithConfigurationHandler tutorial that was inside project 5, that's a
good place to start.

To summarise, here's what we're going to do:

 • We're going to hook into the didSelectRowAtIndexPath method of our table view, which
will be triggered when any row is tapped.
 • If the row that was tapped was not the last row in the second section (the "Add
suggestion" row) we'll exit the method.
 • We'll create a UIAlertController in the style .Alert, then add a text field to it.
 • We'll add a Submit button to the alert that, when tapped, will submit the suggestion if the
text field has any text.
 • Because we configure the text field in one closure and submit it in another, we need to
create it outside of both – just like in project 5.
 • As an added touch, we're going to deselect the row that was tapped, making it highlighted
only temporarily.

Here's the code:

override func tableView(tableView: UITableView,

www.hackingwithswift.com 784

didSelectRowAtIndexPath indexPath: NSIndexPath) {

 guard indexPath.section == 1 && indexPath.row == suggestions.count
else { return }

 tableView.deselectRowAtIndexPath(indexPath, animated: true)

 let ac = UIAlertController(title: "Suggest a song…", message: nil,
preferredStyle: .Alert)

 var suggestion: UITextField!

 ac.addTextFieldWithConfigurationHandler { (textField) -> Void in

 suggestion = textField

 textField.autocorrectionType = .Yes

 }

 ac.addAction(UIAlertAction(title: "Submit", style: .Default)
{ (action) -> Void in

 if suggestion.text?.characters.count > 0 {

 self.addSuggestion(suggestion.text!)

 }

 })

 ac.addAction(UIAlertAction(title: "Cancel", style: .Cancel,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

Don't worry that self.addSuggestion(suggestion.text!) will error at this point – we haven't
written that yet. As I mentioned in my what's new in Swift 2 article, Swift 2 measures strings
using characters.count – a huge improvement, in my opinion.

It's time for some CloudKit action again, and this time we're going to be using the

www.hackingwithswift.com 785

CKReference class to link a user's suggestion to the whistle they were reading about. When
you create a CKReference you need to provide it two things: a record ID to link to, and a
behavior to trigger when that linked record is deleted. We already have the record ID to link
to because we're storing it in the whistle property, and for the action to trigger we'll
use .DeleteSelf – when the parent whistle is deleted, delete the child suggestions too.

CKReferences, like CKAssets, can be placed directly into a CKRecord, which means the
first part of addSuggestion() is easy:

func addSuggestion(suggest: String) {

 let whistleRecord = CKRecord(recordType: "Suggestions")

 let reference = CKReference(recordID: whistle.recordID,
action: .DeleteSelf)

 whistleRecord["text"] = suggest

 whistleRecord["owningWhistle"] = reference

 // more code to come!

}

Note that I'm using the name "Suggestions" as the record type for our user suggestions, and
owningWhistle as the key for that reference value.

The second part of addSuggestion() isn't much more difficult, because we'll use
saveRecord() to post that new record back to iCloud, then check for errors.

Remember: CloudKit tells us when the save completes by executing our code as a closure,
and that could be running on any thread. We want to either reload the table view or show a
message depending on whether there was an error, but regardless this work needs to be
pushed to the main thread as it involves user interface changes.

Here's the second part of addSuggestion() – put this where the more code to come!
comment is:

CKContainer.defaultContainer().publicCloudDatabase.saveRecord(whistle

www.hackingwithswift.com 786

Record) { [unowned self] (record, error) -> Void in

 dispatch_async(dispatch_get_main_queue()) {

 if error == nil {

 self.suggestions.append(suggest)

 self.tableView.reloadData()

 } else {

 let ac = UIAlertController(title: "Error", message: "There was
a problem submitting your suggestion: \
(error!.localizedDescription)", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))

 self.presentViewController(ac, animated: true, completion: nil)

 }

 }

}

Note that I append the user's new suggestion to the existing suggestions array so they see
it has been posted successfully.

There are two more tasks to do before this view controller is complete. First, when the view is
loaded, we need to fetch the existing list of user suggestions and show them in the table.
Second, we need to let users download and listen to each whistle so they can try to guess
what it is.

To download all suggestions that belong to a particular whistle we need to create another
CKReference, just like before. We can then pass that into an NSPredicate that will check for
suggestions where owningWhistle matches that predicate. This time we're going to sort by
creationDate ascending so that oldest suggestions appear first, but otherwise this isn't
tricky – here's the first part of the new viewDidLoad() method:

override func viewDidLoad() {

 super.viewDidLoad()

 title = "Genre: \(whistle.genre)"

www.hackingwithswift.com 787

 title = "Genre: \(whistle.genre)"

 navigationItem.rightBarButtonItem = UIBarButtonItem(title:
"Download", style: .Plain, target: self, action: "downloadTapped")

 tableView.registerClass(UITableViewCell.self,
forCellReuseIdentifier: "Cell")

 let reference = CKReference(recordID: whistle.recordID, action:
CKReferenceAction.DeleteSelf)

 let pred = NSPredicate(format: "owningWhistle == %@", reference)

 let sort = NSSortDescriptor(key: "creationDate", ascending: true)

 let query = CKQuery(recordType: "Suggestions", predicate: pred)

 query.sortDescriptors = [sort]

 // more code to come!

When it comes to running this query, we can aren't going to take the same approach from
the last chapter: CKQueryOperation isn't needed here because we want all the fields, which
means we can use the much easier convenience API: performQuery(). Tell this method what
query to run and where it should be run (or nil for the default), and it will return back either
results or an error.

The remainder of viewDidLoad() is easy thanks to this convenience API, although I have
cheated a bit by calling out to an as-yet unwritten parseResults() method. Here it is:

CKContainer.defaultContainer().publicCloudDatabase.performQuery(query
, inZoneWithID: nil) { [unowned self] (results, error) -> Void in

 if error == nil {

 if let results = results {

 self.parseResults(results)

 }

 } else {

 print(error!.localizedDescription)

www.hackingwithswift.com 788

 print(error!.localizedDescription)

 }

}

If that fails to fetch the suggestions, it prints a message to the Xcode log – see if you can
have a go at making it a bit smarter.

The last step in handling suggestions is to write that parseResults method. This gets called
once the record results array has been unwrapped, so we know we'll definitely get a list of
records through. It's then just a matter of looping through that array, pulling out the text
property of each record, and adding it to our suggestions string array. To make things safer
on multiple threads, we'll actually use an intermediate array called newSuggestions – it's
never smart to modify data in a background thread that is being used on the main thread.

Here's the parseResults() method:

func parseResults(records: [CKRecord]) {

 var newSuggestions = [String]()

 for record in records {

 newSuggestions.append(record["text"] as! String)

 }

 dispatch_async(dispatch_get_main_queue()) {

 self.suggestions = newSuggestions

 self.tableView.reloadData()

 }

}

The final task for this view controller is to let users download and listen to whistles from other
users. We already set up a right bar button item named "Download" in viewDidLoad(), but
we haven't yet written the downloadTapped() method it will call.

www.hackingwithswift.com 789

This new method needs to:

1. Replace the button with a spinner so the user knows the data is being fetched.
2. Ask CloudKit to pull down the full record for the whistle, including the audio.
3. If it successfully gets audio for the whistle, attach it to the Whistle object of this view
controller.
4. Create a new right bar button item that says "Listen" and will call listenTapped().
5. If something goes wrong, show a meaningful error message and put the Download button
back.

Fetching whole records is done through a simple CloudKit convenience API:
fetchRecordWithID(). Once that fetches the complete whistle record, we can pull out the
CKAsset and read its fileURL property to know where CloudKit downloaded it to. Please
note: this download is just a cache – CloudKit will automatically remove downloaded files at
a later date.

Remember, all user interface work needs to be pushed onto the main thread, and you should
be careful to handle your CloudKit errors properly. I put a comment in this code that you
should replace with an error of your choosing – don't forget!

Here's the downloadTapped() method:

func downloadTapped() {

 let spinner = UIActivityIndicatorView(activityIndicatorStyle:
UIActivityIndicatorViewStyle.Gray)

 spinner.tintColor = UIColor.blackColor()

 spinner.startAnimating()

 navigationItem.rightBarButtonItem = UIBarButtonItem(customView:
spinner)

CKContainer.defaultContainer().publicCloudDatabase.fetchRecordWithID(
whistle.recordID) { [unowned self] (record, error) -> Void in

 if error == nil {

 if let record = record {

 if let asset = record["audio"] as? CKAsset {

www.hackingwithswift.com 790

 if let asset = record["audio"] as? CKAsset {

 self.whistle.audio = asset.fileURL

 dispatch_async(dispatch_get_main_queue()) {

 self.navigationItem.rightBarButtonItem =
UIBarButtonItem(title: "Listen", style: .Plain, target: self, action:
"listenTapped")

 }

 }

 }

 } else {

 dispatch_async(dispatch_get_main_queue()) {

 // meaningful error message here!

 self.navigationItem.rightBarButtonItem =
UIBarButtonItem(title: "Download", style: .Plain, target: self,
action: "downloadTapped")

 }

 }

 }

}

There's only one more thing to do before this view controller is complete, and that's to write
the listenTapped() method. This is almost identical to the "Tap to Play" button we already
used in RecordWhistleViewController, so I'm not going to explain what it does here:

func listenTapped() {

 do {

 whistlePlayer = try AVAudioPlayer(contentsOfURL: whistle.audio)

 whistlePlayer.play()

 } catch {

 let ac = UIAlertController(title: "Playback failed", message:
"There was a problem playing your whistle; please try re-recording.",

www.hackingwithswift.com 791

preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

 }

}

That's ResultsViewController complete. All you need to do now is go back to
ViewController.swift and tell it to show a new ResultsViewController when any whistle is
tapped, passing in the Whistle object so it knows what to show:

func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {

 let vc = ResultsViewController()

 vc.whistle = whistles[indexPath.row]

 navigationController?.pushViewController(vc, animated: true)

}

Go ahead and run the app now, then submit a suggestion for your whistle. Once that's done,
go to the CloudKit Dashboard to make sure the record type was created as expected (i.e.,
that everything works!), then check the Metadata Indexes boxes next to Query for ID and
Sort for Date Created, just like you did for Whistles.

www.hackingwithswift.com 792

Delivering notifications with CloudKit
push messages: CKSubscription and
saveSubscription
You're probably feeling very tired at this point: this has been a long tutorial and you've had to
learn a lot. Fortunately, this last chapter is a bonus – you don't need to read this to have a
great CloudKit app, but I do add some neat CloudKit technologies here that make the whole
experience better.

So far, the app lets users record a whistle using AVAudioRecorder, send it off to CloudKit,
download whistles others have posted, then write suggestions for what song they think it is.
What we're going to add now is the ability for users to register themselves as experts for
particular genres - they can say "I know all about jazz and blues music." When they do that,
we'll automatically tell them when a new whistle has been posted in one of those categories,
and they can jump right into the app to have a go at identifying it.

We're going to do this with one of the most important technologies in iOS, called push
notifications. These are alerts that are delivered straight to the lock screens of users
whenever something interesting happens, and the app usually isn't running at the time. Push
is so important to iOS that it comes built into CloudKit, and it's done so elegantly that this
tutorial will be over in no time. In short: don't worry, the end is in sight!

Create a new UITableViewController subclass called MyGenresViewController. Add a
CloudKit import to it, then add this property:

var myGenres: [String]!

We'll use that to track the list of genres the user considers themself an expert on.

Before we starting adding code to this new view controller, we need to make two small
changes in ViewController.swift. First, add this in viewDidLoad():

navigationItem.leftBarButtonItem = UIBarButtonItem(title: "Genres",
style: .Plain, target: self, action: "selectGenre")

www.hackingwithswift.com 793

Second, add the following method that allows users to choose genres:

func selectGenre() {

 let vc = MyGenresViewController()

 navigationController?.pushViewController(vc, animated: true)

}

Now, back to MyGenresViewController.swift. We can split this code into two parts: all the bits
that handle users selecting their experts genres and saving that list, and the CloudKit part
that tells iCloud we want to be notified when a new whistle has been published that might be
of interest to this user.

Letting the user choose which genres interest them is easy: we're going to use
NSUserDefaults to save an array of their expert genres. If there isn't one already saved, we'll
create an empty array. We're also going to use a right bar button item with the title "Save"
that handles the CloudKit synchronization. More on that later; for now, here's the
viewDidLoad() method that handles loading saved genres:

override func viewDidLoad() {

 super.viewDidLoad()

 let defaults = NSUserDefaults.standardUserDefaults()

 if let savedGenres = defaults.objectForKey("myGenres") as? [String]
{

 myGenres = savedGenres

 } else {

 myGenres = [String]()

 }

 title = "Notify me about…"

 navigationItem.rightBarButtonItem = UIBarButtonItem(title: "Save",

www.hackingwithswift.com 794

 navigationItem.rightBarButtonItem = UIBarButtonItem(title: "Save",
style: .Plain, target: self, action: "saveTapped")

 tableView.registerClass(UITableViewCell.self,
forCellReuseIdentifier: "Cell")

}

When it comes to how many sections and rows we have, we're going to specify 1 and the
value of SelectGenreViewController.genres.count – that static property contains all the
genres used in the app, so re-using it here is perfect:

override func numberOfSectionsInTableView(tableView: UITableView) ->
Int {

 return 1

}

override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return SelectGenreViewController.genres.count

}

Now for the interesting part: we want users to be able to tap on rows that they like, and have
iOS show a checkmark next to them. Once a genre is added to the myGenres array, we can
check whether it's in there using the contains() of that array – if the array contains the genre,
we put a check next to it.

Here's the cellForRowAtIndexPath method that does just that:

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 let genre = SelectGenreViewController.genres[indexPath.row]

www.hackingwithswift.com 795

 let genre = SelectGenreViewController.genres[indexPath.row]

 cell.textLabel?.text = genre

 if myGenres.contains(genre) {

 cell.accessoryType = .Checkmark

 } else {

 cell.accessoryType = .None

 }

 return cell

}

The other part of this approach is catching didSelectRowAtIndexPath so that we check and
unchecks rows as they are tapped, adding and removing them from the myGenres array as
necessary. Adding things to an array is as simple as calling the append() method on the
array, but removing takes a little more hassle: we need to use indexOf() to find the location of
an item in the array, and if that returns a value then we use removeAtindex() to remove the
item from the array at that index.

As a finishing touch, we'll call deselectRowAtIndexPath() to deselect the selected row, so it
highlights only briefly. That's all there is to it – here's the didSelectRowAtIndexPath method:

override func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath) {

 if let cell = tableView.cellForRowAtIndexPath(indexPath) {

 let selectedGenre =
SelectGenreViewController.genres[indexPath.row]

 if cell.accessoryType == .None {

 cell.accessoryType = .Checkmark

 myGenres.append(selectedGenre)

 } else {

 cell.accessoryType = .None

www.hackingwithswift.com 796

 cell.accessoryType = .None

 if let index = myGenres.indexOf(selectedGenre) {

 myGenres.removeAtIndex(index)

 }

 }

 }

 tableView.deselectRowAtIndexPath(indexPath, animated: false)

}

And now for the challenging part: when users click Save, we want to write their list of genres
to NSUserDefaults, then send them all to iCloud. Then, when new whistles arrive that match
a user's selected genres, we want to notify them with a push message.

Thanks to what was I'm sure many months of effort from Apple engineers, registering for
push messages is a breeze thanks to a class called CKSubscription. This lets you configure
a query to run on the iCloud servers, and as soon as that query matches something it will
automatically trigger a push message. In our case, that query will be "when anyone publishes
a whistle in a genre we care about."

But first: we need to flush out any existing subscriptions so that we don't get duplicate
errors. In the interests of keeping it brief, the easiest way to do this is by calling
fetchAllSubscriptionsWithCompletionHandler() to fetch all CKSubscriptions, then
passing each of them into deleteSubscriptionWithID(). As always, it's up to you to do useful
error handling – I've done it enough for you already, so you're most of the way there.

Note: the two parameters you get from fetchAllSubscriptionsWithCompletionHandler() are
an optional array of subscriptions and an error if one occurred. You need to unwrap the
optional array, because the user might not have any subscriptions. Here's an initial version of
saveTapped():

func saveTapped() {

 let defaults = NSUserDefaults.standardUserDefaults()

 defaults.setObject(myGenres, forKey: "myGenres")

www.hackingwithswift.com 797

 defaults.setObject(myGenres, forKey: "myGenres")

 let database = CKContainer.defaultContainer().publicCloudDatabase

 database.fetchAllSubscriptionsWithCompletionHandler() { [unowned
self] (subscriptions, error) -> Void in

 if error == nil {

 if let subscriptions = subscriptions {

 for subscription in subscriptions {

database.deleteSubscriptionWithID(subscription.subscriptionID,
completionHandler: { (str, error) -> Void in

 if error != nil {

 // do your error handling here!

 print(error!.localizedDescription)

 }

 })

 }

 // more code to come!

 }

 } else {

 // do your error handling here!

 print(error!.localizedDescription)

 }

 }

}

Again, please do put in some user-facing error messages telling users what's going on – they
won't see the Xcode log messages, and it's important to keep them informed.

There's just one more thing to do before this entire project is done, and that's registering

www.hackingwithswift.com 798

subscriptions with iCloud and handling the result. You tell it what condition to match and
what message to send, then call the saveSubscription() method, and you're done – iCloud
takes care of the rest. Normally you'd need to opt into push messages and create a push
certificate, but again Xcode and iCloud have taken away all this work when you enabled
CloudKit what feels like long ago.

To make this work, we're going to loop through each string in the myGenres array, create a
predicate that searches for it, then use that to create a CKSubscription using the
option .FiresOnRecordCreation. That means we want this subscription to be informed when
any record is created that matches our genre predicate.

If you want to attach a visible message to a push notification, you need to create a
CKNotificationInfo object and set its alertBody property. If you want an invisible push (one
that launches your app in the background silently) you should set
shouldSendContentAvailable to be true instead.

We're going to set a notification message that contains the genre that changed by using
Swift's string interpolation. We're also going to use the value
UILocalNotificationDefaultSoundName for the soundName property, which will trigger the
default iOS tri-tone sound when the message arrives. With that done, we can call
saveSubscription() to send it off to iCloud, then handle any error messages that come back.

That's it – here's the code to put in place of the more code to come! comment:

for genre in self.myGenres {

 let predicate = NSPredicate(format:"genre = %@", genre)

 let subscription = CKSubscription(recordType: "Whistles",
predicate: predicate, options: .FiresOnRecordCreation)

 let notification = CKNotificationInfo()

 notification.alertBody = "There's a new whistle in the \(genre)
genre."

 notification.soundName = UILocalNotificationDefaultSoundName

 subscription.notificationInfo = notification

www.hackingwithswift.com 799

 database.saveSubscription(subscription) { (result, error) -> Void
in

 if error != nil {

 print(error!.localizedDescription)

 }

 }

}

If you run the app now you'll be able to save your genre preferences and send them off to
iCloud, but you won't get any push messages through just yet. That's because although
iCloud is now totally configured to send push messages when interesting things happened,
the user hasn't opted in to receive them. As you might imagine, Apple doesn't want to send
push messages to users who haven't explicitly opted in to receive them, so we need to ask
for push message permission.

When you request permission to show notifications (local or remote) Apple will display a screen

www.hackingwithswift.com 800

like this one.

Go to AppDelegate.swift and put this code into the didFinishLaunchingWithOptions
method:

let notificationSettings = UIUserNotificationSettings(forTypes:
[.Alert, .Sound], categories: nil)

UIApplication.sharedApplication().registerUserNotificationSettings(no
tificationSettings)

UIApplication.sharedApplication().registerForRemoteNotifications()

The first line sets up a UIUserNotificationSettings object that says we want to show an alert
and play a sound. The second line is what asks the user "do you want to let this app send
you push messages?" The third line is what connects your phone to iCloud via the Apple
Push Notification Service, or APNS – it registers your unique device token with iCloud so that
you can be notified when something happens.

For the sake of completion, you could optionally also catch the
didReceiveRemoteNotification message sent to your app delegate, which is called if a
push message arrives while the app is running. Something like this ought to do the trick:

func application(application: UIApplication,
didReceiveRemoteNotification userInfo: [NSObject : AnyObject]) {

 if let pushInfo = userInfo as? [String: NSObject] {

 let notification =
CKNotification(fromRemoteNotificationDictionary: pushInfo)

 let ac = UIAlertController(title: "What's that Whistle?",
message: notification.alertBody, preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 if let nc = window?.rootViewController as? UINavigationController
{

 if let vc = nc.visibleViewController {

www.hackingwithswift.com 801

 if let vc = nc.visibleViewController {

 vc.presentViewController(ac, animated: true, completion: nil)

 }

 }

 }

}

Make sure you add the usual CloudKit import to your app delegate in order for that to
compile.

That's it. No, really – this epic project is now done. Go ahead and run the app on a real iOS
device, register for certain genres, then quit the app – unplug your phone, lock it, and put it
to one side. Now launch the app in the simulator and create a new whistle in one of the genre
you just marked, and you'll get your push.

www.hackingwithswift.com 802

Wrap up
This was an epic tutorial: epic in length, epic in breadth, and I hope you'll agree epic in what
we've accomplished. You've built another real app, you've learned about AVAudioRecorder,
CKQuery, CKRecord, CKAsset, CKQueryOperation, CKSubscription, NSPredicate,
NSSortDescriptor and more, while also having some bonus practise working with
UIStackView, UITableView and NSAttributedString.

So yes, the tutorial was long, but even though you're tired I'd like to think you're pleased with
the end result. Take a break, perhaps even a couple of days, then come back and have a
think about how you could improve this project. It's so big there are lots of possibilities, not
least:

 • ViewController is a subclass of UIViewController rather than UITableViewController.
Make it show something useful while fetching the iCloud records rather than just a blank
table.
 • If the iCloud fetch fails, we tell the user. How about adding a "Retry" button to the user
interface?
 • We made the Whistle class inherit from NSObject. Can you make it conform to the
NSCoding protocol? You might find my guide to NSCoding and NSUserDefaults in Swift
useful.
 • Fix the AddCommentsViewController class so that it correctly adjusts the text view when
the keyboard appears. I already showed you how to do this in my tutorial on adjusting the
keyboard uising NSNotificationCenter.
 • Stop people from posting too many line breaks in their comments, or at least trim the
comments when shown in the main table view.

Of course, the other thing you could do is perhaps the most important of all: go back through
all your code and make sure you handle CloudKit errors gracefully. Seriously, put your hand
in the air and repeat after me: I promise to show meaningful iCloud errors to my users. Now, I
know you didn't actually do that, but you really ought to at least mean it. As Apple has said,
handling errors is the difference between working apps and non-working apps, and you don't
want a non-working app, do you?

www.hackingwithswift.com 803

Project 34
Four in a Row
Let iOS take over the AI in your games using new iOS 9
GameplayKit features.

www.hackingwithswift.com 804

Setting up
One of the most powerful features Apple introduced in iOS 9 is called GameplayKit. It's a
library designed to handle non-drawing game functionality such as artificial intelligence, path
finding and randomness, and it is pretty dazzling in its scope, so I was really looking forward
to write a tutorial about it.

In this project, we're going to create a Four-in-a-Row (4IR) game, and I'm going to be honest
with you: I've cheated a bit. You see, Apple already released some sample code for a 4IR
game based on GameplayKit, and it works pretty well. Why, then, am I choosing to write a
tutorial based on it? Well, for some reason known only to Apple, the source code for the
project isn't up to their usual standard. Not only is it in Objective C, but it includes C
functions like memcpy(), it uses CABasicAnimation and CAShapeLayer when regular
UIView functionality would do, and includes a 90-line method to detect wins that can be
replaced with code a third that size and easier to understand.

Frustrating things further, this sample code is what's used to document GameplayKit, so
you're kind of stuck trying to learn about a very large new technology while studying an
unfriendly project, or reading the documentation… that's about the same unfriendly project. I
wanted to produce a project that was easier to understand and easier to learn, then produce
a tutorial that explained how it all worked.

So, I took the Objective C code and rewrote it in Swift. I then simplified the structure to make
it more useful for learners, renamed some methods to make more sense, then cleaned up the
user interface. Where it wasn't too strange I have tried to keep Apple's original structure, so if
you choose to check out their original source code you won't be too lost – look for
FourInARow in the Apple sample code. I accept any and all blame for bugs introduced in the
Swift conversion process: if you spot any problems, let me know on Twitter @twostraws
and I'll get them fixed.

You might well say, "well, if you didn't like the 4IR game, how about Apple's DemoBots
sample code? That's really cool, and it uses GameplayKit!" Yes, it does use GameplayKit.
But it's also made up of 84 Swift files, 6,952 images, 14 SKS files for effects and scenes, and
a custom shader. Cool: yes. Easy to learn from: not really. By all means download it, but this
tutorial is aimed at people just getting started with GameplayKit.

Please note: this is a Hacking with Swift Level 2 project, which means I expect you to have
finished projects 1-30 first. If you have not done so, please click here now, then return here
when you've levelled up. They are all free, so there's nothing holding you back.

www.hackingwithswift.com 805

So, please go ahead and create a new project in Xcode 7, choosing the Single View
Application template. Name it Project 34, choose Swift for your language, and iPad for the
device. When it's created, please lock the app orientation to landscape.

www.hackingwithswift.com 806

Creating the interface with UIStackView
Once you start using UIStackView it's hard to stop, so naturally I wanted it in this project
even though we're making a game. The nature of 4IR games is that you have rows and
columns, and we're going to create a UIStackView to host the columns. If I didn't want to
animate the chips falling into the board we'd be using stack views for the columns too!

Open Main.storyboard in Interface Builder, then embed the existing view controller inside a
navigation controller. Now select the navigation controller you just created, find its Navigation
Bar in the document outline, then deselect Translucent in the attributes inspector – we don't
want our game going behind the navigation bar, after all.

From the object library drag a Horizontal Stack View into your view controller, then resize it to
fill the entire view up to the bottom of the navigation bar. When that's done, go to Editor >
Resolve Auto Layout Issues > Reset to Suggested Constraints to add in the Auto Layout
constraints required to keep it filling the view.

Now drag seven buttons into the stack view. By default, the stack view will show the first one
large and all the others as small as possible, but you should select the stack view, go to the
attributes inspector, then change Distribution to Fill Equally. While you're there, give Spacing
a value of 2.

These seven buttons will be used to store the columns in our game, so to make them stand
out I'd like you to select them all and give them all a white background color. Button
background color is quite a way down the attributes inspector, so you will need to scroll to
find it. Now clear the text for all the buttons, making them just large white spaces that
respond to taps.

Now I need you to select each of the buttons in order and give them increasing Tag values.
The one on the far left can keep its Tag of 0, but the second one should have a Tag of 1, then
2, 3, 4, 5 and 6. This will be used to identify which button was tapped later on.

To make the buttons stand out as columns, select the view itself (you might need to use the
document outline view for this) then give it a gray background color. Don't try to give the
stack view a background color – it's doesn't actually do any drawing, so your background
color will be ignored.

www.hackingwithswift.com 807

Your user interface should have seven buttons inside a stack view, placed over a gray
background.

There are two more things to do in Interface Builder before we can get on with some code.
The first is to create IBOutlets for those buttons so we can control them from code, but
rather than create individual outlets we're going to use something called an
IBOutletCollection. These are just IBOutlet arrays that work like normal Swift arrays, except
in IB you connect multiple outlets to the same thing.

To create an outlet collection, switch to the assistant editor by pressing Alt+Cmd+Return,
then Ctrl+drag from the first button on the left from IB into your source code, just before the
viewDidLoad() line. When you release the action/outlet menu will appear, and I'd like you to
choose Outlet Collection. Note: if you see only Outlet and Outlet Collection in the list (i.e.,
Action is missing) it means you probably selected the stack view rather than a button, so try
again!

Name the outlet collection columnButtons and click Connect. Now Ctrl+drag from the other
six buttons, but this time connect them to the same @IBOutlet that was just created – you
need to hover over the var columnButtons: [UIButton]! part in order for this to work.

www.hackingwithswift.com 808

Creating an IBOutletCollection in Interface Builder puts all your outlets into a single array.

The second change to make is to hook up an IBAction for those buttons. We set each of
them to have their own Tag because we're going to use the same action for seven buttons –
the tag will be used to figure out which button was tapped.

So, Ctrl+drag from the first button into some free space below
didReceiveMemoryWarning(), then create an action called makeMove. Make sure you
change the Type value to be UIButton rather than AnyObject – this will be used later. Now
Ctrl+drag from the other six buttons onto that makeMove() method, and we're done with
Interface Builder.

www.hackingwithswift.com 809

Preparing for basic play
We're going to put together the absolute basics required to represent a 4IR game on iOS.
Because of the way GameplayKit works, it's especially important to keep a good separation
between your model (the state of the game) and your view (how things look). Over the course
of this project we're going to produce three different data models: one for the game board
(stores the complete game state), one for players (for storing their color and name), and one
for a "move" – used when it comes to building an AI.

We're going to start with the game board now, so add a new file to the project: choose
Cocoa Touch Class and click Next, name it Board and make it subclass from NSObject, then
click Next and Create.

To begin with, this Board class is just going to have two properties: one for tracking the
width of the board, and one to track the height. We'll be adding more later, but for now add
these two:

static var width = 7

static var height = 6

Now go back to ViewController.swift. Like I said, there's an important distinction between the
model and the view. That Board class will hold our model, which means it will store where all
the chips are and who is winning. This view controller will store its own array of where the
chips are, but it does this so it can draw the view correctly.

A "chip" in this case is a 4IR piece, either red or black. We'll be using UIViews for this
purpose, setting a high corner radius so they look like circles – it's a simple trick, but
effective. To store this, we'll need an array of arrays. That is, we'll need an array to store each
column, and another array to hold all those column arrays. We're also going to add a
property to store a Board object, using that class we just created. So, add these two
properties to ViewController.swift:

var placedChips = [[UIView]]()

var board: Board!

www.hackingwithswift.com 810

When the game is first run, we need to populate that placedChips property with empty
arrays. When a game is started, we'll wipe those arrays (removing any views that were
added), and also create a new game board to track progress. This is all done in two
methods: viewDidLoad() to do the initial set up, and resetBoard() to create the game board
variable and clear out any views from the previous game. Add these two now:

override func viewDidLoad() {

 super.viewDidLoad()

 for _ in 0 ..< Board.width {

 placedChips.append([UIView]())

 }

 resetBoard()

}

func resetBoard() {

 board = Board()

 for i in 0 ..< placedChips.count {

 for chip in placedChips[i] {

 chip.removeFromSuperview()

 }

 placedChips[i].removeAll(keepCapacity: true)

 }

}

There won't be any views to clear out in the first run of that method, but we'll be adding more
to the resetBoard() method later so it makes sense to call it during the first run.

www.hackingwithswift.com 811

to the resetBoard() method later so it makes sense to call it during the first run.

Now for some complicated coding: we need to give the gameboard enough logic to keep
track of chips. We need to make the Board class do five new things:

1. Report what chip is at a specific row and column.
2. Set a particular slot to contain a chip, i.e. "make row 4 column 3 a red chip."
3. Determine whether the player can make a move in a column.
4. Find the next empty slot in a column, which is where a chip would land if it were dropped
in there.
5. Add a chip to a column at the next available space.

On top of that, we also need to create the default array of slots, which will be filled with
blanks to begin with.

First up, though, we need to define a new enum that will be used to store the current state of
each slot. A slot can either contain a red chip, a black chip, or no chip, so we're going to
encapsulate that in an enum called ChipColor. Put this enum in Board.swift, just before the
class definition:

enum ChipColor: Int {

 case None = 0

 case Red

 case Black

}

Note that I have given it a raw type of Int, then given the first value a specific number: 0.
When you do this, Swift will assign the following values an auto-incremented number, which
means Red will be 1 and Black will be 2. This will be important later!

With that enum defined, we can create an array of ChipColors, and initialize it when the
class is instantiated. Add this property and method to the Board class:

var slots = [ChipColor]()

override init() {

www.hackingwithswift.com 812

override init() {

 for _ in 0 ..< Board.width * Board.height {

 slots.append(.None)

 }

 super.init()

}

This array has only one dimension, which means it's a regular array rather than an array of
arrays. One-dimensional arrays are less easy to work with but significantly faster, which is
important because we'll be using this array a lot in this project.

The custom init() method pre-fills the array with .None, which means all the slots have no
chip in them by default, as you would expect.

Now that we have a slots array, we can create the two most frequently used methods in this
game: chipInColumn() and setChip(). The first is used to read the chip color of a specific
slot, and the second is used to set the chip color of a specific slot. As slots is a one-
dimensional array, you need to do a small amount of maths to find the correct row/column:
you multiply the column number by the height of the board, then add the row.

Add these two methods to the Board class:

func chipInColumn(column: Int, row: Int) -> ChipColor {

 return slots[row + column * Board.height]

}

func setChip(chip: ChipColor, inColumn column: NSInteger, row:
NSInteger) {

 slots[row + column * Board.height] = chip;

}

www.hackingwithswift.com 813

Those two methods will be used extensively to check what moves are valid, so it's good to
keep them as small as possible.

Next up: determining whether a player can place a chip in a column. To make this work,
we're going to use a helper method called nextEmptySlotInColumn(), which will return the
first row number that contains no chips in a specific column. With that helper method in
place, we can check whether a player can move in a column just by checking to see if there
is an empty slot there.

The nextEmptySlotInColumn() helper method works by counting up in a column, from 0 up
to the height of the board. For every slot, it calls chipInColumn() to see what chip color is
there already, and if it gets back .None it means that row is good to use. If it gets to the end
of the board without finding a .None it will return nil – this column has no free slots.

Here's the code:

func nextEmptySlotInColumn(column: Int) -> Int? {

 for row in 0 ..< Board.height {

 if chipInColumn(column, row: row) == .None {

 return row

 }

 }

 return nil;

}

As promised, figuring out whether a player can play a particular column is now easy: we just
call nextEmptySlotInColumn() and check whether it returns nil or not, like this:

func canMoveInColumn(column: Int) -> Bool {

 return nextEmptySlotInColumn(column) != nil

}

www.hackingwithswift.com 814

The last method we need to add to our model at this time is addChip(), which blends two of
our above methods: find the next available slot in a column using
nextEmptySlotInColumn(), and if the result is not nil then use setChip() to change that
slot's color. Here it is:

func addChip(chip: ChipColor, inColumn column: Int) {

 if let row = nextEmptySlotInColumn(column) {

 setChip(chip, inColumn:column, row:row)

 }

}

Annoyingly, all that code doesn't have any visual impact on our game: this is all model stuff,
which is the behind-the-scenes representation how the game works. We have three other
methods to write in ViewController.swift in order to update our view to match the model! I
realise this seems like unnecessary duplication, but as you'll see later it's important to keep
your GameplayKit classes as light as possible.

The first of our new methods is called addChipAtColumn() and it matches the board's
addChip() method. Adding a chip in the view takes more than just three lines of code,
though: it needs to calculate the size of a chip, create a UIView with the correct background
color, position it correctly inside the board, then add it to the placedChips array.

To make doubly certain the movie is safe, we're only going to add a chip if the row is set
correctly – i.e., if we aren't trying to add a chip below the existing row height. We're also
going to animate the transform property of the chip view so that it starts off the top of the
screen and slides in. Here's the code to put into the ViewController class – note that you'll
get an error for the time being:

func addChipAtColumn(column: Int, row: Int, color: UIColor) {

 let button = columnButtons[column]

 let size = min(button.frame.size.width, button.frame.size.height /
6)

 let rect = CGRect(x: 0, y: 0, width: size, height: size)

www.hackingwithswift.com 815

 let rect = CGRect(x: 0, y: 0, width: size, height: size)

 if (placedChips[column].count < row + 1) {

 let newChip = UIView()

 newChip.frame = rect

 newChip.userInteractionEnabled = false

 newChip.backgroundColor = color

 newChip.layer.cornerRadius = size / 2

 newChip.center = positionForChipAtColumn(column, row: row)

 newChip.transform = CGAffineTransformMakeTranslation(0, -800)

 view.addSubview(newChip)

 UIView.animateWithDuration(0.5, delay: 0, options: .CurveEaseIn,
animations: { () -> Void in

 newChip.transform = CGAffineTransformIdentity

 }, completion: nil)

 placedChips[column].append(newChip)

 }

}

There are three other small things in that code I want to pick out as interesting. First, user
interaction is disabled on the view so that tapping on a chip is ignored and the tap is pass
through to its column button. Second, the corner radius of the chip is set to size / 2, which
will make it a circle. Finally, I've used the .CurveEaseIn animation speed so that the chip
starts dropping slowly and picks up pace.

The error in the code is that it calls a method we haven't defined yet, called
positionForChipAtColumn(). We'll call this method with a row and a column, and it will
return the CGPoint where the chip should be placed. This uses six lines of code that make
sense once they have been explained, but might make you draw a blank at first. So, here's
how it works:

www.hackingwithswift.com 816

1. It pulls out the UIButton that represents the correct column.
2. It sets the chip size to be either the width of the column button, or the height of the
column button divided by six (for six full rows) – whichever is the lowest.
3. It uses CGRectGetMidX() to get the horizontal center of the column button, used for the X
position of the chip.
4. It uses CGRectGetMaxY to get the bottom of the column button, then subtracts half the
chip size because we're working with the center of the chip.
5. It then multiplies the row by the size of each chip to figure out how far to offset the new
chip, and subtracts that from the Y position calculated in 4.
6. Finally, it creates a CGPoint return value by putting together the X offset calculated in step
3 with the Y offset calculated in step 5.

It's not a graceful piece of code, I'll give you that, but once you understand what it's doing
it's innocent enough.

Here's the code for the missing method:

func positionForChipAtColumn(column: Int, row: Int) -> CGPoint {

 let button = columnButtons[column]

 let size = min(button.frame.size.width, button.frame.size.height /
6)

 let xOffset = CGRectGetMidX(button.frame)

 var yOffset = CGRectGetMaxY(button.frame) - size / 2

 yOffset -= size * CGFloat(row)

 return CGPointMake(xOffset, yOffset)

}

That just leaves one final method before our code springs into life, and this is just a matter of
filling in makeMove(). This uses the tag of the button that was tapped to figure out which
column the player wants to use. We then use that column as the input for
nextEmptySlotInColumn() to figure out which row to play, then call addChip() on the board
model and addChipAtColumn() to create the chip's UIView. Here's the code:

www.hackingwithswift.com 817

@IBAction func makeMove(sender: UIButton) {

 let column = sender.tag

 if let row = board.nextEmptySlotInColumn(column) {

 board.addChip(.Red, inColumn: column)

 addChipAtColumn(column, row: row, color: .redColor())

 }

}

At this point the code works, although it's a pretty dull game: there's only one player, so you
can click in any column you like again and again, adding more and more chips until the board
is full. The board does, however, respect the game logic: you can't add more than six chips
in a column, and the chips stack up neatly.

Our four in a row game so far: there's only one player, but at least the game logic works.

www.hackingwithswift.com 818

www.hackingwithswift.com 819

Adding in players: GKGameModelPlayer
It's time to take our first step into GameplayKit, although at first this step will be small. Right
now our game is single-player, and all chips that get dropped are red chips. We're going to
upgrade this so that there are two players by creating a new Player class that stores a
player's chip type, their name, their color, and a special GameplayKit value called playerId –
 this is just a number that identifies every player uniquely.

On top of that, we're also going to create a static property for players, which means it's a
property that belongs to the class and thus can be called from anywhere. This will be an
allPlayers array holding both Player objects for easy reference

So, please create a new Cocoa Touch Class in your project. Name it Player, then make it
inherit from NSObject. Let's go ahead and create the properties up front. As a reminder, we
need:

 • The chip color of the player, either .Red, .Black, or .None.
 • The drawing color the player, set to a UIColor.
 • The name of the player, which will be either "Red" or "Black".
 • A GameplayKit playerId property, which we'll just set to the raw value of their chip type.
(We set this enum up as an integer, remember?)
 • A static array of two players, red and black.

Add these properties now:

var chip: ChipColor

var color: UIColor

var name: String

var playerId: Int

static var allPlayers = [Player(chip: .Red), Player(chip: .Black)]

Now for what is going to be a huge anti-climax: let's bring in GameplayKit by adding this
import:

www.hackingwithswift.com 820

import GameplayKit

Now make your Player class conform to the GKGameModelPlayer protocol, like this:

class Player: NSObject, GKGameModelPlayer {

Xcode will be flagging up errors all over your code, but none of them are a result of
GameplayKit – in fact, those two changes are all it takes to make GameplayKit work with our
player data. Instead, the errors are because we've declared four properties non-optional and
haven't given them any values, so we need to create a custom initializer.

This initializer will accept one parameter, which is the chip color to use for each player. From
that we can set the player ID (as the raw value of the chip type enum), the color (either red or
black UIColor), and the player name (either "Red" or "Black"). It's pretty straightforward
really – here's the code:

init(chip: ChipColor) {

 self.chip = chip

 self.playerId = chip.rawValue

 if chip == .Red {

 color = .redColor()

 name = "Red"

 } else {

 color = .blackColor()

 name = "Black"

 }

 super.init()

}

www.hackingwithswift.com 821

We're going to add one more thing to this class before we're done, which is a small
computed property that returns the opponent for a specific player. If the player is red, it
returns the black player from the allPlayers array, and if the player is black, it returns the red
player. Here's the code:

var opponent: Player {

 if chip == .Red {

 return Player.allPlayers[1]

 } else {

 return Player.allPlayers[0]

 }

}

That's the Player class finished: we won't be adding any more to it in this project. But after
that code, nothing has really changed because we're not actually using those players.

To take the next step in our game, we're going to start using the new Player class so that we
have two players in the game, and we're also going to update the user interface to mark
whose turn it is.

Updating the user interface requires two methods in the Board class: one to determine if the
board is full of pieces, and one to determine if a particular player has won. With these two we
can show either "Red/Black Wins!" or "Draw!" in the user interface, but for now we're just
going to return false from these methods – we'll put the real code in later.

Put these two into your Board class:

func isFull() -> Bool {

 return false

}

func isWinForPlayer(player: Player) -> Bool {

www.hackingwithswift.com 822

func isWinForPlayer(player: Player) -> Bool {

 return false

}

Now onto the real work: we're going to create two new methods called continueGame() and
updateUI(), both in the ViewController class. The first will get called after every move, and
will end the game with an alert if needed, otherwise it will switch players. The second is
responsible for updating the title of the view controller to show whose turn it is, although later
on we'll also be making it kick off AI work.

The code in updateUI() is trivial, so let's get it out of the way. Open up ViewController.swift
and add this method:

func updateUI() {

 title = "\(board.currentPlayer.name)'s Turn"

}

We aren't tracking the current player just yet so you'll get an error at first, but we'll fix it in a
moment.

The continueGame() method is longer, but isn't really very complicated. To help you along I'll
break it down into numbered steps in the code:

1. We create a gameOverTitle optional string set to nil.
2. If the game is over or the board is full, gameOverTitle is updated to include the relevant
status message.
3. If gameOverTitle is not nil (i.e., the game is won or drawn), show an alert controller that
resets the board when dismissed.
4. Otherwise, change the current player of the game, then call updateUI() to set the
navigation bar title.

Here's the code, with the number comments matching the list above:

func continueGame() {

www.hackingwithswift.com 823

func continueGame() {

 // 1

 var gameOverTitle: String? = nil

 // 2

 if board.isWinForPlayer(board.currentPlayer) {

 gameOverTitle = "\(board.currentPlayer.name) Wins!"

 } else if board.isFull() {

 gameOverTitle = "Draw!"

 }

 // 3

 if gameOverTitle != nil {

 let alert = UIAlertController(title: gameOverTitle, message: nil,
preferredStyle: .Alert)

 let alertAction = UIAlertAction(title: "Play Again",
style: .Default) { [unowned self] (action) in

 self.resetBoard()

 }

 alert.addAction(alertAction)

 presentViewController(alert, animated: true, completion: nil)

 return

 }

 // 4

 board.currentPlayer = board.currentPlayer.opponent

 updateUI()

}

www.hackingwithswift.com 824

The final steps are actually pretty straightforward. First we need to create the currentPlayer
property in the Board class so that it silences the Xcode errors:

var currentPlayer: Player

That's a non-optional value, so by fixing the previous errors we introduce a new one:
currentPlayer must be given a value inside the board's initializer. Add this at the start of the
init() method in Board.swift:

currentPlayer = Player.allPlayers[0]

We're almost done with this chapter, and in fact we need only make a couple more changes
for our game to work with two players. First, we need to update the makeMove() method so
that it drops in chips of the correct color rather than always using red. This is easy now that
we have the board.currentPlayer property:

@IBAction func makeMove(sender: UIButton) {

 let column = sender.tag

 if let row = board.nextEmptySlotInColumn(column) {

 board.addChip(board.currentPlayer.chip, inColumn: column)

 addChipAtColumn(column, row: row, color:
board.currentPlayer.color)

 continueGame()

 }

}

Note that I snuck in a call to continueGame() so that control automatically flips between
players after each move.

www.hackingwithswift.com 825

Finally, we need to set the initial view controller title when the game is started or reset, which
means modifying the resetBoard() method so that it calls updateUI(). Modify the start of the
method to this:

func resetBoard() {

 board = Board()

 updateUI()

If you run your app now, you'll see things are starting to come together: you can tap on a
column to play a chip, then control hands over to the other player and the user interface
updates. The game doesn't end, though, because it has no idea whether one player has
made four in a row, or whether it's a draw. Let's tackle that now…

Our four in a row game has two players now, taking alternating turns.

www.hackingwithswift.com 826

Detecting wins and draws in Four in a
Row
Now it's time to make our game an actual game – i.e., something a player can win. Four in a
Row is what's called a zero-sum game, which means for one player to win the other must
lose. This in turn means it's very easy to determine a winner: as soon as either player
manages to place four chips in a row in any direcion, they win. As for detecting a draw, that's
just a matter of checking to see if no more moves are available.

Of the two, detecting a draw is far easier, so let's write that first. We already put a stub for
isFull() into the Board class, but we can fill that out now: it will return false if any column
passes the canMoveInColumn() test, otherwise it will return false. Here's the updated
method for Board.swift:

func isFull() -> Bool {

 for column in 0 ..< Board.width {

 if canMoveInColumn(column) {

 return false

 }

 }

 return true;

}

Now for the more challenging method: how to detect when a player has won? In Apple's
original code for this, they took a brute force approach with four different methods for
detecting wins: left to right, up to down, and two types of diagonal. It's probably very
efficient code, but it's unpleasant to read and understand, so I've ditched their code and
replaced it with something substantially shorter and easier to understand.

My solution involves two methods: isWinForPlayer() and squaresMatchChip(), and we'll
start with the second one first.

For a player to win, they must have four chips of the same color lined up in a row anywhere

www.hackingwithswift.com 827

on the board. The squaresMatchChip() has the job of being given a square on the board
and checking for one possible win type. It will accept five parameters:

 • The chip color to check.
 • The row and column of the initial chip.
 • The X and Y movement of our check.

That last one is the tricky part, so let me explain further. To detect a horizontal win, we'll call
this method with an X movement of 1 and a Y movement of 0. The method can then check a
slot, move along by X:1 and Y:0 (i.e., one place to the right), check a second slot, move along
by X:1 and Y:0, check a third slot, then move along by X:1 and Y:0 and check the final slot. If
all four have matched the player's chip color, they win.

The advantage to using this technique is that it can check for all other win types. For
example, checking a vertical win means passing an X movement of 0 and a Y movement of
1, and checking a diagonal win means passing an X movement of 1 and a Y movement of 1.
Remember, though, that diagonal wins go both up and down, so we need to have a second
diagonal check with a Y movement of -1.

To make the squaresMatchChip() method safe to call from any slot on the board, we'll make
it return false if it will try to check outside the bounds of the board. For example, if it starts in
the bottom left and tries to search for a downward win, we'll bail out immediately. The
method will also return false as soon as it has failed to detect a win for a particular
movement, because there's no point checking slots 3 and 4 if slot 2 doesn't match the
player's chip color.

That's everything you need to know, so here's the code for squaresMatchChip() – put this
into the Board class:

func squaresMatchChip(chip: ChipColor, row: Int, col: Int, moveX:
Int, moveY: Int) -> Bool {

 // bail out early if we can't win from here

 if row + (moveY * 3) < 0 { return false }

 if row + (moveY * 3) >= Board.height { return false }

 if col + (moveX * 3) < 0 { return false }

 if col + (moveX * 3) >= Board.width { return false }

www.hackingwithswift.com 828

 // still here? Check every square

 if chipInColumn(col, row: row) != chip { return false }

 if chipInColumn(col + moveX, row: row + moveY) != chip { return
false }

 if chipInColumn(col + (moveX * 2), row: row + (moveY * 2)) != chip
{ return false }

 if chipInColumn(col + (moveX * 3), row: row + (moveY * 3)) != chip
{ return false }

 return true

}

That just leaves one final task before our game starts being useful: we need to fill in the
isWinForPlayer() method so that it loops over every slot in the board, calling
squaresMatchChip() four times for each slot: once for horizontal wins, once for vertical
wins, and once for both kinds of diagonal wins. As soon as any of those calls returns true for
any slot, the whole method returns true. If the loop finishes with no win, the method will
return false so that play continues.

Here's the updated isWinForPlayer() method:

func isWinForPlayer(player: GKGameModelPlayer) -> Bool {

 let chip = (player as! Player).chip

 for row in 0 ..< Board.height {

 for col in 0 ..< Board.width {

 if squaresMatchChip(chip, row: row, col: col, moveX: 1, moveY:
0) {

 return true

 } else if squaresMatchChip(chip, row: row, col: col, moveX: 0,
moveY: 1) {

 return true

 } else if squaresMatchChip(chip, row: row, col: col, moveX: 1,

www.hackingwithswift.com 829

 } else if squaresMatchChip(chip, row: row, col: col, moveX: 1,
moveY: 1) {

 return true

 } else if squaresMatchChip(chip, row: row, col: col, moveX: 1,
moveY: -1) {

 return true

 }

 }

 }

 return false

}

At this point, you have a complete two-player Four in a Row game on your hands. If it
weren't for GameplayKit, we'd be done here. But you want to add an AI opponent, don't
you? Sure you do. So go ahead and run your app briefly, marvel at your coding prowess,
then get back to Xcode: this is where the difficulty ramps up!

www.hackingwithswift.com 830

How GameplayKit AI works:
GKGameModel, GKGameModelPlayer
and GKGameModelUpdate
Amongst the many features introduced in GameplayKit, one of the most immediately useful
is its ability to provide artificial intelligence that can evaluate a situation and make smart
choices. We're going to be using it in our Four in a Row game to provide a meaningful
opponent, but first it's essential that you understand how GameplayKit tackles the AI
problem because it directly affects the code we'll write.

GameplayKit has three protocols we need to implement in various parts of our model:

 • GKGameModel is used to represent the state of play, which means it needs to know
where all the game pieces are, who the players are, what happens after each move is made,
and what the score for a player is given any state.
 • GKGameModelPlayer is used to represent one player in the game. This protocol is so
simple we already implemented it: all you need to do is make sure your player class has a
playerId integer. It's used to identify a player uniquely inside the AI.
 • GKGameModelUpdate is used to represent one possible move in the game. For us, that
means storing a column number to represent a piece being played there. This protocol
requires that you also store a value integer, which is used to rank all possible results by
quality to help GameplayKit make a good choice.

We have a sensible match for the first two in our Board and Player classes, but we have
nothing suitable for GKGameModelUpdate so let's create that now. Like I said, this needs to
track only how "good" a move is, where each move is represented by a column number to
play.

This is easy to do, so please go ahead and create a new Cocoa Touch class in your project.
Name it Move, and make it subclass from NSObject. Now replace its source code with this:

import GameplayKit

import UIKit

class Move: NSObject, GKGameModelUpdate {

 var value: Int = 0

www.hackingwithswift.com 831

 var value: Int = 0

 var column: Int

 init(column: Int) {

 self.column = column

 }

}

That's it: the default for value is 0, and we create a Move object by passing in the column it
represents. We're done with that class, and I already said we were finished with the Player
class, which means we can focus our mental energies on what remains: Board.

GameplayKit's artificial intelligence works through brute force: it tries every possible move,
then tries every possible follow-on move, then every possible follow-on follow-on move, etc.
This runs up combinations extremely quickly, particularly when you consider that there are
4,531,985,219,092 unique positions for all the pieces on the board! So, you will inevitably
limit the depth of the search to provide just enough intelligence to be interesting.

Now, this bit is really important, so read carefully. When you ask GameplayKit to find a move,
it will examine all possible moves. To begin with, that is every column, because they all have
space for moves in them. It then takes a copy of the game, and makes a virtual move on that
copy. It then takes a copy of the game, and makes a different virtual move, and so on until
until all initial first moves have been made.

Next, it starts to re-use its copies to save on memory: it will take one of those copies and
apply a game state to it, which means it will reset the board so that it matches the position
after one of its virtual moves. It will then rinse and repeat: it will examine all possible moves,
and make one. It does this for all moves, and does so recursively until it has created a tree of
all possible moves and outcomes, or at least as many as you ask it to scan.

Each time the AI has made a move, it will ask us what the player score is. For some games
this will be as simple as returning a score variable, but for our 4IR game it's a bit trickier
because there is no score, only a win or a loss. The original Apple source code provides a
simple heuristic for this, and I've kept it here because it's quite fun – the AI can sometimes
make dumb mistakes, or sometimes play like a genius, which makes the game interesting!

www.hackingwithswift.com 832

If you were wondering, a heuristic is the computer science term for a guesstimate – it's a
function that tries to solve a problem quickly by taking shortcuts. For us, that means we'll tell
the AI the player's score is 1000 if a move wins the game, -1000 if a move loses the game, or
0 otherwise.

All this information is important because I hope now you can see why we separate the game
model from the game view – why we have a slots array inside the game board and a
placedChips array inside the view controller. If you're still not sure, try to imagine how many
moves the AI needs to simulate in order to decide what to do – our board has seven
columns, so:

 • The player goes first, and all seven columns are valid.
 • The AI calculates its first move, which could be any of those seven columns. (7 moves in
total.)
 • The AI then calculates what the player might do, but the player's move depends on the
previous AI move so it has to calculate one player move for every possible AI move. (49 more
moves; 56 in total.)
 • The AI then calculates what its second move might look like, which of course depends on
the players first and second moves, and the AI's first move. So, for every one of those 49
moves, it has to calculate 7 more. (343 moves; 399 in total.)

…and so on. Eventually one column will become full so the multiplications will decrease, but
you're still talking many thousands of copies of the board. Now imagine if the Board class
kept track of all the UIViews used to draw the chips – suddenly we'd be copying far more
than intended, and doing it 5000 times!

So: if a couple of chapters ago you were thinking I was wasting your time by forcing you to
separate your model from your view, I hope you can now see why. AI is slow enough without
doing a huge stack of extra work for no reason!

That's enough theory, it's time for some code. If you remember nothing else, remember this:
to simulate a move, GameplayKit takes copies of our board state, finds all possible moves
that can happen, and applies them all on different copies.

www.hackingwithswift.com 833

Implementing GKGameModel:
gameModelUpdatesForPlayer() and
applyGameModelUpdate()
Now you understand how GameplayKit approaches AI, it's time for some action. Open up
Board.swift, then add this import:

import GameplayKit

You can now make your Board class conform to the GKGameModel protocol like this:

class Board: NSObject, GKGameModel {

As soon as you do that, your beautiful project will stop compiling and you'll see two errors:
the Board class does not conform to NSCopying or GKGameModel. We covered
NSCoding in the original Hacking with Swift series, but not NSCopying, so let's start
there.

As you'll no doubt remember(!), NSCoding is used to encoding and decode objects so that
they can be archived, such as when you're writing to NSUserDefaults. This is great for when
you want to save or distribute your data, but it's not very efficient if you just want to copy it,
and that's where NSCopying comes in: it's a protocol that lets iOS take a copy of your
object in memory, with the copy being identical but separate to the original. As you saw in
the last chapter, GameplayKit will be taking a lot of copies of our game board, so we
definitely need to conform to NSCopying.

Implementing NSCopying is as simple as adding one new method, called copyWithZone().
The "zone" part is an optimization hangover from many years ago, and has been ignored for
years. In our particular case, we're going to take a little shortcut by merging two things
together: taking a copy of the game board and applying a game state.

If you remember, GameplayKit takes multiple copies of our board so that it can evaluate
various moves. It then re-uses those copies by setting their game state, which is where

www.hackingwithswift.com 834

GameplayKit resets the board so that it matches the position after one of its moves. To
remove some code duplication, we're going to make copyWithZone() call the method used
to apply a board state. That is, copyWithZone() will make an empty Board object then call a
new setGameModel() method to actually copy across the slot data and set the active player.

This is helpful because setGameModel() is part of the GKGameModel protocol, so we
needed to implement it anyway. This method needs to accept a GKGameModel object as its
only parameter, but of course we know that's a Board object so we'll do an optional
downcast before copying across the properties.

Here's the code – add this to the Board class:

func copyWithZone(zone: NSZone) -> AnyObject {

 let copy = Board()

 copy.setGameModel(self)

 return copy

}

func setGameModel(gameModel: GKGameModel) {

 if let board = gameModel as? Board {

 slots = board.slots

 currentPlayer = board.currentPlayer

 }

}

Next, GameplayKit will ask us to tell it all the possible moves that can be made, if any. This
will be called on a copy of our game board that may already have had virtual moves applied
to it, but that's OK because the copy has its own slots array that we can read from to find
where moves are possible.

Because we're conforming to the GKGameModel protocol, this method needs to have a
precise name, accept a precise parameter, and return a precise data type. Specifically, it
needs to be called gameModelUpdatesForPlayer(), it needs to accept a

www.hackingwithswift.com 835

GKGameModelPlayer object, and return a GKGameModelUpdate object. In our game, the
last two map to the Player and Move classes, both of which conform to those protocols.

We've already written several methods that make this code surprisingly easy: if
isWinForPlayer() is true either for the player or their opponent we return nil, and we call
canMoveInColumn() for every column to see if the AI can move in each column. If so, we
create a new Move object to represent that column, and add it to an array of possible
moves.

To make sure you understand all the code, here it is broken down:

1. We optionally downcast our GKGameModelPlayer parameter into a Player object.
2. If the player or their opponent has won, return nil to signal no moves are available.
3. Otherwise, create a new array that will hold Move objects.
4. Loop through every column in the board, asking whether the player can move in that
column.
5. If so, create a new Move object for that column, and add it to the array.
6. Finally, return the array to tell the AI all the possible moves it can make.

Here's the code, with the number comments matching the list above:

func gameModelUpdatesForPlayer(player: GKGameModelPlayer) ->
[GKGameModelUpdate]? {

 // 1

 if let playerObject = player as? Player {

 // 2

 if isWinForPlayer(playerObject) ||
isWinForPlayer(playerObject.opponent) {

 return nil

 }

 // 3

 var moves = [Move]()

 // 4

 for column in 0 ..< Board.width {

www.hackingwithswift.com 836

 for column in 0 ..< Board.width {

 if canMoveInColumn(column) {

 // 5

 moves.append(Move(column: column))

 }

 }

 // 6

 return moves;

 }

 return nil

}

The next step for the AI is to try all of those moves. GameplayKit will execute a method
called applyGameModelUpdate() once for every move, and again this will get called on a
copy of our game board that reflects the current state of play after its virtual moves. This
method needs to accept a GKGameModelUpdate object as a parameter (that's a Move for
us), then apply that move to its copy of the board.

Again, we've already written the methods required to make this happen. Our Move class
contains a column number that represent's an AI move, so we just need to downcast the
GKGameModelUpdate to a Move, call addChip() for that move, then change players.
Here's the code:

func applyGameModelUpdate(gameModelUpdate: GKGameModelUpdate) {

 if let move = gameModelUpdate as? Move {

 addChip(currentPlayer.chip, inColumn: move.column)

 currentPlayer = currentPlayer.opponent

 }

}

www.hackingwithswift.com 837

Once GameplayKit has made a move, it will want to know whether the move is good or not.
Obviously this varies from game to game, so Apple's implementation is simple: it will ask us
to provide a player score after each virtual move has been made, and that score affects the
way GameplayKit ranks each move.

The method name this time is scoreForPlayer(), and we'll get passed a
GKGameModelPlayer object that we need to evaluate. This is a Player object in our game,
so we'll optionally downcast it. Now, as I said already our game doesn't have a meaningful
score that can be passed back as this method's return value, so we'll use a very lazy
heuristic: if the player has won we'll return 1000, if their opponent has won we'll return -1000,
otherwise we'll return 0.

Here's the code:

func scoreForPlayer(player: GKGameModelPlayer) -> Int {

 if let playerObject = player as? Player {

 if isWinForPlayer(playerObject) {

 return 1000

 } else if isWinForPlayer(playerObject.opponent) {

 return -1000

 }

 }

 return 0

}

There are only two further changes required to make our Board class conform fully to the
GKGameModel protocol, both of which are easy and just do typecasting. You see,
GameplayKit wants to see these two properties:

var players: [GKGameModelPlayer]?

var activePlayer: GKGameModelPlayer?

www.hackingwithswift.com 838

var activePlayer: GKGameModelPlayer?

We don't have these right now, because we use our custom subclasses of NSObject. Rather
than duplicate data, we're going to use computed properties to just return what we have –
 Swift will then correctly treat them as GKGameModelPlayer types. So, rather than adding
those two lines of code above, use this code instead:

var players: [GKGameModelPlayer]? {

 return Player.allPlayers

}

var activePlayer: GKGameModelPlayer? {

 return currentPlayer

}

That's it: the Board class now conforms fully to the GKGameModel protocol, the Player
class conforms fully to the GKGameModelPlayer protocol, and the Move class conforms
fully to the GKGameModelUpdate protocol – we're finished with all these classes and those
protocols, which means we can get onto the next task: configuring the AI player.

www.hackingwithswift.com 839

Creating a GameplayKit AI using
GKMinmaxStrategist
If you've made it this far then you have built a Four in a Row game where two players can
place chips in the game slots and either win or draw, and you've also prepared your model
data to be run through the new GameplayKit AI routines. But we haven't created the AI just
yet: we've just added some methods to our game models to enable an AI to make choices.

In this final step, we're going to use a new class called GKMinmaxStrategist, which is a
gameplay strategy that tries to MINimize losses while MAXimizing gains – hence the name
minmax, or minimax. When you create a GKMinmaxStrategist you tell it how many moves it
should look ahead, and also what it should do to break ties, i.e. if it has two or more moves
that are equally good.

Once you've created the strategist object, you need to provide it a game model to examine
(that's our Board class), then ask it either to make the best move or make a random good
move. If you ask for the best move, you'll get given back a GKGameModelUpdate object
(that's a Move in our game) that represents the best move. If you ask for a random good
move you'll need to tell it how many it should consider good (i.e., pick one from the top 5),
and you'll get back a random GKGameModelUpdate from that list of good moves.

Now, one thing to be aware of up front: running AI takes a long time, particularly if you have a
high look ahead depth. As a result, you should run the AI on a background thread so that
your user interface doesn't lock up, and only push work back to the main thread when you
have a move ready to make.

Let's go ahead and implement GKMinmaxStrategist now. Open ViewController.swift in your
editor, then import GameplayKit. Now add this property to the ViewController class:

var strategist: GKMinmaxStrategist!

One strategist is capable of handling more than one game (i.e., if the player restarts the
game) just by changing its game model, so we only need to create one
GKMinmaxStrategist object. As it's needed straight away, we might as well put this into
viewDidLoad() – anywhere before the call to resetBoard() is fine:

www.hackingwithswift.com 840

strategist = GKMinmaxStrategist()

strategist.maxLookAheadDepth = 7

strategist.randomSource = nil

Having a maxLookAheadDepth of 7 is a significant amount of work, because of those look
aheads is one move being made by the player or AI – and each of those moves can be in any
of seven columns. If you intend to alter this number upwards, be prepared for exponentially
slower processing.

The randomSource property of GKMinmaxStrategist is there as a tie-breaker: if two moves
result in the same advantage for the AI, which should it take? Setting it to nil as above
means "just return the first best move," but if you wanted to have the AI take a random best
move then you could try something like this:

strategist.randomSource = GKARC4RandomSource()

Now that the strategist is created, it wants to be fed some data. This is done by setting its
gameModel property to an object that conforms to the GKGameModel protocol – which by
now you should immediately recognize as our Board class. So, whenever we reset the
board, we need to feed the new board into the strategist so it stands ready to look for
moves.

We've done all the hard work to prepare for this, so all you need to do is change the start of
your resetBoard() method to the following:

func resetBoard() {

 board = Board()

 strategist.gameModel = board

 updateUI()

www.hackingwithswift.com 841

At this point, the AI understands the state of play, and stands ready to look for good moves.
With GKMinmaxStrategist this is done using the bestMoveForPlayer() method, which
accepts a GKModelPlayer as its parameter and returns a GKModelUpdate for the best
move if it finds one.

Remember, however, that AI can take a long time to consider all options depending on the
look ahead depth you specify, so we're going to wrap this call up in a new method:
columnForAIMove(). This will return an optional integer: either the best column for a move,
or nil to mean "no move found." We'll call this on a background thread so it can take as long
as it needs.

Here's the code for columnForAIMove():

func columnForAIMove() -> Int? {

 if let aiMove = strategist.bestMoveForPlayer(board.currentPlayer)
as? Move {

 return aiMove.column

 }

 return nil

}

Once the AI has found a good move, we want to run that that move on the main thread,
because it will involve user interface changes. I've wrapped this up in another new method
called makeAIMoveInColumn(): this takes the column to move on, then makes it happen.
This method will find the next available slot for the selected coumn, then use addChip() to
make the move on the model, and addChipAtColumn() to make the move in the view.

Once the AI move has been made, we'll call continueGame() to check for a win or draw,
then flip turns so the player is in control.

Here's the code for makeAIMoveInColumn():

func makeAIMoveInColumn(column: Int) {

 if let row = board.nextEmptySlotInColumn(column) {

www.hackingwithswift.com 842

 if let row = board.nextEmptySlotInColumn(column) {

 board.addChip(board.currentPlayer.chip, inColumn: column)

 addChipAtColumn(column, row:row, color:
board.currentPlayer.color)

 continueGame()

 }

}

At this point our game is almost finished, but we still need to call those methods on the
appropriate threads. All this will be done in one big method called startAIMove(), which is
going to do a number of things:

1. Dispatch some work to the background thread.
2. Get the current time, then run columnForAIMove().
3. Get the time again, compare the difference, and subtract that value from 1 second to form
a delay value.
4. Run makeAIMoveInColumn() after that delay, to execute the move.

The delay is there so that the AI always waits at least one second before making its move,
otherwise it might confuse the user. If the AI takes half a second to find a move, we subtract
that from our one second minimum to wait for a further half a second, equalling one second
in total from before starting the AI to executing the move.

Here's the first draft of startAIMove():

func startAIMove() {

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFA
ULT, 0)) { [unowned self] in

 let strategistTime = CFAbsoluteTimeGetCurrent()

 let column = self.columnForAIMove()!

 let delta = CFAbsoluteTimeGetCurrent() - strategistTime

 let aiTimeCeiling = 1.0

www.hackingwithswift.com 843

 let aiTimeCeiling = 1.0

 let delay = min(aiTimeCeiling - delta, aiTimeCeiling)

 self.runAfterDelay(delay) {

 self.makeAIMoveInColumn(column)

 }

 }

}

Note that I use a helper method called runAfterDelay() because my puny brain refuses to
remember the syntax for dispatch_time(). If you're like me, here's the helper method:

func runAfterDelay(delay: NSTimeInterval, block: dispatch_block_t) {

 let time = dispatch_time(DISPATCH_TIME_NOW, Int64(delay *
Double(NSEC_PER_SEC)))

 dispatch_after(time, dispatch_get_main_queue(), block)

}

Now only one thing more is required to finish the game: we need to call startAIMove() when
it's black's turn. Change your updateUI() method to this:

func updateUI() {

 title = "\(board.currentPlayer.name)'s Turn"

 if board.currentPlayer.chip == .Black {

 startAIMove()

 }

}

www.hackingwithswift.com 844

Now, the game works, and you could even ship it today if you really wanted, but before you
hit Run I'd like to suggest two tiny changes that make the whole experience better.

First, what happens if a user starts tapping buttons while the AI is "thinking"? Well, the
answer is "bad things" – our game lets them play as black, and gets confused very quickly.
So, our first change will be to disable all the column buttons when the AI's move starts, then
re-enable them when it's finished.

Second, if the AI takes a long time, how does the user know the app hasn't locked up?
There's no indication the AI is thinking, but it's easy enough to add by showing a custom
UIBarButtonItem containing a UIActivityIndicatorView. It's not much, but it's enough to
show the app is alive and well.

We're going to make both of these changes at once. All the AI code lives in startAIMove() so
we can disable the column buttons and show the thinking spinner in there too. Add these
lines to the start of startAIMove():

columnButtons.forEach { $0.enabled = false }

let spinner = UIActivityIndicatorView(activityIndicatorStyle: .Gray)

spinner.startAnimating()

navigationItem.leftBarButtonItem = UIBarButtonItem(customView:
spinner)

If you haven't seen forEach before, it's a way of quickly looping through an array, executing
some code on every item in that array. In our case, the $0 means "each button in the loop",
and in this way all the buttons get disabled.

Once the AI has finished their move, makeAIMoveInColumn() will be called on the main
thread, and that's our chance to undo these changes: we need to re-enable the column
buttons, then destroy the thinking spinner. Add these two lines of code at the start of
makeAIMoveInColumn():

columnButtons.forEach { $0.enabled = true }

www.hackingwithswift.com 845

columnButtons.forEach { $0.enabled = true }

navigationItem.leftBarButtonItem = nil

These tiny changes stop users from accidentally screwing things up, and also stop them
from worrying your app has got stuck in a loop somewhere. It's polish, yes, but polish is
frequently what separates good games from great games.

That's it: the app is done! You can run it now and see how quickly you can beat the AI. It
ought not to be too hard – our heuristic isn't very good, so sometimes the AI will miss
obvious moves, just like a real player.

www.hackingwithswift.com 846

Wrap up
I don't know about you, but I certainly enjoyed this tutorial – not only does it involve cool new
iOS 9 stuff, but it's always fun to watch an artificial intelligence "think" its way through a
problem and come to a solution. Plus, I got the chance to sneak in more UIStackView
action, which is always a good thing!

If you're looking to extend this project, the first thing you're likely to target is the heuristic
function. As I said at the beginning, this project is based on some less-than-perfect Apple
sample code, which I went on to rewrite in Swift, then refactor to make it easier to
understand. The heuristic code is what makes the AI smart, but it doesn't take into account
how many moves it takes for a win to happen, and so it performs fairly poorly.

As for other improvements, you've seen how this game could work in one- or two-player
modes, so you could easily add a user interface to let the player select what kind of game
they wanted. Then, by adjusting the level of look ahead, you could implement Easy, Medium
and Hard computer opponents.

For a much easier improvement to make, you could switch out our UIView chips for
UIImageViews, then draw your own red and black chip graphics. There isn't much coding
required to make this happen, but let's face it: you've just written a mountain of code, so you
probably deserve a break!

Anyway, that's it for this project. Once again you've made a useful, real-world project that is
now your own to extend in whichever direction you want. As a heavy user of iOS apps, I'm
particularly looking forward to seeing how apps (not games!) will use AI – can it recommend
songs with some real intelligence, for example? Have fun!

www.hackingwithswift.com 847

Project 35
Random Numbers
The new iOS 9 GameplayKit lets you generate random
numbers in ways you soon won't be able to live without.

www.hackingwithswift.com 848

Setting up
If you already read project 34 you'll know how much I love GameplayKit in iOS 9. In that
project we used a new class called GKMinmaxStrategist to produce an AI that can win at
Four in a Row games by looking ahead many moves in advance, but the truth is that we only
scratched the surface of what GameplayKit can do.

In this project, the first Hacking with Swift Level 2 technique project, we're going to look at
another aspect of GameplayKit that is hugely exciting: randomisation. This will, I'm certain,
strike you as a strange topic to choose: surely randomisation is a solved problem – what
makes it interesting enough to warrant discussion, never mind to dedicate a whole technique
project?

It's true that generating random data – or at least the pseudo-random that most of us
consider good enough – is old news, but the GameplayKit implementation goes a step
further: Apple thought specifically about random needs for games, and has built a
randomisation system that I promise you're going to love, and going to use even when you're
not making games.

Don't believe me? Fire up Xcode, create a new playground, and let's begin!

www.hackingwithswift.com 849

Generating random numbers in iOS 8
and earlier
There were lots of ways you can generate random numbers before iOS 9 came along, but
none were both easy and good. For example, you could use the rand() function like this:

print(rand())

print(rand())

print(rand())

print(rand())

That calls rand() four times. Place those four lines of code into your playground, and you'll
see four values in the results pane of Xcode. Now, using my incredible psychic powers, I
shall predict what those four random numbers are. Ready? Here goes: 16807, 282475249,
1622650073 and 984943658.

Was I right? Probably. This is because rand() isn't very random by default. Random number
generators are called pseudo-random for a reason: given a known starting state, you can
usually predict what will come next. This has advantages for things like network games,
because you just need to synchronise the starting state between clients and in theory they
can both generate the same "random" numbers.

If you want to seed the random number generator with an (effectively) random state, you
would use the srand() function first, like this:

srand(UInt32(time(nil)))

print(rand())

print(rand())

print(rand())

print(rand())

That uses the current time of the day to seed the random number generator, and because

www.hackingwithswift.com 850

you're running that code now rather than when I wrote it, it means I can no longer predict
what output you'll get. Note that you call srand() only once, regardless of how many times
you call rand().

But, that solution has a problem: the rand() function is rubbish when it comes to generating
randomness, and no serious programmer has used it for a long time. Fortunately, there's a
solution called arc4random(), which uses a more algorithmically sound number generator
that can also generate larger random numbers than rand(). What's more, arc4random()
doesn't need to be seeded, so you can use it straight away:

print(arc4random())

print(arc4random())

print(arc4random())

print(arc4random())

No seed, no problem – I can't easily predict what your playground will output.

The arc4random() function generates numbers between 0 and 4,294,967,295, giving a range
of 2 to the power of 32 - 1 – i.e., a lot. But if you wanted to generate a random number within
a specific range – say up to 5 – there were two ways of doing it: the way most people use,
and The Proper Way. Let's look at them both, because you'll encounter them both in real
code.

First, the widely used but problematic way of generating random numbers in a range:

print(arc4random() % 6)

That uses modulus to ensure that the result from arc4random() falls within a specific range.
We already covered modulus in project 8 so skip back there if you need a refresher. Note that
we need to specify 6 because the values range from 0 to 5 inclusive.

This method is very common, but also problematic because it produces something called
modulo bias, which is a fairly small but not insignificant problem that causes some numbers

www.hackingwithswift.com 851

modulo bias, which is a fairly small but not insignificant problem that causes some numbers
to be generated more frequently than others. You might know it as the Pigeonhole Principle
if you prefer slightly catchier names!

Second, The Proper Way of generating random numbers in a range:

print(arc4random_uniform(6))

Yes, the ARC4 family of functions comes with a built-in way of generating random numbers
in a range. No, it's not new. No, I don't know why it's not used by everyone – the world's a
funny place, huh?

Anyway, using arc4random_uniform() we can generate a range of numbers that don't have
a modulo bias, don't require seeding, and are suitably random for all but cryptographic
purposes.

But it's not perfect, because its range is 0 up to the maximum you specify – what if you want
a number between 10 and 20, or 100 and 500? Then you need to write something thoroughly
ugly indeed:

func RandomInt(min min: Int, max: Int) -> Int {

 if max < min { return min }

 return Int(arc4random_uniform(UInt32((max - min) + 1))) + min

}

That figures out the difference between the high and low ends of your range, uses that to
calculate a random number, then re-adds the low end to get the full range. Because
arc4random_uniform() works only with non-negative integers (UInt32) it has to do some
typecasting to make the process seamless, and all those extra parentheses probably give
you a headache.

Does it work? Yes, absolutely. Could you remember it if you closed this window now? No
chance.

But I have some good news for you: all this complexity gets wiped away with iOS 9 thanks to

www.hackingwithswift.com 852

GameplayKit. Not only does it do everything above better, but it has ridiculously simple
syntax that you're going to get hooked on.

Before I continue, it's worth making it doubly clear that GameplayKit is available only with
iOS 9 or later, so I'm afraid all the techniques above are going to be around for quite a few
years yet – I didn't write all that for nothing!

www.hackingwithswift.com 853

Generating random numbers with
GameplayKit: GKRandomSource
Let's look at the most basic way of generating random numbers using GameplayKit, which is
the GKRandomSource class and its sharedRandom() method.

A random source is a provider of an unfiltered stream of random numbers as you need them.
As you'll see soon, GameplayKit has various options for your stream, but for now we're going
to look at the simplest one: sharedRandom().

Using sharedRandom() for a random number source returns the systems built-in random
source that's used for a variety of other tasks, which means you can be pretty sure it's in a
truly random state by the time it gets to you. It does, however, mean that it's useless for
synchronizing network games, because everyone's device is in a different state.

To produce a truly random number you'd use the nextInt() method like this:

print(GKRandomSource.sharedRandom().nextInt())

That produces a number between -2,147,483,648 and 2,147,483,647 – yes, that's a negative
number, which means it's not a drop-in replacement for arc4random(). Plus, even with
GameplayKit's great new logic, Apple includes a warning that it's not guaranteed to be
random for very specific situations (harkening back to rand(), no less), so for both these
reasons it's not likely you'll want to use nextInt() much.

As an alternative, try using the nextIntWithUpperBound() method, which works identically to
arc4random():

print(GKRandomSource.sharedRandom().nextIntWithUpperBound(6))

That will return a random number from 0 to 5 using the system's built-in random number
generator.

As well as nextInt() and nextIntWithUpperBound() are nextBool() for generating a random

www.hackingwithswift.com 854

true/false value and nextUniform() for generating a random floating-point number between 0
and 1. Both of these are implemented using nextIntWithUpperBound() so they output
properly random numbers.

www.hackingwithswift.com 855

Choosing a random number source:
GKARC4RandomSource and other
GameplayKit options
Using the system's built-in random number source is exactly what you want when you just
need something simple. But the system's random number generator is not deterministic,
which means you can't predict what numbers it will output because it always starts in a
different state – and that makes it useless for synchronizing network games.

Using the system's random number source is also useless to avoid cheating. If someone is
playing a brilliant strategy game you made and loses a battle because a dice roll didn't go
their way, they could quickly quit the app, relaunch, and try the battle again hoping that the
random roll would go differently for them.

GameplayKit offers three custom sources of random numbers, all of which are deterministic,
and all of which can be serialized – i.e., written out to disk using something like NSCoding
that we looked at in project 12. This means network play can be synchronized and cheaters
are unable to force their way around your game – a win all around!

The reason GameplayKit has three sources of random numbers is simple: generating random
numbers is hard, so you get to choose whether you want something simple and fast, hard
and slow, or somewhere in the middle. That is, if you know the result of your random number
doesn't matter that much and you're going to need thousands quickly, you can use the
faster-but-less-random option. Alternatively, if you need one random number but it's got to
be as random as they come, you can use the more intensive algorithm. In short, you pays
your money and you takes your choice.The three options are:

 • GKLinearCongruentialRandomSource: has high performance but the lowest randomness
 • GKMersenneTwisterRandomSource: has high randomness but the lowest performance
 • GKARC4RandomSource: has good performance and good randomness – in the words of
Apple, "it's going to be your Goldilocks random source."

Honestly, the performance difference between the three of these is all but insignificant unless
you're generating vast quantities of random numbers.

So, to generate a random number between 0 and 19 using an ARC4 random source that you
can save to disk, you'd use this:

www.hackingwithswift.com 856

let source = GKARC4RandomSource()

source.nextIntWithUpperBound(20)

If you really want the maximum possible randomness for your app or game, try the Mersenne
Twister source instead:

let source = GKMersenneTwisterRandomSource()

source.nextIntWithUpperBound(20)

As you can see, once you've created the random source the method calls on it are identical –
all you've done is change the underlying random number generator.

Before continuing, you should know that Apple recommends you force flush its ARC4
random number generator before using it for anything important, otherwise it will generate
sequences that can be guessed to begin with. Apple suggests dropping at least the first 769
values, so I suspect most coders will round up to the nearest pleasing value: 1024. To drop
values, use this code:

source.dropValuesWithCount(1024)

Regardless of which source you choose, Apple goes to great lengths to point out that none
of them are recommended for cryptography purposes. Apps, yes, games, yes, but not
cryptography – sorry!

www.hackingwithswift.com 857

Shaping GameplayKit random numbers:
GKRandomDistribution,
GKShuffledDistribution and
GKGaussianDistribution
Random sources are interesting enough, but chances are you're wondering why you've
spent the last 20 minutes reading about GameplayKit and have yet to see anything
interesting. Well, here's where good becomes great: GameplayKit lets you shape the random
sources in various interesting ways using random distributions.

Let's start off with something simple: rolling a six-sided dice. This is effectively identical to
generating a random number between 1 and 6, which before meant having to call our old
friend:

func RandomInt(min min: Int, max: Int) -> Int {

 if max < min { return min }

 return Int(arc4random_uniform(UInt32((max - min) + 1))) + min

}

That's all gone in GameplayKit, because they have built six-sided dice right into their API.
No, really. Try this:

let d6 = GKRandomDistribution.d6()

d6.nextInt()

Boom: you'll get a random number between 1 and 6. Want a 20-sided die? Great:

let d20 = GKRandomDistribution.d20()

d20.nextInt()

www.hackingwithswift.com 858

Oh, you want a 11,539-sided die? Done:

let crazy = GKRandomDistribution(lowestValue: 1, highestValue: 11539)

crazy.nextInt()

And right there you can immediately see how the concept of dice is just there to frame the
random number generation: give it a lowest value of 100 and a highest of 200, and you'll get
a number between those two, inclusive.

If you intend to specify lowest and highest values, you need to be careful if you intend also to
use nextIntWithUpperBound() – code like this will crash your app:

let distribution = GKRandomDistribution(lowestValue: 10,
highestValue: 20)

print(distribution.nextIntWithUpperBound(9))

When you create a random distribution in this way, iOS automatically creates a random
source for you using an unspecified algorithm. If you want one particular random source,
there are special constructors for you:

let rand = GKMersenneTwisterRandomSource()

let distribution = GKRandomDistribution(randomSource: rand,
lowestValue: 10, highestValue: 20)

print(distribution.nextInt())

So, GameplayKit makes it easy to generate truly random numbers within a specific range –
no more hand-coded functions required. That alone is a huge win, but what if I said
GameplayKit could also generate random numbers that weren't truly random?

Yes, I know that sounds pointless, but stick with me. If you roll a six-sided die twice, there's a

www.hackingwithswift.com 859

one in six chance you'll get the same number twice in a row. Unless you're working with fixed
dice, this is true randomness. But true randomness is sometimes unpleasant, because it's
possible to roll a six five times in a row or even 50 times in a row. Sure, it's not likely, but it's
possible, and players inevitably curse their "unlucky streak" and may even leave angry App
Store reviews.

But there's more: what if you want a spread of numbers, but really you want them to naturally
cluster towards a middle ground? This would mean a tank in your strategy game normally
fights like an average tank, but occasionally will do something spectacularly brave – or
spectacularly stupid.

GameplayKit has solutions for both of these situations, and it's so simple you'll want to start
using it straight away.

You just saw me using GKRandomDistribution to shape a random source, either created
automatically or specified in its constructor. GameplayKit provides two other distributions:
GKShuffledDistribution ensures that sequences repeat less frequently, and
GKGaussianDistribution ensures that your results naturally form a bell curve where results
near to the mean average occur more frequently.

Let's look at GKShuffledDistribution first. This is an anti-clustering distribution, which
means it shapes the distribution of random numbers so that you are less likely to get repeats.
This means it will go through every possible number before you see a repeat, which makes
for a truly perfect distribution of numbers.

For example, the code below generates the numbers 1 to 6 in a random order:

let distribution = GKShuffledDistribution.d6()

print(distribution.nextInt())

print(distribution.nextInt())

print(distribution.nextInt())

print(distribution.nextInt())

print(distribution.nextInt())

print(distribution.nextInt())

www.hackingwithswift.com 860

To be clear, that code literally will generate the number 1 once, the number 2 once, etc, up to
6, but the order is random. This makes GKShuffleDistribution a so-called "fair distribution"
because every number will appear an equal number of times. You are, in theory at least,
guaranteed that the first roll and the second roll will be different.

Obviously fair random has its own downside, which is that if a player rolls a six they can be
know for sure they won't get a six in their next five rolls. This means you need to use it with
caution: there's no point having random numbers if they are predictably random. It is,
however, worth adding that GKShuffledDistribution is still random over time – the actual
order of numbers can't be predicted.

The other distribution option is GKGaussianDistribution (tip: "Gauss" rhymes with "House"),
which causes the random numbers to bias towards the mean average of the range. So if your
range is from 0 to 20, you'll get more numbers like 10, 11 and 12, fewer numbers like 8, 9, 13
and 14, and decreasing amounts of any numbers outside that.

To give you an idea of the bell curve this distribution generates, I created 100,000 random
numbers between 1 and 20, and only 228 were the number 1. That's way below the
statistical average of 5000, particularly when you realise that the number 11 got rolled 12,488
times – more than 50 times as often.

You can see the actual output of my test below, visualised on a chart:

Frequency of Rolls on a D20 with GKGaussianDistribution

GKGaussianDistribution is perfect for when you want random things to happen, but you

www.hackingwithswift.com 861

GKGaussianDistribution is perfect for when you want random things to happen, but you
also want to steer that randomness so that has a degree of averageness to it.

www.hackingwithswift.com 862

Shuffling an array with GameplayKit:
arrayByShufflingObjectsInArray()
Many Swift game projects use this Fisher-Yates array shuffle algorithm implemented in Swift
by Nate Cook:

extension Array {

 mutating func shuffle() {

 for i in 0..<(count - 1) {

 let j = Int(arc4random_uniform(UInt32(count - i))) + i

 swap(&self[i], &self[j])

 }

 }

}

With GameplayKit there's a specific method you can call that does a similar thing:
arrayByShufflingObjectsInArray(). I say "similar thing" rather than "identical thing" because
the GameplayKit returns a new array rather than modifying the original, whereas Nate's
version shuffles in place. We used this method a lot in the original Hacking with Swift
projects, so hopefully you're familiar with it by now.

For example, if you wanted to blithely ignore the inevitable legalities and set up a lottery in
your neighborhood, you could create an array containing the numbers 1 to 49, randomise its
order, then pick the first six balls:

let lotteryBalls = [Int](1...49)

let shuffledBalls =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(lotteryB
alls)

print(shuffledBalls[0])

print(shuffledBalls[1])

print(shuffledBalls[2])

print(shuffledBalls[3])

www.hackingwithswift.com 863

print(shuffledBalls[3])

print(shuffledBalls[4])

print(shuffledBalls[5])

Note that I'm using the default system randomisation because determinism is exactly what
you don't want in a lottery. Actually, forget it: if you're going to ignore the law and set up your
own lottery, you might as well fix it so you win, right?

One of the advantages of GameplayKit's randomisation is that it is truly deterministic, even
across devices. This means as long as you tell it where to start, it will produce the same
series of random numbers in the future. This is perfect for our evil lottery plan, and it gives
me the chance to show you one last thing: seeding GameplayKit's random sources.

When we created our random seeds earlier, we just used this:

let source = GKMersenneTwisterRandomSource()

That creates a new Mersenne Twister random source with a random starting point. But if you
want to force a starting point – either because you want to win your lottery or because you
want players in a network game to be synchronised – you can create your random source
with a specific seed, which is a fixed starting point.

When you use a seed value, your random number generator becomes predictable - you're
back to my "psychic powers" when I knew what numbers you would get out of rand(). But
that's OK, because you can generate the seeds using a separate random number generator,
so you're guaranteed uniqueness.

Here's our lottery example rewritten using a fixed seed value of 1001:

let lotteryBalls = [Int](1...49)

let shuffledBalls = GKMersenneTwisterRandomSource(seed:
1001).arrayByShufflingObjectsInArray(lotteryBalls)

print(shuffledBalls[0])

print(shuffledBalls[1])

www.hackingwithswift.com 864

print(shuffledBalls[1])

print(shuffledBalls[2])

print(shuffledBalls[3])

print(shuffledBalls[4])

print(shuffledBalls[5])

If you run that code now you'll see that the balls are shuffled identically every time. It's a
random order, but predictably random if you know what I mean!

www.hackingwithswift.com 865

Wrap up
I realise technique projects can be a little dry, but I hope you can see some real advantages
to using GameplayKit randomisation over other solutions. Not only does it offer a wider range
of functionality (shuffle and Gaussian distributions are awesome!) but it makes your code
much simpler, and also has the guarantee of being provably random.

Of course, if you're stuck supporting prior versions of iOS, you'll need to mix and match
GameplayKit randomisation with calls to arc4random_uniform() and the like. Make sure you
take advantage of the #available syntax in Swift 2 so you can use the new APIs when they
are available.

It bears repeating that this is only a small slice of what GameplayKit offers. If you haven't
already read tutorial 34, you should check it out now - it's a tutorial for GKMinmaxStrategist
from GameplayKit that shows how to create an AI for Four in a Row.

www.hackingwithswift.com 866

Project 36
Crashy Plane
Ever wanted to make a Flappy Bird clone? Now you can
do it in under an hour thanks to SpriteKit.

www.hackingwithswift.com 867

Setting up
This is the first game project in Hacking with Swift level 2, and we're going to produce a
Flappy Bird clone called Crashy Plane. You might be forgiven for thinking, "do we really need
another tutorial on how to make Flappy Bird?" And you're right, because there are quite a
few tutorials out that already. But this one is different: we'll be using Swift 2, we'll be using
iOS 9.0, and you're going to get some gorgeous assets you can use in your own games.

So, it's Yet Another Flappy Bird tutorial, but I'm going to take the opportunity to teach you
some Swift 2 and iOS 9 along the way. Before you start, please download the assets for
this project so you can follow along. If you haven't played Flappy Bird before, the concept is
simple: tap the screen to keep your bird flying, and don't touch the floor of any pipes. In our
game it'll be a plane with mountains as obstacles, but the idea is the same.

The assets you download are all licensed under CC0 / public domain, which means you can
use them however you want without attribution. If you want to attribute the original authors,
see the README.txt file in the zip. The game art comes from a designer called Kenney, who
offers a huge selection of public domain game assets in return for a donation – if you're
serious about making games you should definitely visit his home page.

All set? Great! Launch Xcode and create a new project from the game template. Choose
Swift for your language, SpriteKit for the game technology, and iPhone for device. Name it
Project36 and click Next then Finish. Before we go any further, please lock your game's
orientation to be portrait.

www.hackingwithswift.com 868

Creating a player: ResizeFill vs AspectFill
The first thing we're going to do in this game is clear out what's there and get our player on
the screen so we can be sure everything is working. This is an iPhone game which means we
need to be able to handle various device sizes: iPhone 4s, iPhone 5, iPhone 6 and iPhone 6
Plus all need to be catered for.

In your project, select the Assets.xcassets asset catalog. You'll see AppIcon and Spaceship
already in there, and as usual I'd like you to delete Spaceship because it's not used in our
game. In the assets you downloaded, look in the GFX folder and drag all the files from there
into your asset catalog – you'll see I've provided 1x, 2x and 3x versions of each piece of art,
which means you could expand this into an iPad game later on if you wanted.

Now right-click on your project group in the Project Navigator pane – that's not the blue
"Project36" at the top, but the yellow "Project36" directly beneath it. Choose New Group,
then name it "Content" and hit Enter. Copy into there the remaining assets you downloaded –
coin.wav, explosion.wav, music.m4a, PlayerExplosion.sks and spark.png.

That's all the assets configured for this game, so let's look at the code: open up
GameScene.swift then remove everything from didMoveToView(), touchesBegan() and
update(), but leave the methods themselves intact because we'll be using them later. That
means your class should look like this:

class GameScene: SKScene {

 override func didMoveToView(view: SKView) {

 }

 override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 }

 override func update(currentTime: CFTimeInterval) {

 }

www.hackingwithswift.com 869

 }

}

To make sure our game is working OK, we're going to start by creating the player. I've
provided three different player sprites for you that make it look like the propeller is spinning
around. We're going to need to reference the player throughout the game, so create a
property for it now by adding this to your GameScene class:

var player: SKSpriteNode!

By the time it's finished, our game is going to need to create lots of different elements, so
rather than clutter up didMoveToView() to handle everything we're going to use a common
programming methodology called Composed Methods, which essentially just means "make
each method do one small thing, then combine them together as needed." In our case, that
means we're going to have lots of methods to create things in our game, then call them
individually in didMoveToView().

For creating the player, we're going to create a sprite node out of the first frame in the player
animation, "player-1". We're then going to position the player most of the way up the screen
and most of the way to the left – this gives them enough time to respond when the game
starts. To get the propeller animation we're going to use the animateWithTextures() SpriteKit
action, cycling through each frame every 0.01 seconds. That's actually faster than our game
draws, so it essentially means "as fast as possible."

Here's the code - put this into GameScene.swift, below update():

func createPlayer() {

 let playerTexture = SKTexture(imageNamed: "player-1")

 player = SKSpriteNode(texture: playerTexture)

 player.zPosition = 10

 player.position = CGPoint(x: frame.width / 6, y: frame.height *
0.75)

 addChild(player)

www.hackingwithswift.com 870

 addChild(player)

 let frame2 = SKTexture(imageNamed: "player-2")

 let frame3 = SKTexture(imageNamed: "player-3")

 let animation = SKAction.animateWithTextures([playerTexture,
frame2, frame3, frame2], timePerFrame: 0.01)

 let runForever = SKAction.repeatActionForever(animation)

 player.runAction(runForever)

}

Now add this to didMoveToView():

createPlayer()

Press Play in Xcode to build and run your app, and… no player? That's right: you won't see
the player. If you look back at the code you'll see it says "place the player 1/6th of the way
across the screen and 3/4s of the way up," but still there's no player. The reason for this
becomes clear if you open GameScene.sks (not GameScene.swift!) in Xcode. If you look in
the Attributes inspector you'll see your game scene is configured to be 1024x768 in size,
which isn't helpful given that we're creating an iPhone game rather than an iPad game.

The easy fix here is to tell SpriteKit to resize the game scene to fit the actual view it's running
inside. Open up GameViewController.swift and look for this line:

scene.scaleMode = .AspectFill

That means "scale the scene so that it fits the view, allowing to be cropped if needed." This
is causing the left and right edges of the game scene to get lost. To fix the problem, change
the line to this:

www.hackingwithswift.com 871

scene.scaleMode = .ResizeFill

That now means "just make the game scene the same size as the view it is inside." Press
Play now and you should see the plane flying away in the top left corner – a good start!

www.hackingwithswift.com 872

Sky, background and ground: parallax
scrolling with SpriteKit
There are multiple depth levels in Flappy Bird, and when they come together and scroll at
various speeds you get a surprisingly nice depth effect. We'll be controlling the depth of our
graphics by setting the zPosition property of sprites, starting with the sky: this is just two
colored blocks that sit right at the very back of the game.

You can create SKSpriteNodes with nothing more than a color and a size, and that's what
we'll use here. I've sampled the sky colors based on the other graphics that we'll be adding
soon – the top and bottom parts of the sky are very, very similar, but just different enough to
be visible.

To make things easier for my brain, I'm going to be setting the anchorPoint property of the
sprite nodes. This means they calculate their positions differently from the default, which
might not sound easy at all, but trust me: it is! By default, nodes have the anchor point X0.5,
Y0.5, which means they calculate their position from their horizontal and vertical center. We'll
be modifying that to be X0.5, Y1 so that they measure from their center top instead – it
makes it easier to position because one part of the sky will take up 67% of the screen and
the other part will take up 33%.

Here's the createSky() method; add this just below createPlayer():

func createSky() {

 let topSky = SKSpriteNode(color: UIColor(hue: 0.55, saturation:
0.14, brightness: 0.97, alpha: 1), size: CGSize(width: frame.width,
height: frame.height * 0.67))

 topSky.anchorPoint = CGPoint(x: 0.5, y: 1)

 let bottomSky = SKSpriteNode(color: UIColor(hue: 0.55, saturation:
0.16, brightness: 0.96, alpha: 1), size: CGSize(width: frame.width,
height: frame.height * 0.33))

 topSky.anchorPoint = CGPoint(x: 0.5, y: 1)

 topSky.position = CGPoint(x: CGRectGetMidX(frame), y:
frame.size.height)

 bottomSky.position = CGPoint(x: CGRectGetMidX(frame), y:

www.hackingwithswift.com 873

 bottomSky.position = CGPoint(x: CGRectGetMidX(frame), y:
bottomSky.frame.height / 2)

 addChild(topSky)

 addChild(bottomSky)

 bottomSky.zPosition = -40

 topSky.zPosition = -40

}

Add a call to createSky() inside didMoveToView() then press Play again – you should see
some sky behind the player's plane now. Can you spot that it's two different colors?

Next up is the background. In the assets for this game it's a set of distant mountains and
clouds with a faint blue color, but we can't just add this to the game using a sprite node. The
reason is simple: while the sky is just two fixed (and very similar!) colors, the background
mountains need to scroll.

Making the mountains scroll is easy enough, but what's harder is ensuring the mountains
don't just scroll off the screen and leave nothing behind. What we really want to happen is to
have mountains scroll to the left forever, looping infinitely. We're going to accomplish this
with a little cheat: we're going to create two sets of mountains, both moving left. When one
moves off the screen completely we're going to move it way over to the other side of the
screen so that it can carry on moving. With two sets of mountains in place, this means
there'll be a seamless, never-ending mountain range in the background.

First up, add this method to your class. It creates two sprite nodes from the background
texture, positioning them side by side in your scene:

func createBackground() {

 let backgroundTexture = SKTexture(imageNamed: "background")

 for i in 0 ... 1 {

 let background = SKSpriteNode(texture: backgroundTexture)

 background.zPosition = -30

www.hackingwithswift.com 874

 background.zPosition = -30

 background.anchorPoint = CGPointZero

 background.position = CGPoint(x: (backgroundTexture.size().width
* CGFloat(i)) - CGFloat(1 * i), y: 100)

 addChild(background)

 }

}

You'll notice that I set the anchor point to the value CGPointZero, which makes the
background texture position itself from the left edge. This is helpful because it means we
know exactly when each mountain is fully off the screen, because its X position will be equal
to 0 minus its width. I also set the zPosition properties to be -30, which places them in front
of the sky.

We're using backgroundTexture.size().width * CGFloat(i)) - CGFloat(1 * i) to calculate the X
position of each mountain, which might look hard but really it isn't. This is inside a loop that
counts from 0 to 1, so the first time the loop goes around X will be 0, and the second time
the loop goes around X will be the width of the texture minus 1 to avoid any tiny little gaps in
the mountains.

Add a call to createBackground() to didMoveToView() and hit Play to make sure it's
working - you should see a static mountain range. There are two of them there, but you can't
see the other one because it's way off screen. To bring that to life we need to make the
mountains move: first to the left over 20 seconds, then way back over to the right over 0
seconds, i.e. immediately.

To make that work, add this code to createBackground() just after addChild():

let moveLeft = SKAction.moveByX(-backgroundTexture.size().width, y:
0, duration: 20)

let moveReset = SKAction.moveByX(backgroundTexture.size().width, y:
0, duration: 0)

let moveLoop = SKAction.sequence([moveLeft, moveReset])

let moveForever = SKAction.repeatActionForever(moveLoop)

www.hackingwithswift.com 875

background.runAction(moveForever)

So, each mountain will move to the left a distance equal to its width, then jump back another
distance equal to its width. This repeats in a sequence forever, so the mountains loop
indefinitely – try running the app to see how it looks!

Placing the plane on a simple moving background gives the feeling of movement without much
work.

Next up we're going to create the ground. This needs to have a Z position of -10 (not -20;
you'll see why later!) and have very similar movement logic to the mountains. That is, we
need to create two lots of the ground texture and have it move back and forward in a loop to
create an infinite scrolling landscape.

This time, however, is a little different: we can't adjust the anchor point of the sprite because
it causes problems with physics, so we need to do some maths juggling. We also need to
make the ground move much faster than the mountains so you get a neat parallax scrolling
effect.

www.hackingwithswift.com 876

Here's the code for the createGround() method:

func createGround() {

 let groundTexture = SKTexture(imageNamed: "ground")

 for i in 0 ... 1 {

 let ground = SKSpriteNode(texture: groundTexture)

 ground.zPosition = -10

 ground.position = CGPoint(x: (groundTexture.size().width / 2.0 +
(groundTexture.size().width * CGFloat(i))), y:
groundTexture.size().height / 2)

 addChild(ground)

 let moveLeft = SKAction.moveByX(-groundTexture.size().width, y:
0, duration: 5)

 let moveReset = SKAction.moveByX(groundTexture.size().width, y:
0, duration: 0)

 let moveLoop = SKAction.sequence([moveLeft, moveReset])

 let moveForever = SKAction.repeatActionForever(moveLoop)

 ground.runAction(moveForever)

 }

}

Remember to add a call to createGround() inside didMoveToView(), then press Play to see
how things look. You should see the player's plane animating, the sky, some moving
mountains, plus a faster-moving ground. It's not a game yet because there aren't any
controls, but I hope you can see things coming together!

www.hackingwithswift.com 877

Making the ground and background move at different speeds creates a parallax movement
effect, mimicing depth.

www.hackingwithswift.com 878

Creating collisions and making random
numbers with GameplayKit
Part of the infuriating nature of Flappy Bird was that there were all sorts of collisions that
could instantly kill you. In our game, these are massive rocks that will come out from the top
and bottom of the screen – and if a player hits any rock, or the ground, they are history.

The player's job is to fly their plane safely through the rocks that come along. The difficult
part is that the gap between rocks varies in position, and can be high, low or in the middle of
the screen, so the player needs quick reactions to score anything over a few points.

We're going to make a createRocks() method in just a moment, but first here's what it needs
to do:

1. Create top and bottom rock sprites. They are both the same graphic, but we're going to
rotate the top one and flip it horizontally so that the two rocks form a spiky death for the
player.
2. Create a third sprite that is a large red rectangle. This will be positioned just after the rocks
and will be used to track when the player has passed through the rocks safely – if they touch
that red rectangle, they should score a point. (Don't worry, we'll make it invisible later!)
3. Use the new GKRandomDistribution class in iOS 9's GameplayKit to generate a random
number in a range. This will be used to determine where the safe gap in the rocks should be.
4. Position the rocks just off the right edge of the screen, then animate them across to the
left edge. When they are safely off the left edge, remove them from the game.

Here's the createRocks() method, with numbered comments matching the numbers above:

func createRocks() {

 // 1

 let rockTexture = SKTexture(imageNamed: "rock")

 let topRock = SKSpriteNode(texture: rockTexture)

 topRock.zRotation = CGFloat(M_PI)

 topRock.xScale = -1.0

 let bottomRock = SKSpriteNode(texture: rockTexture)

www.hackingwithswift.com 879

 let bottomRock = SKSpriteNode(texture: rockTexture)

 topRock.zPosition = -20

 bottomRock.zPosition = -20

 // 2

 let rockCollision = SKSpriteNode(color: UIColor.redColor(), size:
CGSize(width: 32, height: frame.height))

 rockCollision.name = "scoreDetect"

 addChild(topRock)

 addChild(bottomRock)

 addChild(rockCollision)

 // 3

 let xPosition = frame.width + topRock.frame.width

 let max = Int(frame.height / 3)

 let rand = GKRandomDistribution(lowestValue: -100, highestValue:
max)

 let yPosition = CGFloat(rand.nextInt())

 // this next value affects the width of the gap between rocks

 // make it smaller to make your game harder – if you're feeling
evil!

 let rockDistance: CGFloat = 70

 // 4

 topRock.position = CGPoint(x: xPosition, y: yPosition +
topRock.size.height + rockDistance)

 bottomRock.position = CGPoint(x: xPosition, y: yPosition -

www.hackingwithswift.com 880

 bottomRock.position = CGPoint(x: xPosition, y: yPosition -
rockDistance)

 rockCollision.position = CGPoint(x: xPosition +
(rockCollision.size.width * 2), y: CGRectGetMidY(frame))

 let endPosition = frame.width + (topRock.frame.width * 2)

 let moveAction = SKAction.moveByX(-endPosition, y: 0, duration:
5.8)

 let moveSequence = SKAction.sequence([moveAction,
SKAction.removeFromParent()])

 topRock.runAction(moveSequence)

 bottomRock.runAction(moveSequence)

 rockCollision.runAction(moveSequence)

}

You'll get an error at first because you don't have GameplayKit in your app. Add this to the
top of GameScene.swift:

import GameplayKit

For more information on GKRandomDistribution you should read tutorial 35, which covers
the new GameplayKit randomization in detail. If you haven't seen it before, the xScale
property lets you stretch sprites horizontally. Using -1.0 as the value is what causes the flip
effect - it stretches the sprite by -100%, inverting it. I'm also using -20 for the zPosition
because we want the rocks to appear behind the ground sprites to keep the illusion intact.

You'll notice we're adding the movement action to the top rock, the bottom rock and the
collision sprite. If you wanted, you could create an extra SKNode that contains all three rock
sections, then animate that, but it gives you the same result. You might also have noticed the
curious duration I set: 5.8. I chose this through trial and error because the rocks move a
different distance to the ground and yet need to move at about the same speed – a duration
of 5.8 comes close enough.

www.hackingwithswift.com 881

Now, we're not going to add a call to createRocks() in didMoveToView(). You see, if we did
that it would create just one pair of rocks, which isn't what we want. Instead, we want rocks
to be created every few seconds continuously until the player dies, which means we need a
second method: initRocks(). Add this now:

func initRocks() {

 let create = SKAction.runBlock { [unowned self] in

 self.createRocks()

 }

 let wait = SKAction.waitForDuration(3)

 let sequence = SKAction.sequence([create, wait])

 let repeatForever = SKAction.repeatActionForever(sequence)

 runAction(repeatForever)

}

That new method calls createRocks(), waits three seconds, calls createRocks() again, waits
again, and so on, forever. Add a call to initRocks() to your didMoveToView() method, and if
you run the app you'll really start to see things looking good: rocks should appear at random
heights, with the red scoring box straight after them. Yes, you can't crash into them yet, but
we'll get there soon!

The last thing we're going to do in this chapter is add a score. As you should have completed
the earlier game projects in Hacking with Swift already, the only surprising thing here is that
I'm not going to use Chalkduster as my font – and only then because it's not easy to read
against moving rocks and mountains!

Add these two properties to your class. One is to hold the score as an integer, and the other
is to draw the score to the screen using a SKLabelNode:

var scoreLabel: SKLabelNode!

www.hackingwithswift.com 882

var scoreLabel: SKLabelNode!

var score = 0 {

 didSet {

 scoreLabel.text = "SCORE: \(score)"

 }

}

As per usual, we use a property observer to update the label whenever the score changes.
Now add this createScore() method to your class:

func createScore() {

 scoreLabel = SKLabelNode(fontNamed: "Optima-ExtraBlack")

 scoreLabel.fontSize = 24

 scoreLabel.position = CGPointMake(CGRectGetMaxX(frame) - 20,
CGRectGetMaxY(frame) - 40)

 scoreLabel.horizontalAlignmentMode = .Right

 scoreLabel.text = "SCORE: 0"

 scoreLabel.fontColor = UIColor.blackColor()

 addChild(scoreLabel)

}

That positions the score in the top-right corner of the screen, safely away from the player so
as not to be too annoying.

Add a call to createScore() to didMoveToView() and you're done. Now all that's left is the
important stuff: the game play!

www.hackingwithswift.com 883

Adding a red rectangle just after each set of rocks gives us something our player can collide
against, but make sure you hide it later!

www.hackingwithswift.com 884

Pixel-perfect physics in SpriteKit, plus
explosions and more
Everything in our game is configured to look good, but it's not actually playable yet.
Surprisingly, you're now only about 10 minutes away from a fully working game, because as
soon as we add in a few physics calls the game is good to go.

As you might imagine, Flappy Bird is a game where physics really matters. The player's plane
has physics, the rocks have physics, the ground has physics, and there's also gravity pulling
the player inevitably downwards towards their doom. So, we need to make sure we are told
when collisions happen, which means we need to conform to the
SKPhysicsContactDelegate protocol. Change your GameScene class's definition to this:

class GameScene: SKScene, SKPhysicsContactDelegate {

Now in your didMoveToView() method you want to make the SpriteKit physics world report
collisions to the game scene so they can be acted upon. We're also going to use this
opportunity to adjust the gravity of the physics world – you can set this to any value you
want, but be warned: the game is hard enough without massive amounts of gravity!

Add these two lines to didMoveToView():

physicsWorld.gravity = CGVectorMake(0.0, -5.0)

physicsWorld.contactDelegate = self

So: physics. Let's start by adding physics to the player. To make things fair, we're going to
use pixel-perfect collision detection to maximize the player's chance of survival, and
SpriteKit makes this really easy to do. In your createPlayer() method, just after the call to
addChild(), add this:

player.physicsBody = SKPhysicsBody(texture: playerTexture, size:
playerTexture.size())

player.physicsBody!.contactTestBitMask =

www.hackingwithswift.com 885

player.physicsBody!.contactTestBitMask =
player.physicsBody!.collisionBitMask

player.physicsBody?.dynamic = true

// player.physicsBody?.collisionBitMask = 0

Those four lines of code pack in a lot of functionality, and might not make sense right away
so let me break it down:

1. The first line sets up pixel-perfect physics using the sprite of the plane. This sprite
animates, but the difference is so tiny it won't matter.
2. The second line makes SpriteKit tell us whenever the player collides with anything. This is
wasteful in some games, but here the player dies if they touch anything so it's the right thing
to do.
3. The third line makes the plane respond to physics. This is the default, but I'm including it
here because we'll change it later.
4. The last line makes the plane bounce off nothing, or at least it would do if it weren't
commented out. I've made it commented out just for a moment so you can see it's working –
 I'll tell you when to remove the comment.

You might think lines 2 and 4 contradict each other, but they don't and they are both needed.
SpriteKit distinguishes between contact (two things touched) and collision (two things should
bounce off each other in the physics world). We want our plane to notify us if it touches
anything – any rock, the score counter red rectangles, or the ground. But we don't want it to
bounce off them, because we don't want the player to lose any momentum when they touch
the hidden score counters.

Don't bother running the game just yet, because all you'll see is the player falling off the
screen! To make things interesting we need to make some more changes first.

In the createGround() method, just before the call to addChild(), add this:

ground.physicsBody = SKPhysicsBody(texture: ground.texture!, size:
ground.texture!.size())

ground.physicsBody?.dynamic = false

www.hackingwithswift.com 886

That sets up pixel-perfect collision for the ground sprites, but makes them non-dynamic –
that is, they will respond to physics in the game so that the plane hits the ground, but they
won't get moved by the physics. Without this line the ground would drop off the screen
thanks to gravity.

We can start to approach a playable game by making just two more changes. First, add
these two lines to touchesBegan():

player.physicsBody?.velocity = CGVectorMake(0, 0)

player.physicsBody?.applyImpulse(CGVectorMake(0, 20))

The second line means "give the player a push upwards every time the player taps the
screen." The first line is there to make the physics a bit more realistic and it effectively
neutralizes any existing upward velocity the player has before applying the new movement.
Without that, the player could tap multiple times quickly and apply a huge upwards force to
the plane, sending them miles off the top of the screen. With that line, the plane behaves
much more like the "dodo" plane in the game Grand Theft Auto: Vice City – each upward
thrust adds only a tiny bit of lift.

The second change is to make the player's movement more dramatic. It's going to take
1/1000th of the player's upward velocity (a tiny amount) and turn that into rotation. This
means that when the player is moving upwards the plane tilts up a little, and when they
player is falling the plane tilts down. It's a simple effect, but it really highlights the player's
impending doom!

To make the effect nicer we'll add it as a rotateToAngle() action over a tenth of a second.
This smooths out the rotation a little, but because it's happening more slowly than the
game's frame rate it effectively means the rotation animation is always happening.

Add these two lines to update() now:

let value = player.physicsBody!.velocity.dy * 0.001

let rotate = SKAction.rotateToAngle(value, duration: 0.1)

player.runAction(rotate)

www.hackingwithswift.com 887

player.runAction(rotate)

If you run your game now you'll see it's almost playable: the player falls towards the ground,
and tapping keeps them in flight just a little bit longer. You can't collide with the rocks, but
you can collide with the ground because of that commented line that modified
collisionBitMask. I made it commented because you should be able to fly your play around
then crash into the ground in various interesting ways – it's the best (read: most fun!) way to
make sure your physics are configured correctly.

Please uncomment that line of code now so that the player can no longer bounce off
the ground.Now for the interesting part: adding physics to the rocks. This is going to use
pixel-perfect collisions for the rocks themselves, and rectangle physics for the red scoring
rectangle. All three of them need to have their dynamic property set to false so your rocks
don't fall of the screen.

So, we're going to make three changes, all in the createRocks() method. The first is just
after the let topRock = line – add these two lines of code:

topRock.physicsBody = SKPhysicsBody(texture: rockTexture, size:
rockTexture.size())

topRock.physicsBody?.dynamic = false

The second change is just after the let bottomRock = line – add these two lines of code:

bottomRock.physicsBody = SKPhysicsBody(texture: rockTexture, size:
rockTexture.size())

bottomRock.physicsBody?.dynamic = false

Finally, add these two lines of code just after the let rockCollision = line:

rockCollision.physicsBody = SKPhysicsBody(rectangleOfSize:
rockCollision.size)

rockCollision.physicsBody?.dynamic = false

www.hackingwithswift.com 888

rockCollision.physicsBody?.dynamic = false

Again, we're using pixel-perfect collision for the rocks and simple rectangle physics for the
score collision rectangle. It's worth me saying that per-pixel collision detection is
substantially slower than rectangle- and circle-based detection, but in our simple game it's
perfectly OK.

Before you run the game again, I'd like you to make one more change. Go to
GameViewController.swift and you'll see these two lines of code:

skView.showsFPS = true

skView.showsNodeCount = true

We've just added quite a lot of physics to our game, and physics can be annoying to debug
because it's invisible. Or at least it's invisible by default – SpriteKit can actually draw faint
blue lines around all our game physics, which really helps make sure everything is configured
correctly. Add these new line below the previous two:

skView.showsPhysics = true

If you run the game now and look closely you should be able to see the blue physics lines all
around the rocks, ground and even the player. It's such a small thing, but trust me: it's a real
time saver!

We still have one more thing to do before our game starts to be playable, and that's to add
collisions between the player's plane and pretty much everything else in the game. We
already configured the player to report back whenever it touches anything else that has
physics, so we now need to implement the didBeginContact() method and take appropriate
action.

First: what happens when the player touches a red score rectangle? Well, we gave those
rectangles a specific name – "scoreDetect" – which means we can check to see whether the
collision involved a node named "scoreDetect" and, if so, it means the player passed through

www.hackingwithswift.com 889

the rocks. When that happens we're going to remove the score rectangle from the game (so
they can't somehow score double points by accident), play the "coin.wav" sound effect, and
increment the score by one.

Here's the code – add this method to your GameScene class, just below update():

func didBeginContact(contact: SKPhysicsContact) {

 if contact.bodyA.node?.name == "scoreDetect" ||
contact.bodyB.node?.name == "scoreDetect" {

 if contact.bodyA.node == player {

 contact.bodyB.node?.removeFromParent()

 } else {

 contact.bodyA.node?.removeFromParent()

 }

 let sound = SKAction.playSoundFileNamed("coin.wav",
waitForCompletion: false)

 runAction(sound)

 score += 1

 return

 }

}

There are four important things to note in that code:

1. It checks to see whether the contact's bodyA or bodyB property was a score detection
rectangle. This is because we don't know whether the player collided with the rectangle or
the rectangle collided with the player. That might sound weirdly philosophical, but trust me: it
matters.
2. When you first play a sound in the simulator, expect your game to pause for half a second
while the sound engine is initialized. This doesn't happen on devices, but it does make this

www.hackingwithswift.com 890

game extremely hard – at least until we fix it in the next chapter.
3. Adding one to the score property triggers the didSet property observer we created earlier,
which means the score label will be updated.
4. I added a return line to the end because if the player collides with anything else we want
to destroy them. This just means, "you hit something safe; don't continue in this method."

And now for the really interesting bit: making the player die when they touch any rock or the
ground. Because the player's physics are configured to report back contact with absolutely
everything, and because we just made didBeginContact() exit if the player touches a
scoring rectangle, we can be sure that any code coming after our previous additions will only
be executed if the player hit a rock or the ground.

When this happens, we want the player to die and the game to end. So, if the collision is
between the player and anything else, we're going to create a smoky particle effect using the
PlayerExplosion.sks asset you copied in at the beginning, play "explosion.wav", remove the
player from the game, then change the game's speed property to be 0.

Add this code just before the end of didBeginContact():

if contact.bodyA.node == player || contact.bodyB.node == player {

 if let explosion = SKEmitterNode(fileNamed: "PlayerExplosion") {

 explosion.position = player.position

 addChild(explosion)

 }

 let sound = SKAction.playSoundFileNamed("explosion.wav",
waitForCompletion: false)

 runAction(sound)

 player.removeFromParent()

 speed = 0

}

www.hackingwithswift.com 891

All that is old except for the last line: the speed property. All SpriteKit nodes can have
actions attached to them, and by default they all run in real time – that is, one second in an
action is equal to one second on a real clock. This speed property is a time multiplier that
lets you adjust how fast actions attached to a node should run. It's 1.0 by default (real time),
but you could make it 2.0 to make actions happen twice as fast. That is, "fade out over 5
seconds" would actually become "fade out over 2.5 seconds."

We're adjusting the speed property to 0 for our game scene, which in turns get inherited by
all children – i.e., everything in the game. This has the effect of halting all those move actions
we added to make parallax scrolling work, effectively ending the game.

If you run the game now you'll see it's basically done: you can tap to fly high, stop tapping to
fall, fly through rocks to score points, or crash into something else to die in an explosion. We
could very easily stop here, but I'm going to go a bit further and add some extra polish.
Partly because polish is fun, but mostly because it gives me a chance to introduce you to
another new feature in iOS 9…

www.hackingwithswift.com 892

Background music with SKAudioNode,
an intro, plus game over
To make this a finished game – or at least as finished as it can be before getting into tiny
minutiae – we're going to make four more changes: we're going to add background music,
show an intro screen, show a game over screen, and let the player try again when they die.
None of these things are difficult, but it's a chance to polish your skills while polishing the
game so hopefully you won't skip this out!

First up: background music. New in iOS 9 is a SpriteKit class called SKAudioNode, which
adds several key new features to audio in SpriteKit, such as the ability to pan your audio left
and right. For our purposes, however, SKAudioNode is good because it lets us stop the
audio whenever we want. Remarkably, annoyingly, this was not part of SpriteKit for iOS 7 and
8, so you had to resort to using something like AVAudioPlayer for any sounds you wanted to
stop prematurely.

One of the neat features of SKAudioNode is that it loops its audio by default. This makes it
perfect for background music: we create the music, add it directly to the game scene as a
child, and it plays our background music forever. It also has the happy side effect of starting
the iOS Simulator's sound system as soon as the game begins, which means you won't have
your game freeze the first time the player touches a red scoring rectangle.

Add a property for the background music now:

var backgroundMusic: SKAudioNode!

Then add this to didMoveToView():

backgroundMusic = SKAudioNode(fileNamed: "music.m4a")

addChild(backgroundMusic)

Note: if you value your sanity, you'll probably want to run your game now to make sure the
music works (yes, that code is all it takes!) then comment out those two lines so you don't

www.hackingwithswift.com 893

have to listen to the music on repeat for the rest of the time you work on the game.

And yes, that's all it takes to add looping background music – hurray for SKAudioNode!

The next change we're going to make is to add an intro screen when the game starts. I'm just
going to make mine show the game's logo – "Crashy Plane" – over the game screen, with the
player's plane flying in the background. When the player taps the first time, the game will
begin. In a few minutes we're going to add a game over screen too, which means we have
three possible game states: showing the logo, playing the game, and dead. We'll represent
that with a dedicated enum, so add this just before the start of your GameScene class – i.e.,
just after the import lines:

enum GameState {

 case ShowingLogo

 case Playing

 case Dead

}

We need to create three more properties to make all this work: one to hold the logo sprite
node, one to hold the game over sprite node, and one to keep track of the current game
state. The game state will be ShowingLogo by default, which means the game won't start
until the player is ready. Add these properties now:

var logo: SKSpriteNode!

var gameOver: SKSpriteNode!

var gameState = GameState.ShowingLogo

Creating the logo and game over sprite nodes is nothing special: they are just simple
pictures, and we can use the CGRectGetMidX() and CGRectGetMidY() functions to
position them at the center of our game scene. As you might imagine, we need to set the
alpha property of the game over sprite to be 0 to begin with otherwise it would be quite

www.hackingwithswift.com 894

confusing!

Here's the createLogos() method:

func createLogos() {

 logo = SKSpriteNode(imageNamed: "logo")

 logo.position = CGPoint(x: CGRectGetMidX(frame), y:
CGRectGetMidY(frame))

 addChild(logo)

 gameOver = SKSpriteNode(imageNamed: "gameover")

 gameOver.position = CGPoint(x: CGRectGetMidX(frame), y:
CGRectGetMidY(frame))

 gameOver.alpha = 0

 addChild(gameOver)

}

That's not enough to make the game start in menu mode, though. First, add a call to
createLogos() inside didMoveToView(). While you're there, delete the call to initRocks()
because it's no longer needed – we don't want to start creating rocks before the game
begins. Finally, do you remember this line of code in the createPlayer() method?

player.physicsBody?.dynamic = true

When I was explaining what it did, I said it "makes the plane respond to physics. This is the
default, but I'm including it here because we'll change it later." Well, now it's time to change
it: by changing that true to be false the player will stop responding to physics. It will still
have physics attached to it ready to be used, but it won't actually do anything.

This is perfect for our game, because we want everything set up ready to go, but we don't
want the player to start moving until we're ready. So, change that line to this:

www.hackingwithswift.com 895

player.physicsBody?.dynamic = false

If you run the game now you'll see it looks pretty good: the player no longer moves (even
when you tap the screen) and the logo floats over the game nicely. Now we're going to
rewrite touchesBegan() so that it distinguishes between a touch when in ShowingLogo
mode and a touch when in Playing mode.

The code for touches while playing hasn't changed, so I'm not going to discuss it further, but
the code for ShowingLogo mode is new. This needs to change the game state to be Playing
(so that further touches move the plane), make the logo fade out and get removed from the
game, wait a tiny amount, then activate the player. It also needs to call initRocks() so that
rocks start being created at random intervals.

Because the GameState enum has three possible cases, and Swift likes all your switch/case
statements to be exhaustive, we're going to add an empty case for Dead that we'll fill in
shortly. Here's the new code for touchesBegan():

override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 switch gameState {

 case .ShowingLogo:

 gameState = .Playing

 let fadeOut = SKAction.fadeOutWithDuration(0.5)

 let remove = SKAction.removeFromParent()

 let wait = SKAction.waitForDuration(0.5)

 let activatePlayer = SKAction.runBlock { [unowned self] in

 self.player.physicsBody?.dynamic = true

 self.initRocks()

 }

 let sequence = SKAction.sequence([fadeOut, wait, activatePlayer,

www.hackingwithswift.com 896

remove])

 logo.runAction(sequence)

 case .Playing:

 player.physicsBody?.velocity = CGVectorMake(0, 0)

 player.physicsBody?.applyImpulse(CGVectorMake(0, 20))

 case .Dead:

 break

 }

}

You might think that removing the logo from the game is going to cause problems when we
add the ability for the player to start again, but don't worry – it will all make sense soon!

Adding a simple introduction screen helps players prepare for the game, and also gives you a

www.hackingwithswift.com 897

Adding a simple introduction screen helps players prepare for the game, and also gives you a
chance to remind them of your awesome brand name. Or not.

So, that's our game start sequence in place: all that's needed now is to end the game when
the player dies. This is going to do three things: change the alpha of the game over sprite to
be 1 (fully visible), change the game state to be Dead so we can respond to touches
differently, and stop the background music to give an extra little sense of loss.

In didBeginContact(), add these three lines of code just before the call to
player.removeFromParent():

gameOver.alpha = 1

gameState = .Dead

backgroundMusic.runAction(SKAction.stop())

Once the game state is Dead the player's taps stop doing anything, which is lucky because
the player is dead! However, what we really want is for player taps to start the game afresh,
and the easiest way to do that is to present a whole new GameScene scene. This causes
the whole game to be reset: a new score, a new player, a new logo sprite, no more rocks,
etc, and it's significantly easier than trying to reset everything by hand.

Right now in touchesBegan() there is a simple break line for the Dead game state. Change
it to this:

let scene = GameScene(fileNamed: "GameScene")!

scene.scaleMode = .ResizeFill

let transition =
SKTransition.moveInWithDirection(SKTransitionDirection.Right,
duration: 1)

self.view?.presentScene(scene, transition: transition)

That creates a fresh GameScene scene, applies the same ResizeFill tweak we made way
back at the beginning of this tutorial to compensate for the iPad-sized scene, then makes it

www.hackingwithswift.com 898

transition in with a simple animation.

But wait! Before you run the game – and I'm sure you're eager – there is one tiny further
tweak to make. You see, we have an update() method that adjusts the rotation of the player
every frame, but we also don't create the player until didMoveToView() is called. If the
update method is called first (and it is!) then Swift will try to adjust the rotation of a nil
property because the player hasn't been created yet, which will make your game crash.

The solution is simple, thanks to the guard keyword – just add this line to the start of the
update() method:

guard player != nil else { return }

Translated, that single line means "ensure that player is not nil, otherwise exit the method."

That's it! The game is done. I hope you agree it looks good, although I can't take any credit
for that – it's the marvellous art of Kenney that should take all the credit, and I do
encourage you again to check out his complete pack of public domain game assets.

As final touches, you should set the score rectangles to have the color UIColor.clearColor()
so they are invisible, then go to GameViewController.swift and turn off showsFPS,
showsNodeCount and showsPhysics.

www.hackingwithswift.com 899

Wrap up
This wasn't a complicated project, but I hope it was a satisfying one. The addition of new
techniques like GKRandomDistribution, SKAudioNode and guard should have made it
more interesting even for more experienced coders, and it was fun adding the extra bit of
polish at the end to make the whole game feel more complete.

If you want to take this project further, you could start by having different kinds of obstacles –
 the repeating rocks do get a bit tiresome after a while! You could also make the game
difficulty ramp up ever so slowly, either by decreasing the gap between the rocks or by
increasing the world gravity. To make the game much more challenging, how about
introducing a secondary scoring mechanism: perhaps the player could get extra points if
they fly through hoops in between the rocks? If you fancy a bigger challenge, how about
making it a universal game, i.e. support both iPad and iPhone.

www.hackingwithswift.com 900

Project 37
Psychic Tester
Are you psychic? Of course not. But what if we could use
our coding skills to make a game to fool your friends into
thinking otherwise?

www.hackingwithswift.com 901

Setting up
Are you psychic? Of course not. But what if we could use our coding skills to make a game
to fool your friends into thinking otherwise – while also learning some new techniques along
the way?

In this project we're going to build a simple game that recreates the classic Zener test for
extrasensory perception. Our game will show the user eight cards face down, and users
need to tap the card that has a star on its flip side. Casual players will get it right 1 in 8 times,
but you'll get it right every time. Magic!

Well, no. We'll be cheating, naturally, but even in this cheating I'm going to find new things to
teach you. First, we're going to build a tiny watchOS app that silently taps your wrist when
your finger moves over the star card. Then we're going to add 3D Touch support so that
pressing hard on any card will automaticaly make it the star. Whichever technique you use is
going to be enough to baffle your friends, although I hope you use your powers for good!

At the same time we'll also be learning about CAEmitterLayer, CAGradientLayer,
@IBDesignable and @IBInspectable, as well as how to create a 3D card flip effect using the
transitionWithView() method.

I've left the Apple Watch and 3D Touch code until the end of the project, so at the very least
you'll be able to work through the majority of the tutorial without needing special hardware.
That being said, we'll be using one of Xcode's built-in iOS/watchOS templates to make the
end result easier to reach.

Are you ready to take your first step into the Twilight Zone? Go ahead and launch Xcode,
then create a new project. When Xcode asks you which template you want, please select
watchOS then iOS App with WatchKit App. Set the target to be iPhone, the language to be
Swift, then deselect Include Notification Scene. Finally, name it Project37 and click Next.

Once the project is created, please set it to support landscape left and right only; no portrait
this time. You will also need to copy the image assets for this project into your project's asset
catalog – you can find them all on GitHub. You'll also find a Content directory in that
download; please add that to your project too, because it contains some music for later on.

www.hackingwithswift.com 902

Laying out the cards:
addChildViewController()
The first step in our project will be to lay eight cards out on the screen so that the user can
tap on one. We'll be doing most of this in code, but there is a small amount of storyboard
work required.

Open up Main.storyboard in Interface Builder, then draw out a large UIView inside the view
controller that was made by the template. Set its size to be 480x320 using explicit width and
height constraits, then make it centered inside its parent view. This explicit sizing makes it
easy to support the full range of iPhones: we'll place the cards inside this container at exact
positions, and the container will be moved depending on the size of the device.

We'll be placing something behind this view later on, so please set its background color to
be Clear Color. Then, using the Assistant Editor, please make an outlet connection between
your new view and the ViewController class, naming it cardContainer.

That's it: we're done with Interface Builder for now; the rest of this chapter will all be done
using code.

In the screenshot below you can see how your interface should look – note that I've
temporarily colored my inner view gray so you can see it more clearly!

www.hackingwithswift.com 903

Our very basic interface just consists of one view, but yours should be set to 'clear color' at this
point.

To help isolate functionality, we'll be creating a special UIViewController subclass to handle
each card. We'll then add this view controller to an array of all card view controllers, and add
them all to our main view controller so the player can see them.

So, add a new file to the project and choose iOS > Source > Cocoa Touch Class then click
Next. For "Subclass of" please enter UIViewController and for the class name enter
CardViewController.

To make things nice and easy, each card view controller will contain two child image views:
one for its card back and one for its card front. We're also going to give them two extra
properties: one to mark whether the card is correct (i.e. a star) and one to hold a weak
reference to the main ViewController class so we can send messages back.

Add these four properties to the CardViewController class now:

weak var delegate: ViewController!

www.hackingwithswift.com 904

weak var delegate: ViewController!

var front: UIImageView!

var back: UIImageView!

var isCorrect = false

The basic Xcode class has a viewDidLoad() stub provided for us, but it doesn't do anything
interesting. We need to upgrade this method to do the following:

1. Give the view a precise size of 100x140.
2. Add two image views, one for the card back and one for the front.
3. Set the front image view to be hidden by default.
4. Set the back image view to have an alpha value of 0 by default, fading up to 1 with an
animation.

That last point isn't strictly needed, but it does make the whole application look nicer.

None of the code to accomplish this is difficult, but I'm going to draw on a particular feature
of UIImageView to make things easier. The feature is this: if you create an image view using
a UIImage, the image view gets set to the size of that image automatically. This is perfect,
because all our card images are sized at 100x140, so our view and its card contents will all
line up.

Here's the new viewDidLoad() method for the CardViewController class:

override func viewDidLoad() {

 super.viewDidLoad()

 view.bounds = CGRectMake(0, 0, 100, 140)

 front = UIImageView(image: UIImage(named: "cardBack"))

 back = UIImageView(image: UIImage(named: "cardBack"))

 view.addSubview(front)

www.hackingwithswift.com 905

 view.addSubview(front)

 view.addSubview(back)

 front.hidden = true

 back.alpha = 0

 UIView.animateWithDuration(0.2) {

 self.back.alpha = 1

 }

}

You'll note that I'm using the "cardBack" for both the front and the back image views. This is
just for sizing purposes: the actual front image will be assigned later. Helpfully, UIImage
shares image data across image views very efficiently, so there's no extra cost to this
approach.

That's all the code required to make each card work, but it doesn't actually display them in
the view. To do that, we need to return to ViewController.swift and create a new property to
hold all the card view controllers, plus a new method to create them all. This creation method
will also be responsible for clearing any existing cards, so that with a single method call we
can wipe the slate clean and start again.

First, the new property: please add this to the ViewController class:

var allCards = [CardViewController]()

While you're up there, please add an import for GameplayKit because we'll be using it's
array shuffling method.

Now for the new method, loadCards(). This needs to assemble an array of positions where
cards can go (I've made some rough estimates, but you're welcome to be more precise in
your own code if you want to), load the various Zener card shapes (one for each of the eight
cards), then create one card view controller for each position.

www.hackingwithswift.com 906

So far, so easy. But this time there is going to be one extra step, because I want to introduce
to you the concept of view controller containment. When you place one view controller inside
another, it can cause problems with system events (think appearing, disappearing, rotating,
etc.) because iOS wasn't originally designed to have multiple view controllers visible at the
same time.

View controller containment is a simple solution where you use the methods
addChildViewController() and didMoveToParentViewController() to place one view
controller inside another. It's extremely easy to do, and it means iOS can keep track of all the
view controllers correctly, so it is very much recommended.

Please add the new method below to your ViewController class. I've added comments just
in case you're not sure what everything does:

func loadCards() {

 // create an array of card positions

 let positions = [

 CGPoint(x: 75, y: 85),

 CGPoint(x: 185, y: 85),

 CGPoint(x: 295, y: 85),

 CGPoint(x: 405, y: 85),

 CGPoint(x: 75, y: 235),

 CGPoint(x: 185, y: 235),

 CGPoint(x: 295, y: 235),

 CGPoint(x: 405, y: 235)

]

 // load and unwrap our Zener card images

 let circle = UIImage(named: "cardCircle")!

 let cross = UIImage(named: "cardCross")!

 let lines = UIImage(named: "cardLines")!

 let square = UIImage(named: "cardSquare")!

 let star = UIImage(named: "cardStar")!

www.hackingwithswift.com 907

 let star = UIImage(named: "cardStar")!

 // create an array of the images, one for each card, then shuffle
it

 var images = [circle, circle, cross, cross, lines, lines, square,
star]

 images =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(images)
as! [UIImage]

 for (index, position) in positions.enumerate() {

 // loop over each card position and create a new card view
controller

 let card = CardViewController()

 card.delegate = self

 // use view controller containment and also add the card's view
to our cardContainer view

 addChildViewController(card)

 cardContainer.addSubview(card.view)

 card.didMoveToParentViewController(self)

 // position the card appropriately, then give it an image from
our array

 card.view.center = position

 card.front.image = images[index]

 // if we just gave the new card the star image, mark this as the
correct answer

 if card.front.image == star {

 card.isCorrect = true

 }

 // add the new card view controller to our array for easier

www.hackingwithswift.com 908

 // add the new card view controller to our array for easier
tracking

 allCards.append(card)

 }

}

Now you just need to add a call to that method inside viewDidLoad() like this:

override func viewDidLoad() {

 super.viewDidLoad()

 loadCards()

}

There's one last thing we need to add before we're done with card loading: we need to make
loadCards() remove any existing cards. This will allow us to call loadCards() repeatedly and
have it do the right thing.

Please add this code at the start of loadCards():

for card in allCards {

 card.view.removeFromSuperview()

 card.removeFromParentViewController()

}

allCards.removeAll(keepCapacity: true)

That just acts as an "undo" for the rest of the method: it loops through all the card view
controllers we stored in the allCards array, removes the view then removes the view
controller containment, then clears the whole array.

www.hackingwithswift.com 909

Go ahead and run your project now, and you should see eight cards neatly lined up in two
rows like the screenshot below – albeit without the gray background. They don't do anything
yet, but it's a good start.

Our code places two rows of four cards into the cardContainer view.

www.hackingwithswift.com 910

Animating a 3D flip effect using
transitionWithView()
There's a reason I've made you put the card functionality into a separate view controller, and
it's because we're going to be adding some functionality to cards to handle them being
flipped over. iOS makes this kind of animation really easy, but it's done in a slightly different
way to our previous animations.

To handle tap detection we're going to use a UITapGestureRecognizer rather than
something like touchesBegan. This will make more sense later on, but the TL;DR version is
that part of the hoax effect will be you running your finger over the cards using your powers
to "feel" for the star – something like touchesBegan() will just cause problems.

So, please add this gesture recognizer to the end of viewDidLoad() in the
CardViewController class:

let tap = UITapGestureRecognizer(target: self, action: "cardTapped")

back.userInteractionEnabled = true

back.addGestureRecognizer(tap)

We haven't written the cardTapped() method yet, but it's trivial because all it will do is pass
the message on to the ViewController class to handle. This is important: we need each card
to decide if it was tapped, but we need to pass control onto the ViewController class to act
upon the tap, otherwise it's possible users might tap two cards at the same time and cause
problems.

So, the cardTapped() method in the card view controller is simple:

func cardTapped() {

 delegate.cardTapped(self)

}

www.hackingwithswift.com 911

Of course, that just pushes all the work to the ViewController class, where things get more
complicated. The cardTapped() method there needs to:

 • Ensure that only one card can be tapped at any time
 • Loop through all the cards in the allCards array.
 • When it finds the card that was tapped, animate it to flip over then fade away.
 • For all other cards, animate them fading away.
 • Reset the game after two seconds so that more cards appear.

We'll be doing the animation using methods inside CardViewController, and resetting the
game is done just by calling loadCards(), so that's all straightforward. But what's the best
way to ensure that only one card can be chosen by the player?

It turns out this is pretty easy: as soon as the user taps any card, we're going to disable user
interaction for our main view. We can then check that property inside the cardTapped()
method using the guard keyword, then set it back to true inside loadCards().

To make things slightly more interesting, I want to introduce you to the performSelector()
method family. These exist on objects that inherit from NSObject, which is both our view
controllers, and allow us to call a method after a delay or in the background really easily.

Let's take this step by step. First, here's the cardTapped() method for the ViewController
class:

func cardTapped(tapped: CardViewController) {

 guard view.userInteractionEnabled == true else { return }

 view.userInteractionEnabled = false

 for card in allCards {

 if card == tapped {

 card.wasTapped()

 card.performSelector("wasntTapped", withObject: nil,
afterDelay: 1)

 } else {

 card.wasntTapped()

 }

www.hackingwithswift.com 912

 }

 }

 performSelector("loadCards", withObject: nil, afterDelay: 2)

}

You can see that calls wasTapped() and wasntTapped() methods in the card view
controllers, each of which will perform some animation – we'll get onto that in a moment.
Using the afterDelay variant of performSelector() will cause wasntTapped() to be called
after 1 second, and loadCards() to be called after 2 seconds.

For now, focus on the first two lines of that method: that's what stops users tapping two
cards at once. By disabling the user interaction (and also checking that it was enabled
beforehand) we can be sure the user gets to make only one choice. But we do need to re-
enable user interaction when we're done, otherwise our app will be useless.

So, add this line somewhere into the loadCards() method:

view.userInteractionEnabled = true

Now all we need to do is write the wasTapped() and wasntTapped() methods of the card
view controller. We'll do wasntTapped() first because it uses code you already know, so re-
open CardViewController.swift and add this:

func wasntTapped() {

 UIView.animateWithDuration(0.7) {

 self.view.transform = CGAffineTransformMakeScale(0.00001,
0.00001)

 self.view.alpha = 0

 }

}

www.hackingwithswift.com 913

That tells the card to zoom down and fade away over 0.7 seconds. Things are more
interesting in the wasTapped() method because it needs to animate a 3D flip effect from the
card back to the card front. But if you were imagining this was going to be hard, you're
wrong: this flip effect has been around since the earliest days of iOS, so Apple made it
extremely easy.

Here is the wasTapped() method in its entirety:

func wasTapped() {

 UIView.transitionWithView(view, duration: 0.7, options:
[.TransitionFlipFromRight], animations: { [unowned self] in

 self.back.hidden = true

 self.front.hidden = false

 }, completion: nil)

}

As you can see, all the work is done by the transitionWithView() method. This takes a view
to operate on as its first parameter, and all the animations you perform need to be done on
subviews of this container view. We pass .TransitionFlipFromRight to create the flip effect,
but you should try using the code completion to explore other options.

Inside the animations block, we just adjust the hidden properties of the front and back image
views, but in the context of .TransitionFlipFromRight that will cause iOS to animate this
change as a flip – it really is that simple.

That's it! Run the project now and you'll find you can tap on any card to flip it over – a neat
effect with hardly any code. Thanks, iOS!

www.hackingwithswift.com 914

Adding a CAGradientLayer with
IBDesignable and IBInspectable
Magic is really the art of misdirection: making people focus their attention on one thing in
order to stop them focusing on something else. In our case, we don't want users to suspect
that your Apple Watch is helping you find the star, so we're going to overload them with
misdirection so that they suspect everything else before they think of your watch.

The first thing we're going to do is add a background to our view. This is going to be a simple
gradient, but we're going to make the gradient change color slowly between red and blue.
This has no impact on your ability to find the star, but if it makes your friends suspect that the
trick is to tap a card when the background is red then it has fulfilled its job of misdirection.

Making gradients in iOS isn't hard thanks to a special CALayer subclass called
CAGradientLayer. That being said, working with layers directly isn't pleasant, because they
can't take part in things like Auto Layout and they can't be used inside Interface Builder.

So, I'm going to teach you how to wrap a gradient inside a UIView, while also adding the
benefits of letting you control the gradient right from within Interface Builder. What's more,
you'll be amazed at how easy it is.

Add a new Cocoa Touch subclass to your project. Make it a subclass of UIView then name it
GradientView. We need this class to have a top and bottom color for our gradient, but we
also want those values to be visible (and editable) inside Interface Builder. This is done using
two new keywords: @IBDesignable and @IBInspectable.

The first of those, @IBDesignable, means that Xcode should build the class and make it
draw inside Interface Builder whenever changes are made. This means any custom drawing
you do will be reflected inside Interface Builder, just like it would when your app runs for real.

The second new keyword, @IBInspectable, exposes a property from your class as an
editable value inside Interface Builder. Xcode knows how to handle various data types in
meaningful ways, so strings will have an editable text box, booleans will have a checkbox,
and colors will have a color selection palette.

Other than defining properties for the top and bottom colors of the gradient, the
GradientView class needs to do only two other things to be complete: when iOS asks it
what kind of layer to use for drawing it should return CAGradientLayer, and when iOS tells

www.hackingwithswift.com 915

the view to layout its subviews it should apply the colors to the gradient.

Using this approach means the entire class is just 13 lines of code, including whitespace and
closing braces. Here's the code for the GradientView class:

@IBDesignable class GradientView: UIView {

 @IBInspectable var topColor: UIColor = UIColor.whiteColor()

 @IBInspectable var bottomColor: UIColor = UIColor.blackColor()

 override class func layerClass() -> AnyClass {

 return CAGradientLayer.self

 }

 override func layoutSubviews() {

 (layer as! CAGradientLayer).colors = [topColor.CGColor,
bottomColor.CGColor]

 }

}

With that new class in place, it's time to return to Interface Builder and add it to our layout.
To do this, draw out another UIView, but make sure it stretches from edge to edge this time.
Use the Pin button to add Auto Layout rules so the new view stays edge to edge no matter
what size the main view becomes, then finally go to the Editor menu and choose Arrange >
Send To Back to make sure the new view sits behind the card container.

We want this new view to be a GradientView, which is done by changing its class. Press Alt
+Cmd+3 to bring up the identify inspector on the right, then look at the very top for a
dropdown list of classes you can use for the new view. Look in there for "GradientView", and
you'll see "Designables: Updating" appear.

After a few seconds, you should see a white to black gradient appear in Interface Builder,
which shows the default colors we set. But we made those colors inspectable, so if you
press Alt+Cmd+4 to go to the Attributes Inspector you should see "Top Color" and "Bottom
Color" ready for you to choose – yes, Xcode has correctly converted topColor into "Top

www.hackingwithswift.com 916

Color" thanks to our property naming convention.

We'll be applying red and blue colors separately to the gradient, so please set "Top Color" to
be "Dark Gray Color", and "Bottom Color" to be "Black Color". Finally, set the alpha value for
the gradient view to be 0.9, so a little bit of the background view shows through.

Before we're done with Interface Builder (for real this time!) please use the Assistant Editor to
create an outlet for this new gradient view called gradientView. We don't need this just now,
but it's important in the next chapter.

If everything is correct, your interface should look like the screenshot below. As before, I've
colored my container view so you can see it, but yours should have Clear Color for its
background color.

CAGradientLayer plus IBDesignable make great Interface Builder buddies.

With all those interface changes in place, we can animate the background color of the main
view in just a handful of lines of code. To make this work, we'll be using three animation
options: .AllowUserInteraction (so the user can tap cards), .Autoreverse to make the view

www.hackingwithswift.com 917

go back to its original color, and .Repeat to make the animation loop back and forward
forever.

Place this animation code somewhere in viewDidLoad():

view.backgroundColor = UIColor.redColor()

UIView.animateWithDuration(20, delay: 0, options:
[.AllowUserInteraction, .Autoreverse, .Repeat], animations: {

 self.view.backgroundColor = UIColor.blueColor()

}, completion: nil)

Note that we need to give the view an initial red color to make the animation smooth, but you
can put that in Interface Builder if you prefer.

www.hackingwithswift.com 918

Creating a particle system using
CAEmitterLayer
Let's take our misdirection up a notch by adding some falling, spinning stars behind the
cards. Again, these do nothing other than misdirect your friends while also giving me a
chance to squeeze some new learning into you.

We first met particle systems in project 11 when we covered SKEmitterNode. That's a fast
and easy way to create particle systems in SpriteKit, but we're not in SpriteKit now so we
need an alternative.

Fortunately, iOS has one, and in fact it even predates SKEmitterNode: CAEmitterLayer.
From its name you should already be able to tell that it's a subclass of CALayer, which in
turn means you need to use CGColor rather than UIColor and CGImage rather than
UIImage. However, I should add that CAEmitterLayer isn't quite a beautifully polished as
SKEmitterNode – it has no WYSIWYG editor, for example, so you need to do everything in
code.

Each CAEmitterLayer defines the position, shape, size and rendering mode of a particle
system, but it doesn't actually define any particles – that's handled by a separate class,
called CAEmitterCell. You can create as many emitter cells as you want, then assign them to
your emitter layer to have them all fire from the same position.

There are lots of properties you can set on emitter cells, and without a WYSIWYG editor
you're basically stuck reading the documentation to find them all. To give you a jump start,
I'm going to use quite a few to make our particle system:

 • birthRate sets how many particles to create every second.
 • lifetime sets how long each particle should live, in seconds.
 • velocity sets the base movement speed for each particle.
 • velocityRange sets how much velocity variation there can be.
 • emissionLongitude sets the direction particles are fired.
 • spinRange sets how much spin variation there can be between particles.
 • scale sets how large particles should be, where 1.0 is full size.
 • scaleRange sets how much size variation there can be between particles.
 • color sets the color to be applied to each particle.
 • alphaSpeed sets how fast particles should be faded out (or in) over their lifetime.
 • contents assigns a CGImage to be used as the

www.hackingwithswift.com 919

Broadly speaking, each property has "Speed" and "Range" counterparts, where "speed"
dictates how much the value changes over time, and "range" dictates how much variation
there is in the initial value. So, scale also has scaleSpeed and scaleRange alongside it.

Alongside those cell properties, we're also going to give the particle system some basic
properties: we want to position it at the horizontal center of our view and just off the top, we
want it to be shaped like a line so that particles are created across the width of the view, we
want it to be as wide as the view but only one point high, and, as a bonus, we want it to use
additive rendering so that overlapping particles get brighter.

Now that you know how it all works, please add this method to the ViewController class:

func createParticles() {

 let particleEmitter = CAEmitterLayer()

 particleEmitter.emitterPosition =
CGPointMake(view.frame.size.width / 2.0, -50)

 particleEmitter.emitterShape = kCAEmitterLayerLine;

 particleEmitter.emitterSize = CGSizeMake(view.frame.size.width, 1);

 particleEmitter.renderMode = kCAEmitterLayerAdditive;

 let cell = CAEmitterCell()

 cell.birthRate = 2

 cell.lifetime = 5.0

 cell.velocity = 100

 cell.velocityRange = 50

 cell.emissionLongitude = CGFloat(M_PI)

 cell.spinRange = 5

 cell.scale = 0.5

 cell.scaleRange = 0.25

 cell.color = UIColor(white: 1, alpha: 0.1).CGColor

 cell.alphaSpeed = -0.025

www.hackingwithswift.com 920

 cell.alphaSpeed = -0.025

 cell.contents = UIImage(named: "particle")?.CGImage

 particleEmitter.emitterCells = [cell]

 gradientView.layer.addSublayer(particleEmitter)

}

Note that I'm adding the particle emitter as a sublayer of the gradientView view. This is
important, because it ensures the stars always go behind the cards. You will also need to a
call to createParticles() to the view controller's viewDidLoad() method, just before the call
to loadCards().

Go ahead and run the project now and I think you'll find the effect quite pleasing – it's subtle,
yes, but again it's just enough to distract users into thinking maybe, just maybe, the position
of the stars tells you where the green star card is.

With a color-shifting background gradient and falling stars your users will have no idea what's
going on.

www.hackingwithswift.com 921

Wiggling cards and background music
with AVAudioPlayer
The last part of our misdirection is going to be truly evil. That being said, it is entirely optional
because I won't be teaching any vital new techniques here – I just enjoy screwing with my
friends' heads!

We're going to add two more simple distractions to our app. First, we're going to make
random cards move ever so slightly on the screen. The movement has to be small so that
people catch it in the corner of their eye, but then aren't 100% sure anything actually
happened. Second, we're going to add some background music to make people wonder
whether there's something in the sound effects that tells you where the star is.

Making the cards move just a bit is easy thanks to the method
performSelector(_:withObject:afterDelay:) that I introduced earlier. We're going to write a
new method that scales a card so that it's a mere 1% larger than normal, before dropping it
down again. To make things more interesting, we want this animation to happen only
occasionally, so the users aren't sure when it will happen again.

This misdirection is clever because human eyes are extremely sensitive to motion at the
edges of vision, so your eye notices a card moves and jumps to it, but of course by then our
animation has stopped so your user isn't sure whether anything happened. If you want to
create a more pronounced effect, just increase the transform scale that gets applied.

Open CardViewController.swift and add this new method:

func wiggle() {

 if GKRandomSource.sharedRandom().nextIntWithUpperBound(4) == 1 {

 UIView.animateWithDuration(0.2, delay: 0,
options: .AllowUserInteraction, animations: {

 self.back.transform = CGAffineTransformMakeScale(1.01, 1.01);

 }) { _ in

 self.back.transform = CGAffineTransformIdentity;

 }

 performSelector("wiggle", withObject: nil, afterDelay: 8)

www.hackingwithswift.com 922

 performSelector("wiggle", withObject: nil, afterDelay: 8)

 } else {

 performSelector("wiggle", withObject: nil, afterDelay: 2)

 }

}

As always, make sure you add import GameplayKit to be able to use GKRandomSource.

There are two things of interest in that new method. First, I've used
the .AllowUserInteraction animation option so that users can tap a card even when it's
animating. Second, the method calls itself so that the wiggle animation happens repeatedly,
but, in a particularly evil twist, the delay is much longer after a card already moved. This
means if someone's eye jumps to a card when they think it moved, they'll have to stare at it
for a full eight seconds before it moves again.

Once the wiggle() method has been called once it will carry on calling itself, so we just need
to make that initial call to get things moving. To do that, add this code to the end of
viewDidLoad() for the card view controller:

performSelector("wiggle", withObject: nil, afterDelay: 1)

The very last piece of misdirection is an easy one: making some music play. Some mystic-
sounding music was in the Content folder you should have downloaded from GitHub in the
first chapter, and is a piece of music called "Phantom from Space" by Kevin MacLeod. It's
licensed under Creative Commons Attribution 3.0 – see this link for more information.

You should already have added the Content folder to your project, so all that's left is to use it.
This is done with four small changes in ViewController.swift, starting with this import to the
top:

import AVFoundation

www.hackingwithswift.com 923

Now create a property to hold our music audio:

var music: AVAudioPlayer!

Next we need to create a playMusic() method that loads in the music and plays it. This is
almost identical to code we've covered before, but there is a small change because we need
the music to loop. This is done by setting the audio player's numberOfLoops property to
any negative number, such as -1. Here's the new method, again for ViewController.swift:

func playMusic() {

 if let musicURL =
NSBundle.mainBundle().URLForResource("PhantomFromSpace",
withExtension: "mp3") {

 if let audioPlayer = try? AVAudioPlayer(contentsOfURL: musicURL)
{

 music = audioPlayer

 music.numberOfLoops = -1

 music.play()

 }

 }

}

The fourth and final change is just to call that new playMusic() method from within the view
controller's viewDidLoad() method. So, add this to the end:

playMusic()

That completes our misdirections: we've added a shifting color gradient, we've added falling
stars, we've made the cards move, and now we've added music too. With so many
distractions in place hopefully your friends won't be able to guess the trick.

www.hackingwithswift.com 924

distractions in place hopefully your friends won't be able to guess the trick.

Speaking of tricks, that's our very next job: how to fix the app so you always guess correctly!

www.hackingwithswift.com 925

How to measure touch strength using 3D
Touch
3D Touch is a new technology that was first trialled in Apple Watch as Force Touch, but
introduced fully inside the iPhone 6s. In iOS it's responsible for multiple interesting
technologies: peek and pop (to preview and jump into view controllers), application shortcuts
(menus on the home screen for common actions) and also pressure-sensitive taps for
UITouch.

All three of these are surprisingly simple to do, but in this project we're going to use only the
last one, and I think you'll be impressed by how easy it is. This project is about producing a
hoax, and we're going to make it so that if you press hard on any card it will automatically
become a star. This allows you to be able to "guess" correctly even without an Apple Watch
around, because any card is the right answer as long as you press correctly.

To accomplish this, we're going to use two new properties of UITouch: force and
maximumPossibleForce. The first tells us how strongly the user is pressing for the current
touch, and the second tells us the maximum recognizable strength for the current touch. For
our purposes, we just need to make sure the two match: if the user is pressing as hard as the
screen can recognize, we'll enable our cheat.

The cheat itself is really simple, because we just need to change the image on the front of the
card and set its isCorrect property to be true.

There is one small problem here, but it's trivial to fix: devices older than the iPhone 6s
devices don't support 3D Touch, and even 3D Touch devices can have the feature disabled
on user request. So, we need to add a simple check to ensure 3D Touch is available and
enabled on our current device.

That's how it all needs to work in theory, but now for the implementation. To keep things as
straightforward as possible, we're going to add all this work to touchesMoved() in
ViewController.swift, which will get called every time the user's finger moves on the screen.
Inside this method, we'll find where the user's touch was, then loop through all the cards to
find which one (if any) they are over. Then, if they are over a card and are pressing hard
enough, we'll enable the cheat.

Add this method to ViewController.swift now:

www.hackingwithswift.com 926

override func touchesMoved(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 super.touchesMoved(touches, withEvent: event)

 if let touch = touches.first {

 let location = touch.locationInView(cardContainer)

 for card in allCards {

 if CGRectContainsPoint(card.view.frame, location) {

 if view.traitCollection.forceTouchCapability == .Available {

 if touch.force == touch.maximumPossibleForce {

 card.front.image = UIImage(named: "cardStar")

 card.isCorrect = true

 }

 }

 }

 }

 }

}

That contains three pieces of code that we haven't looked at before. The first two are tiny but
important, so I want to cover them briefly before moving on. The first is locationInView(),
which is the UIKit version of the locationInNode() method we've used in SpriteKit several
times. The second is CGRectContainsPoint(), which returns true if, well, a point is inside a
rectangle. I told you it was tiny, but it's definitely important: our point is the location of the
current touch, and our rectangle is the frame of each card. So, this function returns true if the
user's finger is over a particular card.

The third piece of new code is the check whether 3D Touch is available, although as you can
see the check is actually for "force touch" being available – presumably because Apple's
marketing department got involved after development had completed! This is done by
reading the current trait collection for the view and checking whether its

www.hackingwithswift.com 927

forceTouchCapability is set to .Available.

That's all the code it takes to enable our first cheat, but I'm afraid that you can test it only if
you have a 3D Touch-capable device – Xcode's iOS simulator does not support 3D Touch, so
either you test with a real device or just take my word for it!

Note: in case you were wondering, that code will indeed run every time the user moves their
finger, but like I said earlier "UIImage shares image data across image views very efficiently,
so there's no extra cost to this approach." The same is true here: this code will run very
quickly.

www.hackingwithswift.com 928

Communicating between iOS and
watchOS: WCSession
It's time for something new, and something I've held back from covering in Hacking with
Swift because only a small proportion of people have an Apple Watch. So, I'm covering it
here only briefly, and only at the very end of the project so that if you don't have an Apple
Watch you can just skip on past.

Still here? OK: we're going to upgrade our project so that when your finger moves over the
correct card your Apple Watch will gently tap your wrist. The haptic vibration of Apple
Watches is so marvellously subtle that no one will have any idea what's happening – the
effect is very impressive!

I have good news and bad news. First the good news: for our purposes, communicating
between Apple Watch and iOS could not be any easier – it take us maybe five minutes in
total to complete the code. Now the bad news: even when the settings are adjusted, your
Watch will go to sleep after 70 seconds of inactivity, so it's down you to make sure the app
stays awake.

That bad news will make more sense once you're using the finished product, so without
further ado let's crack on with development. In ViewController.swift add this new import:

import WatchConnectivity

As you might imagine, the WatchConnectivity framework is responsible for connectivity
between iOS apps and watchOS apps, and we'll be using it to send messages between our
phone and a Watch. The messages are dictionaries of any data you want, so you can send
strings, numbers, arrays and more – it's up to you.

In order to work with a session, we need to check whether it's supported on our current
phone, then activate it. Put this code into the viewDidLoad() method of ViewController.swift:

if (WCSession.isSupported()) {

 let session = WCSession.defaultSession()

 session.delegate = self

www.hackingwithswift.com 929

 session.delegate = self

 session.activateSession()

}

You'll get an error because the ViewController class doesn't conform to the
WCSessionDelegate protocol, but that's easily fixed:

class ViewController: UIViewController, WCSessionDelegate {

Sending a message from a phone to a watch is trivial, like I said, but there is one small piece
of complexity: if we want the watch to buzz every time it receives a message (spoiler: that's
exactly what we want), we need a way to rate limit those messages. That is, we don't want to
send 100 messages a second when the user is touching the right card, because it would
make your watch go nuts.

To solve this problem, we're going to add a new property that tracks when the last watch
message was sent. This way, we can avoid sending a message to the watch if there was one
sent very recently – i.e., less than about half a second ago.

Add this property to the class:

var lastMessage: CFAbsoluteTime = 0

If you were wondering, CFAbsoluteTime is actually just a Double behind the scenes. We
can get the current time using a function called CFAbsoluteTimeGetCurrent(), which returns
the number of seconds that have passed since midnight on January 1st 2001. Yes, that's a
rather random date, but it doesn't matter: all we care about is the time since our previous
call.

Sending a message from the app to the watch is done in two parts. First, we need to check
whether the watch is reachable, which in practice means "is our Apple Watch app running
and in the foreground?" Second, we need to use the sendMessage() method of WCSession
to send a dictionary of data. It doesn't matter what data we send, because in our app any
data will be interpreted as "please buzz."

www.hackingwithswift.com 930

data will be interpreted as "please buzz."

Keeping in mind the need to rate limit these calls, here's a new method for the
ViewController class:

func sendWatchMessage() {

 let currentTime = CFAbsoluteTimeGetCurrent()

 // if less than half a second has passed, bail out

 if lastMessage + 0.5 > currentTime {

 return

 }

 // send a message to the watch if it's reachable

 if (WCSession.defaultSession().reachable) {

 // this is a meaningless message, but it's enough for our
purposes

 let message = ["Message": "Hello"]

 WCSession.defaultSession().sendMessage(message, replyHandler:
nil, errorHandler: nil)

 }

 // update our rate limiting property

 lastMessage = CFAbsoluteTimeGetCurrent()

}

With that new method in place we can call it inside touchesMoved() by adding this code
near the end of the CGRectContainsPoint() condition:

if card.isCorrect {

 sendWatchMessage()

www.hackingwithswift.com 931

 sendWatchMessage()

}

Just in case you're not sure where I mean, here's how the complete touchesMoved()
method should look:

override func touchesMoved(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 super.touchesMoved(touches, withEvent: event)

 if let touch = touches.first {

 let location = touch.locationInView(cardContainer)

 for card in allCards {

 if CGRectContainsPoint(card.view.frame, location) {

 if view.traitCollection.forceTouchCapability == .Available {

 if touch.force == touch.maximumPossibleForce {

 card.front.image = UIImage(named: "cardStar")

 card.isCorrect = true

 }

 }

 // here's the new code!

 if card.isCorrect {

 sendWatchMessage()

 }

 }

 }

 }

}

www.hackingwithswift.com 932

And that's it. Yes, that's all the code it takes to send data from our iOS app to an Apple
Watch. Of course, the app won't do anything yet because sending data isn't enough: we
need to write code to receive it and do something interesting.

www.hackingwithswift.com 933

Designing a simple watchOS app to
receive data
So far we have a fully working iOS app that shows cards players can flip over, has a cheat in
place for 3D Touch users so you can always guess correctly, and communication happening
from iOS to watchOS. The next step is to write a simple watchOS app that is able to receive
that data and make the device buzz gently.

We started our project with an Xcode watchOS template, so all this time you will have seen
two watchOS folders in your Xcode project: WatchKit App and WatchKit Extension. Yes,
cunningly they are two separate things. The extension contains all the code that gets run,
and the app contains the user interface. Both run on the Apple Watch as of watchOS 2.0, but
in watchOS 1.0 the extension used to run on your iPhone.

The first thing we're going to do is design a very simple interface using WatchKit, which is
the watchOS equivalent of UIKit. This interface is going to contain only a label and a button,
telling users to check their phone for instructions. We haven't written those instructions yet,
but all in good time…

Look inside the WatchKit App folder for Interface.storyboard, and open that in Interface
Builder. Using the Object Library, just like on iOS, drag a label then a button into the small
black space of our app's user interface. You will see that WatchKit automatically stacks its
views vertically so the interface doesn't get too cluttered.

Select the label, set its Lines property to be 0 so that it spans as many lines as necessary,
then align its text center and give it the following content: "Please read the instructions on
your phone before continuing." Now select the button and give it the text "I'm Ready".
Finally, select both the label and button then change their Vertical alignment property to be
Center.

All being well, your WatchKit interface should look like the screenshot below. Don't worry that
the views go right to the edge – the Watch's bezel blends seamlessly with the edge of the
screen in its apps, so it will look fine on devices.

www.hackingwithswift.com 934

WatchKit views have some similarities with UIKIt, but arguably more differences.

That's it: that's our entire interface. Before we continue with any further coding, we need to
create outlets for the label and button by using the Assistant Editor and Ctrl-dragging. Name
the label welcomeText and the button hideButton – you'll notice these have the types
WKInterfaceLabel and WKInterfaceButton because we're in WatchKit now, not UIKIt.

Note: When using Interface Builder with WatchKit, my Xcode's Assistant Editor seems to
enjoy showing the wrong files for editing. If this happens to you, click where it says
"Automatic" in the center of the Assistant Editor, then choose Top Level Objects >
InterfaceController.swift.

Finally, create an action for when the button is tapped, again by Ctrl-dragging in the
Assistant Editor. Name this hideWelcomeText(). We're done with Interface Builder now, so
please go back to the standard editor and open the InterfaceController.swift file from the
WatchKit Extension.

The first thing we're going to do is identical to the code from iOS: set ourselves up as the
delegate for the WCSession and activate it. So, start by adding this import:

www.hackingwithswift.com 935

delegate for the WCSession and activate it. So, start by adding this import:

import WatchConnectivity

Now add this to the willActivate() method – for our purposes, that's the equivalent of
viewDidLoad() in the iOS app:

if (WCSession.isSupported()) {

 let session = WCSession.defaultSession()

 session.delegate = self

 session.activateSession()

}

The code is literally identical to iOS – I told you this was going to be easy!

As before, you'll get an error when you try to assign the delegate to the Watch's view
controller, so you'll need to tell iOS you conform to the WCSessionDelegate protocol like
this:

class InterfaceController: WKInterfaceController, WCSessionDelegate {

With that, we're almost done with WatchOS. In fact, we just need to do two more things,
starting with implementing the hideWelcomeText() method. All this needs to do is hide the
label and the button we created so that the watch's screen is blank apart from the time in the
corner – we don't want any obvious UI in there that might alert people.

Hiding things in WatchKit is almost the same as iOS, so update the hideWelcomeText() to
this:

@IBAction func hideWelcomeText() {

 welcomeText.setHidden(true)

 hideButton.setHidden(true)

www.hackingwithswift.com 936

 hideButton.setHidden(true)

}

Note that you need to use setHidden() rather than just changing a hidden property as you
would in UIKit.

The last thing we need to do for our watchOS app is to make the device tap your wrist when
it receives a message from iOS. To do this, we just need to implement the
didReceiveMessage method for the WCSession so that it plays a haptic effect.

There are quite a few effects to choose from, but by far the most subtle is
WKHapticType.Click, which is so subtle that you can't help but marvel at the engineering of
the Apple Watch. Add this code just beneath hideWelcomeText():

func session(session: WCSession, didReceiveMessage message: [String :
AnyObject]) {

 WKInterfaceDevice().playHaptic(.Click)

}

So, whenever the watch receives any message from the phone, it will tap your wrist. Perfect!
But… we're not done yet. You see, we need to show some instructions on the iOS app so
that everything functions correctly.

You see, not only does the Apple Watch go to sleep extremely quickly, but it also likes
making noise to accompany haptic effects, which would rather spoil our hoax! So, to finish
up we're going to add an alert to the iOS app reminding you to check your Apple Watch
configuration every time it launches.

So, head back to ViewController.swift in your iOS app, then add this new method:

override func viewDidAppear(animated: Bool) {

 super.viewDidAppear(animated)

 let instructions = "Please ensure your Apple Watch is configured

www.hackingwithswift.com 937

 let instructions = "Please ensure your Apple Watch is configured
correctly. On your iPhone, launch Apple's 'Watch' configuration app
then choose General > Wake Screen. On that screen, please disable
Wake Screen On Wrist Raise, then select Wake For 70 Seconds. On your
Apple Watch, please swipe up on your watch face and enable Silent
Mode. You're done!"

 let ac = UIAlertController(title: "Adjust your settings", message:
instructions, preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "I'm Ready", style: .Default,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

That shows instructions to users every time the app runs. Note that you need to put it inside
viewDidAppear() rather than viewDidLoad() because it presents an alert view controller.

www.hackingwithswift.com 938

Wrap up
The app is finished, but really your work is about to begin: I've given you all the code you
need, but it's down to you to provide some meaningful patter to convince your friends! See
"Polishing your patter" below for some example patter to get you started, but first give the
app a quick try to make sure it all works.

To get started, run the app on your phone, then run it on your Watch. Note that installing
apps and launching apps are both quite slow on Apple Watch, so make sure you prepare
ahead of time. Once the Watch app is running, remember that it will go to sleep in 70
seconds unless you stop it, and when the Watch sleeps you won't get any haptic taps. The
easiest thing to do is very gently rotate the Digital Crown every 30 seconds or so, just to be
sure.

So, the app is complete and you've learned all about CAGradientLayer, CAEmitterLayer,
card flip effects, performSelector(), 3D Touch and more - good job! If you want to try taking
the app further, try implementing the sessionWatchStateDidChange() method in
ViewController.swift to detect when the Watch goes to sleep – if you make your phone play a
brief but innocuous sound, it would alert you to wake your watch.

If you're looking for something more advanced, try adding a hidden button to the Watch user
interface that enables "always win mode" – i.e., every card that gets tapped will be the star.
Your patter can then be, "I promise it's not a trick, in fact I can even transfer my psychic
power to you!" and watch as your friend suddenly finds the star every time.

Polishing your patter
Patter is verbal misdirection: what you say to your friends to confuse them while they are
trying to figure out the trick. At the very least, you should explain to your friend how the cards
work: there are eight cards with different shapes on, but only one has a green star. Let your
friend try finding the card by hand, to prove the set up is real. Lucky people will guess the
star correctly; very lucky people will guess twice in a row; but it's almost impossible that
someone will get the answer right three times in a row - that's where you come in!

The easiest way to get started with the trick is by putting your finger down over one card,
then dragging it slowly over the other cards. Note: don't tap the cards, because that will turn
one of them over. Instead, slide your finger over them as if you're feeling for – ahem –

www.hackingwithswift.com 939

psychic vibrations.

When you've done the trick correctly once or twice, your doubting friend will almost certainly
think that there's some secret signal on the screen that is alerting you to the correct card, or
perhaps you're performing some sort of gesture on the screen that triggers the star. In this
situation, up the ante: tell them you can do the trick without even seeing the screen. In fact,
you can do it without even touching the screen - they can do all the touching for you.

This works in just the same way, except now your friend is the one stroking their finger
across the screen. Just wait for your Watch to tap your wrist, then say something like "go
back to that card - I felt something there..."

Remember, misdirection is key. So, don't tap the right answer as soon as your phone
vibrates. Say something like "hmm... this card feels really warm... let me try some others
first." Or go to one of the cards nearby and say "this card feels warm, but not as warm as the
previous one..."

Finally, once you've fooled everyone and had your fun, let them in on the joke - after all, if
you can't have fun, why bother?

www.hackingwithswift.com 940

Project 38
GitHub Commits
Get started with Core Data by building an app to fetch and
store GitHub commits for Swift.

www.hackingwithswift.com 941

Setting up
In this project you'll learn how to use Core Data while building an app that fetches GitHub
commit data for the Swift project. Core Data is Apple's object graph and persistence
framework, which is a fancy way of saying it reads, writes and queries collections of related
objects while also being able to save them to disk.

Core Data is undoubtedly useful, which is why about 500,000 apps in the App Store build on
top of it. But it's also rather complicated to learn, which is why I left it so late in this tutorial
series – despite my repeated attempts to simplify the topic, this tutorial is still going to be the
hardest one in the whole of Hacking with Swift, and indeed I might have missed it out
altogether were it not by far the most requested topic from readers!

So, strap in, because you're going to learn a lot: we'll be covering Core Data, which will
encompass NSFetchRequest, NSManagedObject, NSPredicate, NSSortDescriptor, and
NSFetchedResultsController. We'll also touch on NSDateFormatter for the first time,
which is Apple's way of converting NSDate objects into human-readable formats.

As always, I like to teach new topics while giving you a real-world project to work with, and in
our case we're going to be using the GitHub API to fetch information about Apple's open-
source Swift project. The GitHub API is simple, fast, and outputs JSON, but most importantly
it's public. Be warned, though: you get to make only 60 requests an hour without an API key,
so while you're testing your app make sure you don't refresh too often!

If you weren't sure, a "Git commit" is a set of changes a developer made to source code that
is stored in a source control repository. For example, if you spot a bug in the Swift compiler
and contribute your changes, those changes will form one commit. And before I get emails
from random internet pedants, yes I know things are more complicated than that, but it's
more than enough of an explanation for the purposes of this tutorial.

Before we start, it's important I reiterate that Core Data can be a bit overwhelming at first. It
has a lot of unique terminology, and it needs a lot of boilerplate just to get you up and
running. If you find yourself struggling to understand it all, that's perfectly normal – it's not
you, it's just Core Data.

Over the next four chapters, we will implement the four pieces of Core Data boilerplate.
We're going to use Xcode's built-in Master-Detail Application template, but we're not not
going to have it generate Core Data code for us – that particular template is confusing
enough as it is, and the Core Data variety is practically impenetrable.

www.hackingwithswift.com 942

So, please go ahead and create a new Master-Detail Application project named Project38.
Select Swift for your language, select Universal for your device type, then make sure you
uncheck Core Data otherwise the rest of this tutorial will be very confusing indeed.

Do not, under any circumstances, enable Core Data for the Master-Detail Application template
for this tutorial.

We need to parse the JSON coming from GitHub's API, and the easiest way to do that is with
SwiftyJSON. If you haven't already downloaded the content for this project, please get it
from GitHub now. You'll see SwiftyJSON is there, so please drag that into your project now.

There are just two more things to do before our project is set up. First, open Main.storyboard
in Interface Builder and find the table view controller on the top right of the storyboard.
Select its only prototype cell, then open the attributes inspector and change Style from Basic
to Subtitle.

www.hackingwithswift.com 943

Change the table view cell style to be Subtitle.

Now scroll directly down to find the detail view controller with its single label. Select that
label, and change its number of lines property to be 0 - it's not perfect, but it's enough to
show everything is working.

Finally, open MasterViewController.swift for editing. Please find and delete the entire
insertNewObject() method. Now scroll up to the viewDidLoad() method and delete these
two lines of code:

let addButton = UIBarButtonItem(barButtonSystemItem: .Add, target:
self, action: "insertNewObject:")

self.navigationItem.rightBarButtonItem = addButton

That's it: the project is cleaned up and ready for Core Data. Remember, there are four steps
to implementing Core Data in your app, so let's start with the very first step: designing a Core
Data model.

www.hackingwithswift.com 944

www.hackingwithswift.com 945

Designing a Core Data model
A data model is a description of the data you want Core Data to store, and is a bit like
creating a class in Swift: you define entities (like classes) and give them attributes (like
properties). But Core Data takes it a step further by allowing you to describe how its entities
relate to other entities, as well as adding rules for validation and uniqueness.

We're going to create a data model for our app that will store a list of all the GitHub commits
for the Swift library. Take a look at the raw GitHub JSON now by loading this URL in a web
browser: https://api.github.com/repos/apple/swift/commits?per_page=100. You'll see
that each commit has a "sha" identifier, committer details, a message describing what
changed, and a lot more. In our initial data model, we're going to track the "date",
"message", "sha", and "url" fields, but you're welcome to add more if you want to.

To create a data model, choose File > New > File and select iOS > Core Data > Data Model.
Name it Project38, then make sure the "Group" option near the bottom of the screen has a
yellow folder to it rather than a blue project icon.

This will create a new file called Project38.xcdatamodeld, and when you select that you'll see
a new editing display: the Data Model Editor. At the bottom you'll see a button with the title
"Add Entity": please click that now.

The Add Entity button should be at the bottom of the data model editor window.

www.hackingwithswift.com 946

The Add Entity button should be at the bottom of the data model editor window.

A Core Data "entity" is like a Swift class in that it is just a description of what an object is
going to look like. By default, new entities are called "Entity", but you can change that in the
Data Model inspector in the right-hand pane of Xcode – press Alt+Cmd+3 if it's not already
visible. With your new entity selected, you should see a field named "Name", so please
change "Entity" to be "Commit".

New entities have the default name Entity, but obviously it's best that you change it to
something more meaningful.

To the right of the Add Entity button is another button, Add Attribute. Click that four times
now to add four attributes, then name them "date", "message", "sha" and "url". These
attributes are just like properties on a Swift class, including the need to have a data type.
You'll see they each have "Undefined" for their type right now, but that's easily changed: set
them all to have the String data type, except for "date", which should be Date.

The final change we're going to make is to mark each of these four property as non-optional.
Click "date" then hold down Shift and click "url" to select all four attributes, then look in the

www.hackingwithswift.com 947

Data Model inspector for the Optional checkbox and deselect it. Note: the Data Model
inspector can be a bit buggy sometimes – if you find it's completely blank, you might need to
try selecting one of the other files in your project and/or deselecting then re-selecting your
entity to make things work.

Select all four attributes and disable the Optional checkbox in the Data Model inspector.

Now, you might be forgiven for thinking, "at last! All that time spent mastering Swift optionals
is paying off – I know what this checkbox does!" But I have some bad news for you. Or, more
specifically, Core Data has some bad news for you: this Optional checkbox has nothing at all
to do with Swift optionals, it just determines whether the objects that Core Data stores are
required to have a value or not.

That's the first step of Core Data completed: the app now knows what kind of data we want
to store. We'll be coming back to add to our model later, but first it's time for step two:
adding the base Core Data functionality to our app so we can load the model we just defined
and save any changes we make.

www.hackingwithswift.com 948

Adding Core Data to our project:
NSPersistentStoreCoordinator
A Core Data model defines what your data should look like, but it doesn't actually store it
anywhere. To make our app work, we need to create a persistent store where Core Data can
read and write its data, then create what's called a "managed object context" where those
objects can be manipulated by us in memory.

In this second step we're going to write code to load the model we just defined, load a
peristent store where saved objects can be stored, and also create a managed object
context where our objects will live while they are active. Any changes we make to objects
won't be saved until we explicitly request it, and it's significantly faster to manipulate objects
inside your managed object context as much as you need to before saving rather than saving
after every change.

When data is saved, it's nearly always written out to an SQLite database. There are other
options, but take my word for it: almost everyone uses SQLite. SQLite is a very small, very
fast, and very portable database engine, and what Core Data does is provide a wrapper
around it: when you read, write and query a managed object context, Core Data translates
that into Structured Query Language (SQL) for SQLite to parse.

If you were wondering, SQL is pronounced Ess Cue Ell, but many people pronounce it
"sequel." The pronunciation of SQLite is more varied, but when I met its author I asked him
how he pronounces it, so I feel fairly safe that the definitive answer is this: you pronounce
SQLite as Ess-Cue-Ell-ite, as if it were a mineral like Kryponite or Carbonite depending on
your preferred movie.

To get started, open MasterViewController.swift and add an import for Core Data:

import CoreData

To set up the basic Core Data system, we're going to create a new method called
startCoreData() that will do the following:

1. Load our data model we just created from the application bundle and create a
NSManagedObjectModel object from it.

www.hackingwithswift.com 949

2. Create an NSPersistentStoreCoordinator object, which is responsible for reading from
and writing to disk.
3. Set up an NSURL pointing to the database on disk where our actual saved objects live.
This will be an SQLite database named Project38.sqlite.
4. Load that database into the NSPersistentStoreCoordinator so it knows where we want it
to save. If it doesn't exist, it will be created automatically
5. Create an NSManagedObjectContext and point it at the persistent store coordinator.

Below is all that turned into Swift, along with comments marking the relevant numbers above
- please add this new method to the MasterViewController class:

func startCoreData() {

 // 1

 let modelURL = NSBundle.mainBundle().URLForResource("Project38",
withExtension: "momd")!

 let managedObjectModel = NSManagedObjectModel(contentsOfURL:
modelURL)!

 // 2

 let coordinator = NSPersistentStoreCoordinator(managedObjectModel:
managedObjectModel)

 // 3

 let url =
getDocumentsDirectory().URLByAppendingPathComponent("Project38.sqlite
")

 do {

 // 4

 try coordinator.addPersistentStoreWithType(NSSQLiteStoreType,
configuration: nil, URL: url, options: nil)

 // 5

 managedObjectContext =

www.hackingwithswift.com 950

NSManagedObjectContext(concurrencyType: .MainQueueConcurrencyType)

 managedObjectContext.persistentStoreCoordinator = coordinator

 } catch {

 print("Failed to initialize the application's saved data")

 return

 }

}

// this is our usual helper function to find the user's documents
directory

func getDocumentsDirectory() -> NSURL {

 let urls =
NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory,
inDomains: .UserDomainMask)

 return urls[0]

}

Note that I've wrapped the call to addPersistentStoreWithType() inside a do/catch block
because it throws an exception when it fails. My project prints a message to the Xcode
console, but in production you should of course show some meaningful error to your user.

To make that code work, you'll need to add a property for managedObjectContext, which is
where we store the context once it is loaded. Add this property to the class now:

var managedObjectContext: NSManagedObjectContext!

So: the model is in your application bundle because you define it while creating your app, the
persistent store is in your application's documents directory because it gets modified as you
use it, and the managed object context lives in memory, and is where you manipulate your
objects before saving them.

We need to call our new method as soon as our app launches, so add this just before the
end of viewDidLoad():

www.hackingwithswift.com 951

end of viewDidLoad():

startCoreData()

The last thing to do is add a way to save the managed object context to the persistent store,
i.e. to make sure the changes we've made in memory are written to disk so they can be used
later. To make this work we'll use the hasChanges property of the managed object context
to determine whether a save is needed, and its save() method to do the actual writing.

Add this new method just after the previous two:

func saveContext() {

 if managedObjectContext.hasChanges {

 do {

 try managedObjectContext.save()

 } catch {

 print("An error occurred while saving: \(error)")

 }

 }

}

We'll be calling that whenever we've made changes that should be saved to disk.

At this point, our app has a working data model as well as code to load that model and
prepare a persistent store for reading and writing. That means step two is done and we're on
to step three: creating objects inside Core Data and fetching data from GitHub.

www.hackingwithswift.com 952

Creating an NSManagedObject subclass
with Xcode
In our app, Core Data is responsible for reading data from a persistent store (the SQLite
database) and making it available for us to use as objects. After changing those objects, we
can save them back to the persistent store, which is when Core Data converts them back
from objects to database records.

All this is done using a special data type called NSManagedObject. This is a Core Data
subclass of NSObject that uses a unique keyword, @NSManaged, to provide lots of
functionality for you. For example, you already saw the hasChanges property of a managed
object context – that automatically gets set to true when you make changes to your objects,
because Core Data tracks when you change properties that are marked @NSManaged.

Behind the scenes, @NSManaged effectively means "extra code will automatically be
provided when the program runs." It's a bit like functionality injection: when you say "this
property is @NSManaged" then Core Data will add getters and setters to it when the app
runs so that it handles things like change tracking.

If this sounds complicated, relax: Xcode can do quite a bit of work for us. It's not perfect, as
you'll see shortly, but it's certainly a head start. So, it's time for step three: creating objects in
Core Data so that we can fetch and store data from GitHub.

Select the data model (Project38.xcdatamodeld) and choose Editor > Create
NSManagedObject Subclass from the menu. Make sure your data model is selected then
click Next. Make sure the Commit entity is checked then click Next again.

www.hackingwithswift.com 953

Xcode will ask you which entities it should turn into subclasses. Right now we have only one,
Commit, so please choose it.

Finally, look next to Group and make sure you see a yellow folder next to "Project 38" rather
than a blue project icon, and click Create.

www.hackingwithswift.com 954

Xcode dearly loves trying to make you create Core Data models in the wrong place, regardless
of how often you change this option. Make sure you select the yellow icon not the blue one!

When this process completes, two new files are created: Commit.swift and Commit
+CoreDataProperties.swift. If you examine them you'll see the first one is empty, whereas the
second one looks something like this:

import Foundation

import CoreData

extension Commit {

 @NSManaged var date: NSDate?

 @NSManaged var message: String?

 @NSManaged var sha: String?

 @NSManaged var url: String?

}

www.hackingwithswift.com 955

First, there's that @NSManaged keyword I mentioned to you. Second, notice that the code
says extension Commit rather than class Commit, which is Xcode being clever:
Commit.swift is an empty class that you can fill with your own functionality, and Commit
+CoreDataProperties.swift is an extension to that class where Core Data writes its properties.
This means if you ever add attributes to the Commit entity and regenerate the
NSManagedObject subclass, Xcode will overwrite only Commit+CoreDataProperties.swift,
leaving your own changes in Commit.swift untouched.

Like I said, this Core Data code generation is a head start, but not perfect: how come all
those properties are marked as optional, i.e. NSDate? rather than NSDate, when we
explicitly told Core Data that they were not optional when making the model? Well,
remember that Swift's optionals and Core Data's optionals aren't the same, so Xcode's
generated code isn't perfect.

Working with optionals when they aren't needed adds an extra layer of annoyance, so I want
you go ahead and remove all the question marks from Commit+CoreDataProperties.swift.
When you're finished, it should look like this:

import Foundation

import CoreData

extension Commit {

 @NSManaged var date: NSDate

 @NSManaged var message: String

 @NSManaged var sha: String

 @NSManaged var url: String

}

Warning: if you recreate the subclass using the Create NSManaged Subclass menu option,
these changes will be lost and you will need to remove the optionality again. We'll be doing
exactly this later on.

www.hackingwithswift.com 956

Now that we have Core Data objects defined, we can start to write our very first useful Core
Data code: we can fetch some data from GitHub and convert it into our Commit objects. To
make things easier to follow, I want to split this up into smaller steps: fetching the JSON, and
converting the JSON into Core Data objects.

First, fetching the JSON. This needs to be a background operation because network
requests are slow and we don't want the user interface to freeze up when data is loading
This operation needs to go to the GitHub URL, https://api.github.com/repos/apple/swift/
commits?per_page=100 and convert the result into a SwiftyJSON object ready for
conversion.

To push all this into the background, we're going to use performSelectorInBackground() to
call fetchCommits() – a method we haven't written yet. Put this just before the end of
viewDidLoad():

performSelectorInBackground("fetchCommits", withObject: nil)

What the new fetchCommits() method will do is very similar to what we did back in project
7: download the URL into an NSData object then pass it to SwiftyJSON to convert into an
array of objects. In project 10 we extended this to use dispatch_async() so that once the
JSON was ready to be used we did the important work on the main thread.

We're not going to process the JSON just yet, but we can do everything else: download the
data, create a SwiftyJSON object from it, then go back to the main thread to loop over the
array of GitHub commits and save the managed object context when we're done. To make
things easier to debug, I've added a print() statement so you can see how many commits
were received from GitHub each time.

Here's our first draft of the fetchCommits() method:

func fetchCommits() {

 if let data = NSData(contentsOfURL: NSURL(string: "https://
api.github.com/repos/apple/swift/commits?per_page=100")!) {

 let jsonCommits = JSON(data: data)

 let jsonCommitArray = jsonCommits.arrayValue

www.hackingwithswift.com 957

 print("Received \(jsonCommitArray.count) new commits.")

 dispatch_async(dispatch_get_main_queue()) { [unowned self] in

 for jsonCommit in jsonCommitArray {

 // more code to go here!

 }

 self.saveContext()

 }

 }

}

There's nothing too surprising there – in fact right now it won't even do anything, because
saveContext() will detect no Core Data changes have happened, so the save() call won't
happen.

The second of our smaller steps is to replace // more code to go here! with, well, actual
code. Here's the revised version, with a few extra lines either side so you can see where it
should go:

dispatch_async(dispatch_get_main_queue()) { [unowned self] in

 for jsonCommit in jsonCommitArray {

 // the following three lines are new

 if let commit =
NSEntityDescription.insertNewObjectForEntityForName("Commit",
inManagedObjectContext: self.managedObjectContext) as? Commit {

 self.configureCommit(commit, usingJSON: jsonCommit)

 }

 }

 self.saveContext()

www.hackingwithswift.com 958

 self.saveContext()

}

So, there are three new lines of code, of which one is just a closing brace by itself. Of course,
it's so short only because I've cheated a bit by calling another method that we haven't
written yet, configureCommit(), so to make your code build add this for now:

func configureCommit(commit: Commit, usingJSON json: JSON) {

}

Now let's take a look at the two new lines of code above. First is
NSEntityDescription.insertNewObjectForEntityForName(), which reads the entity
description for Commit from the managed object context. This method creates a new object
with the type NSManagedObject, so we use if/let and as? Commit to safely downcast it to
be a Commit object. Putting all that together, the code reads "try to create a new Commit
object in our managed object context, and give it back to me if things went OK."

If we get a valid Commit object back, we pass it onto the configureCommit() method, along
with the JSON data for the matching commit. That Commit object is our NSManagedObject
subclass, so it has all sorts of magic behind the scenes, but to our Swift code is just a
normal object with properties we can read and write. This would make the
configureCommit() method straightforward if it were not for dates.

Yes, dates. Not the sweet fruity kind, but the NSDate kind. Make sure you have the GitHub
API URL open in a web browser window so you can see exactly what it returns, and you'll
notice that dates are sent back like "2016-01-26T19:46:18Z". That format is known as
ISO-8601 format, we need to parse that into an NSDate in order to put it inside our Commit
object.

To convert "2016-01-26T19:46:18Z" into an NSDate we're going to use a new class called
NSDateFormatter. This is designed to convert text to NSDate and vice versa – all you need
to do is describe the textual date format using special syntax For ISO-8601 dates, that
syntax is "yyyy-MM-dd'T'HH:mm:ss'Z'": a four-digit year, a two-digit month, a two-digit day,
the letter T, then hours, minutes, seconds, and the letter Z.

We're going to use this date format again later in the tutorial, so add this property to the

www.hackingwithswift.com 959

MasterViewController class:

let dateFormatISO8601 = "yyyy-MM-dd'T'HH:mm:ss'Z'"

Before I show you the new configureCommit() method, there's one more thing you need to
know: getting an NSDate out of a string might fail, for example if the date format doesn't
match the one we set. In this case, we'll get nil back, which isn't much good for our app, so
I'm going to use the nil coalescing operator to use a new NSDate instance if the date failed
to parse.

Here's the new configureCommit() method:

func configureCommit(commit: Commit, usingJSON json: JSON) {

 commit.sha = json["sha"].stringValue

 commit.message = json["commit"]["message"].stringValue

 commit.url = json["html_url"].stringValue

 let formatter = NSDateFormatter()

 formatter.timeZone = NSTimeZone(name: "UTC")

 formatter.dateFormat = dateFormatISO8601

 commit.date = formatter.dateFromString(json["commit"]["committer"]
["date"].stringValue) ?? NSDate()

}

I love how easy SwiftyJSON makes JSON parsing! If you've forgotten, it automatically
ensures a safe value gets returned even if the data is missing or broken. For example,
json["commit"]["message"].stringValue will either return the commit message as a string
or an empty string, regardless of what the JSON contains. So if "commit" or "message" don't
exist, or if they do exist but actually contains an integer for some reason, we'll get back an
empty string – it makes JSON parsing extremely safe while being easy to read and write.

That completes step three of our Core Data code: we now create lots of objects when we

www.hackingwithswift.com 960

download data from GitHub, and the finishing collection gets saved back to SQLite. That just
leaves one final step before we have the full complement of fundamental Core Data code: we
need to be able to load and use all those Commit objects we just saved!

www.hackingwithswift.com 961

Loading Core Data objects using
NSFetchRequest and NSSortDescriptor
This is where Core Data starts to become interesting and perhaps – gasp! – even fun. Yes, I
know it's taken quite a lot of work to get this far, but I did warn you, remember?

Step four is where we finally get to put to use all three previous steps by showing data to
users. After the huge amount of work you've put in, particularly in the previous step, I'm sure
you'll be grateful to see everything pay off at last!

Xcode's Master-Detail Application template gave us this array to use in the table view:

var objects = [AnyObject]()

In our project, we know we're using Commit objects rather than AnyObject, so please
change that line to this:

var objects = [Commit]()

As soon as you do that, your code will break in two places because the template expects
NSDate objects to be in that array. Don't worry, this is easily fixed. Start by going to
prepareForSegue() and finding this line:

let object = objects[indexPath.row] as! NSDate

To fix that line, just remove the as! NSDate part, like this:

let object = objects[indexPath.row]

www.hackingwithswift.com 962

Now scroll down to find cellForRowAtIndexPath, and in particular these two lines:

let object = objects[indexPath.row] as! NSDate

cell.textLabel!.text = object.description

Change them to this:

let object = objects[indexPath.row]

cell.textLabel!.text = object.message

cell.detailTextLabel!.text = object.date.description

That will show a snippet of each commit message in the table view cell titles, and a basic
formatted date in the subtitles.

With that change made, we need to write one new method in order to make our entire app
spring into life. But before we jump into the code, you need to learn about one of the most
important classes in Core Data: NSFetchRequest. This is the class that performs a query on
your data, and returns a list of objects that match.

We're going to use NSFetchRequest in a really basic form for now, then add more
functionality later. In this first version, we're going to ask it to give us an array of all Commit
objects that we have created, sorted by date descending so that the newest commits come
first.

The way fetch requests work is very simple: you tell it what entity you want to query, give it
an array of data describing how you want the sorting to happen, then pass it to
executeFetchRequest() on your managed object context. If the fetch request worked then
you'll get back an array of objects matching the query; if not, an exception will be thrown that
you need to catch.

The sorting is done through a special data type called NSSortDescriptor, which is a trivial
wrapper around the name of what you want to sort (in our case "date"), then a boolean
setting whether the sort should be ascending (oldest first for dates) or descending (newest
first). You pass an array of these, so you can say "sort by date descending, then by message

www.hackingwithswift.com 963

ascending," for example.

OK, time for some code, and I hope you'll be pleasantly surprised by how easy it is:

func loadSavedData() {

 let fetch = NSFetchRequest(entityName: "Commit")

 let sort = NSSortDescriptor(key: "date", ascending: false)

 fetch.sortDescriptors = [sort]

 do {

 if let commits = try
managedObjectContext.executeFetchRequest(fetch) as? [Commit] {

 print("Got \(commits.count) commits")

 objects = commits

 tableView.reloadData()

 }

 } catch {

 print("Fetch failed")

 }

}

So, that creates the NSFetchRequest, gives it a sort descriptor to arrange the newest
commits first, then uses the executeFetchRequest() method to fetch the actual objects.
That method returns an array of NSManagedObjects, but the code safely downcasts that to
be Commit. Once that's done, it's just a matter of assigning the resulting array to the
objects property used in the Xcode template and calling reloadData() on the table –
 everything else is handled for us by the Xcode template.

To make the app work, we need to call this new loadSavedData() method in two places.
First, add a call just after startCoreData() in the viewDidLoad() method. Second, add a call
to the fechCommits() method, just after where we have self.saveContext(). You will, of
course, need to use self.fetchCommits() in that instance.

www.hackingwithswift.com 964

Again, I've written a simple print() statement when errors occur, but in your own production
apps you will need to show something useful to your user.

Good news: that completes all four basic bootstrapping steps for Core Data. We have
defined our model, loaded the data store and managed object context, fetched some
example data and saved it, and loaded the resulting objects. You should now be able to run
your project and see it all working!

Finally our app is working: we have a scrolling table view listing commits to the Swift repository
on GitHub.

Getting a crash? If your code crashes in the cellForRowAtIndexPath method, make sure
you changed the table view's cell type to be Subtitle rather than Basic.

www.hackingwithswift.com 965

How to make a Core Data attribute
unique using constraints
After such a huge amount of work getting Core Data up and running, you'll probably run your
app a few times to enjoy it all working. But it's not perfect, I'm afraid: first, you'll see GitHub
commits get duplicated each time the app runs, and second you'll notice that tapping on a
commit shows the Detail screen with not much helpful information.

We'll be fixing that second problem later, but for now let's focus on the first problem:
duplicate GitHub commits. In fact, you probably have triplicate or quadruplicate by now,
because each time you run the app the same commits are fetched and added to Core Data,
so you end up with the same data being repeated time and time again.

No one wants repeated data, so we're going to fix this problem. And for once I'm pleased to
say that Core Data makes this very easy thanks to a simple technology called "unique
constraints." All we need to do is find some data that is guaranteed to uniquely identify a
commit, tell Core Data that is a unique identifier, and it will make sure objects with that same
value don't get repeated.

Even better, Core Data can intelligently merge updates to objects in situations where this is
possible. It's not going to happen with us, but imagine a situation where a commit author
could retrospectively change their commit message from "I fxed a bug with Swift" to "I fixed
a bug with Swift." As long as the unique identifier didn't change, Core Data could recognize
this was an update on the original commit, and merge the change intelligently.

Inserting data uniquely used to be harder before iOS 9, because you needed to run an
NSFetchRequest to see if an object matching your identifier existed, then create it or update
it as needed. As of iOS 9, this is done automatically: you just need to tell Core Data what
your unique attribute is.

In this app, we have the perfect unique attribute just waiting to be used: every commit has a
"sha" attribute that is a long string of letters and numbers that identify that commit uniquely.
SHA stands for "secure hash algorithm", and it's used in many places to generate unique
identifiers from content.

A "hash" is a little bit like like one-way, truncated encryption: one piece of input like "Hello
world" will always generate the same hash, but if you change it to be "Hello World" – just
capitalising a single letter – you get a completely different hash. It's "truncated" because no

www.hackingwithswift.com 966

matter how much content you give it as input, the "sha" will always be 40 letters. It's "one
way" because you can't somehow reverse the hash to discover the original content, which is
where hashes are different to encryption: an encrypted message can be decrypted to its
original content, whereas a hashed message cannot be "dehashed" back to its original.

Hashes are frequently used as a checksum to verify that a file or data is correct: if you
download a 10GB file and want to be sure it's exactly what the sender created, you can just
compare your hash with theirs. Because hashes are truncated to a specific size, it is
technically possible for two pieces of very different content to generate the same hash,
known as a "collision", but this is extremely rare.

Enough theory. Please go ahead and run your app a few times to make sure there are a good
number of duplicates so you can see the problem in action. We added some print()
statements in there for debugging purposes, so you'll see a message like this:

Got 500 commits

Received 100 new commits.

Got 600 commits

Select the data model (Project38.xcdatamodeld) and make sure the Commit entity is
selected rather than one of its attributes. If you look in the Data Model inspector you'll see a
field marked "Constraints" – click the + button at the bottom of that field. A new row will
appear saying "comma,separated,properties". Click on that, hit Enter to make it editable,
then type "sha" and hit Enter again to save the changes.

www.hackingwithswift.com 967

Just adding the word 'sha' to the list of constraints is enough to tell Core Data we need it to be
unique.

Now for the important part, because in my testing Xcode didn't behave quite as it ought to.
First, go to the the iOS simulator, then choose the Simulator menu and choose Reset
Content And Settings. Now quit Xcode, and relaunch it. Re-open your project, hold down the
Alt key, and go to Product > Clean Build Folder from the menu and click Clean when
prompted.

What you just did was completely reset the state of your project and the iOS Simulator. The
reason this is required is two-fold: first, because you just made an important change to your
model, which is generally a bad idea unless you know what you're doing; second, because
Xcode frequently fails to register changes to unique constraints unless you explicitly save, so
by asking you to restart Xcode and clean your project I can feel fairly confident that everyone
will be in a working state.

Before you run your project again, I want you to make one tiny code change. In your
startCoreData() method, add this line to where the managed object context is configured:

managedObjectContext.mergePolicy =

www.hackingwithswift.com 968

managedObjectContext.mergePolicy =
NSMergeByPropertyObjectTrumpMergePolicy

It should look like this:

managedObjectContext =
NSManagedObjectContext(concurrencyType: .MainQueueConcurrencyType)

managedObjectContext.persistentStoreCoordinator = coordinator

managedObjectContext.mergePolicy =
NSMergeByPropertyObjectTrumpMergePolicy

This instructs Core Data to allow updates to objects: if an object exists in its data store with
message A, and an object with the same unique constraint ("sha" attribute) exists in memory
with message B, the in-memory version "trumps" (overwrites) the data store version.

Go ahead and run your project a few times now and you'll see this message in the Xcode
log:

Got 100 commits

Received 100 new commits.

Got 100 commits

As you can see, 100 commits were loaded from the persistent store, 100 "new" commits
were pulled in from GitHub, and after Core Data resolved unique attributes there were still
only 100 commits in the persistent store. Perfect! If you run your project again after a few
hours, the numbers will start to go up slowly as new commits appear on GitHub – Swift is a
live project, after all!

Note: in a couple of chapters I'll be introducing you to something called
NSFetchedResultsController. Using attribute constraints can cause problems with
NSFetchedResultsController, but in this tutorial we're always doing a full save and load of
our objects because it's an easy way to avoid problems later. Don't worry about it for now –
I'll mention it again at the appropriate time.

www.hackingwithswift.com 969

www.hackingwithswift.com 970

Examples of using NSPredicate to filter
NSFetchRequest
Predicates are one of the most powerful features of Core Data, but they are actually useful in
lots of other places too so if you master them here you'll learn a whole new skill that can be
used elsewhere. For example, if you already completed project 33 you'll have seen how
predicates let us find iCloud objects by reference.

Put simply, a predicate is a filter: you specify the criteria you want to match, and Core Data
will ensure that only matching objects get returned. The best way to learn about predicates is
by example, so I've created three examples below that demonstrate various different filters.
We'll be adding a fourth one in the next chapter once you've learned a bit more.

First, add this new property to the MasterViewController class:

var commitPredicate: NSPredicate?

I've made that an optional NSPredicate because that's exactly what our fetch request takes:
either a valid predicate that specifies a filter, or nil to mean "no filter."

Find your loadSavedData() method and add this line just below where the sortDescriptors
property is set:

fetch.predicate = commitPredicate

With that property in place, all we need to do is set it to whatever predicate we want before
calling loadSavedData() again to refresh the list of objects. The easiest way to do this is by
adding a new method called changeFilter(), which we'll use to show an action sheet for the
user to choose from. First we need to add a button to the navigation bar that will call this
method, so put this code into viewDidLoad():

navigationItem.rightBarButtonItem = UIBarButtonItem(title: "Filter",
style: .Plain, target: self, action: "changeFilter")

www.hackingwithswift.com 971

And here's an initial version of that new method for you to add to your view controller:

func changeFilter() {

 let ac = UIAlertController(title: "Filter commits…", message: nil,
preferredStyle: .ActionSheet)

 // 1

 // 2

 // 3

 // 4

 ac.addAction(UIAlertAction(title: "Cancel", style: .Cancel,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

We'll be replacing the four comments one by one as you learn about predicates.

Let's start with something easy: matching an exact string. If we wanted to find commits with
the message "I fixed a bug in Swift" – the kind of commit message that is frowned upon
because it's not very descriptive! – you would write a predicate like this:

commitPredicate = NSPredicate(format: "message == 'I fixed a bug in
Swift'")

That means "make sure the message attribute is equal to this exact string." Typing an exact
string like that is OK because you know what you're doing, but please don't ever use string
interpolation to inject user values into a predicate. If you want to filter using a variable, use
this syntax instead:

www.hackingwithswift.com 972

let filter = "I fixed a bug in Swift"

commitPredicate = NSPredicate(format: "message == %@", filter)

The %@ will be instantly recognizable to anyone who has used Objective-C before, and it
means "place the contents of a variable here, whatever data type it is." In our case, the value
of filter will go in there, and will do so safely regardless of its value.

Like I said, "I fixed a bug in Swift" isn't the kind of commit message you'll see in your data,
so == isn't really a helpful operator for our app. So let's write a real predicate that will be
useful: put this in place of the // 1 comment in the changeFilter() method:

ac.addAction(UIAlertAction(title: "Show only fixes", style: .Default,
handler: { [unowned self] _ in

 self.commitPredicate = NSPredicate(format: "message CONTAINS[c]
'fix'");

 self.loadSavedData()

}))

The CONTAINS[c] part is an operator, just like ==, except it's much more useful for our app.
The CONTAINS part will ensure this predicate matches only objects that contain a string
somewhere in their message – in our case, that's the text "fix". The [c] part is predicate-
speak for "case-insensitive", which means it will match "FIX", "Fix", "fix" and so on. Note
that we need to use self. twice inside the closure to make capturing explicit.

Another useful string operator is BEGINSWITH, which works just like CONTAINS except the
matching text must be at the start of a string. To make this second example more exciting,
I'm also going to introduce the NOT keyword, which flips the match around: this action
below will match only objects that don't begin with 'Merge pull request'. Put this in place of
the // 2 comment:

ac.addAction(UIAlertAction(title: "Ignore Pull Requests",
style: .Default, handler: { [unowned self] _ in

 self.commitPredicate = NSPredicate(format: "NOT message BEGINSWITH

www.hackingwithswift.com 973

 self.commitPredicate = NSPredicate(format: "NOT message BEGINSWITH
'Merge pull request'");

 self.loadSavedData()

}))

For a third and final predicate, let's try filtering on the "date" attribute. This is the NSDate
data type, and Core Data is smart enough to let us compare that date to any other date
inside a predicate. In this example, which should go in place of the // 3 comment, we're
going to request only commits that took place 43,200 seconds ago, which is equivalent to
half a day:

ac.addAction(UIAlertAction(title: "Show only recent",
style: .Default, handler: { [unowned self] _ in

 let twelveHoursAgo = NSDate().dateByAddingTimeInterval(-43200)

 self.commitPredicate = NSPredicate(format: "date > %@",
twelveHoursAgo);

 self.loadSavedData()

}))

Again, the magic %@ will work with Core Data to ensure the NSDate we created is used
correctly in the query.

For the final comment, // 4, we're just going to set commitPredicate to be nil so that all
commits are shown again:

ac.addAction(UIAlertAction(title: "Show all commits",
style: .Default, handler: { [unowned self] _ in

 self.commitPredicate = nil

 self.loadSavedData()

}))

www.hackingwithswift.com 974

That's it! NSPredicate uses syntax that is new to you so you might find it a bit daunting at
first, but it really isn't very hard once you have a few examples to work from, and it does offer
a huge amount of power to your apps.

www.hackingwithswift.com 975

Adding Core Data entity relationships:
lightweight vs heavyweight migration
It's time to take your Core Data skills up a notch: we're going to add a second entity called
Author, and link that entity to our existing Commit entity. This will allow us to attach an author
to every commit, but also to find all commits that belong to a specific author.

Open the data model (Project38.xcdatamodeld) for editing, then click the Add Entity button.
Name the entity Author, then give it two attributes: "name" and "email". Please make both
strings, and make sure both are not marked as optional. This time we're also going to make
one further change: select the "name" attribute and check the box marked "Indexed".

You can index as many attributes as you want, but don't go overboard: it takes time to create
and update indexes, so you should index only the attributes you really need.

An indexed attribute is one that is optimized for fast searching. There is a cost to creating
and maintaining each index, which means you need to choose carefully which attributes
should be index. But when you find a particular fetch request is happening slowly, chances
are it's because you need to index an attribute.

www.hackingwithswift.com 976

We want every Author to have a list of commits that belong to them, and every Commit to
have the Author that created it. In Core Data, this is represented using relationships, which
are a bit like calculated attributes except Core Data adds extra functionality to handle the
situation when part of a relationship gets deleted.

With the Author entity selected, click the + button under the Relationships section – it's just
below the Attributes section. Name the new relationship "commits" and choose "commit" for
its destination. In the Data Model inspector, change Type to be "To Many", which tells Core
Data that each author has many Commits attached to it.

All relationships between objects should be managed inside your data model, because it allows
Core Data to understand exactly what data you're storing and how it will be used.

Now choose the Commit entity we created earlier and add a relationship named "author".
Choose Author for the destination then change "No Inverse" to be "commits". In the Data
Model inspector, change Type to be "To One", because each commit has exactly one author).

That's it for our model changes, but if you run the app now it will either do nothing or crash,
both of which are bad. If your app does nothing, it means Xcode didn't spot the model
change, so please repeat the procedure from before: quit Xcode, relaunch, then hold down
Alt and choose Product > Clean Build Folder. If your app crashed – great! Well, not great, but
it was at least supposed to do that.

We just changed our data model, and Core Data doesn't know how to handle that – it
considers any variation in its data model an unwelcome surprise, so either we need to tell

www.hackingwithswift.com 977

considers any variation in its data model an unwelcome surprise, so either we need to tell
Core Data how to handle the changed model or we need to tell it to figure out the differences
itself.

These two options are called "heavyweight migrations" and "lightweight migrations." The
latter is usually preferable, and is what we'll be doing here, but it's only possible when your
changes are small enough that Core Data can perform the conversion correctly. We added a
new "authors" relationship, so if we tell Core Data to perform a lightweight migration it will
simply set that value to be empty.

To tell Core Data we want to perform a lightweight migration, we need to set two properties
when configuring our persistent store coordinator in the startCoreData() method. First,
NSMigratePersistentStoresAutomaticallyOption needs to be true, which tells Core Data
to upgrade its SQLite database when the model changes. Second,
NSInferMappingModelAutomaticallyOption also needs to be true, which tells Core Data to
figure out the differences when the model changes, and apply sensible defaults if possible.

To use these two options, find this line in the startCoreData() method:

try coordinator.addPersistentStoreWithType(NSSQLiteStoreType,
configuration: nil, URL: url, options: nil)

Now replace it with this:

try coordinator.addPersistentStoreWithType(NSSQLiteStoreType,
configuration: nil, URL: url, options:
[NSMigratePersistentStoresAutomaticallyOption: true,
NSInferMappingModelAutomaticallyOption: true])

That will stop the app from crashing, which is always a good thing. But it doesn't actually use
our new Author entity, and to do that we first need to do something rather tedious: we need
to re-use the NSManagedObject generator, which, if you remember, also means having to
remove property optionals by hand.

So, go back to the data model, and choose Editor > Create NSManagedObject Subclass
again. This time I want you to choose both Author and Commit, but don't forget to change

www.hackingwithswift.com 978

Group from the blue project icon to the yellow folder icon – Xcode does love to keep
resetting that particular option.

Run the Create NSManagedObject Subclass procedure again, but this time make sure you
select both entities.

Once the files are generated you'll now have four files: two each for Author and Commit. Go
ahead and remove optionality from the properties in Author+CoreDataProperties.swift and
Commit+CoreDataProperties.Swift. While you're there, watch out for a strange corner case
that might sometimes happen: in my testing sometimes Commit sometimes was created with
@NSManaged var author: NSManagedObject?. If this happens to you, either recreate the
classes once more or just change it to @NSManaged var author: Author? – then make it
non optional, of course.

In order to attach authors to commits, I want to show you how to look for a specific named
author, or create it if they don't exist already. Remember, we made the "name" attribute
indexed, which makes it lightning fast for search. This needs to set up and execute a new
NSFetchRequest (using an == NSPredicate to match the name), then use the result if there
is one. If no matching author is found, we'll use insertNewObjectForEntityForName() to

www.hackingwithswift.com 979

create and configure a new author, and use that instead.

Put this new code just before the end of the configureCommit() method:

var commitAuthor: Author!

// see if this author exists already

let authorFetchRequest = NSFetchRequest(entityName: "Author")

authorFetchRequest.predicate = NSPredicate(format: "name == %@",
json["commit"]["committer"]["name"].stringValue)

if let authors = try?
managedObjectContext.executeFetchRequest(authorFetchRequest) as!
[Author] {

 if authors.count > 0 {

 // we have this author already

 commitAuthor = authors[0]

 }

}

if commitAuthor == nil {

 // we didn't find a saved author - create a new one!

 if let author =
NSEntityDescription.insertNewObjectForEntityForName("Author",
inManagedObjectContext: managedObjectContext) as? Author {

 author.name = json["commit"]["committer"]["name"].stringValue

 author.email = json["commit"]["committer"]["email"].stringValue

 commitAuthor = author

 }

}

// use the author, either saved or new

commit.author = commitAuthor

www.hackingwithswift.com 980

commit.author = commitAuthor

You'll note that I used try? for executeFetchRequest() this time, because we don't really
care if the request failed: it will still fall through and get caught by the if commitAuthor == nil
check later on.

To show that this worked, change your cellForRowAtIndexPath method so that the detail
text label contains the author name as well as the commit date, like this:

cell.detailTextLabel!.text = "By \(object.author.name) on \
(object.date.description)"

You should be able to run the app now and see the author name appear after a moment, as
Core Data merges the new data with the old. If you hit problems, don't be afraid to use
"Reset Content and Settings" again in the simulator – that usually cures most Core Data
hiccups.

We can also show that the inverse relationship works. Open DetailViewController.swift and
change the detailItem property from AnyObject? to Commit?. Now change its
configureView() method to this:

func configureView() {

 // Update the user interface for the detail item.

 if let detail = self.detailItem {

 if let label = self.detailDescriptionLabel {

 label.text = detail.message

 navigationItem.rightBarButtonItem = UIBarButtonItem(title:
"Commit 1/\(detail.author.commits.count)", style: .Plain, target:
self, action: "showAuthorCommits")

 }

 }

}

www.hackingwithswift.com 981

That will make a tappable button in the top-right corner showing how many other commits
we have stored from this author. We haven't written a showAuthorCommits() method yet,
but don't worry: that will be your homework later on!

Now that every commit has an author attached to it, I want to add one last filter to our
changeFilter() method to show you just how clever NSPredicate is. Add this just before the
"Show all commits" action:

ac.addAction(UIAlertAction(title: "Show only Durian commits",
style: .Default, handler: { [unowned self] _ in

 self.commitPredicate = NSPredicate(format: "author.name == 'Joe
Groff'");

 self.loadSavedData()

}))

There are three things that bear explaining in that code:

 • By using author.name the predicate will perform two steps: it will find the "author" relation
for our commit, then look up the "name" attribute of the matching object.
 • Joe is one of Apple's Swift engineers. Although it's fairly likely you'll see commits by him, it
can't be guaranteed – I'm pretty sure that Apple give him a couple of days vacation each
year. Maybe.
 • Durian is a fruit that's very popular in south-east Asia, particularly Malaysia, Singapore and
Thailand. Although most locals are big fans, the majority of foreigners find that it really, really
stinks, so I'm sure there's some psychological reason why Joe Groff chose it for his website:
duriansoftware.com.

Run your app now and the new filter should work. Remember, it might not return any objects,
depending on just how many commits Joe has done recently. No pressure, Joe! In those
changes, I also modified the detail view controller so that it shows the commit message in
full, or at least as full as it can given the limited space – this app is starting to come together!

www.hackingwithswift.com 982

How to delete a Core Data object
The Xcode template we've been using comes with support for deleting objects, but it only
removes them from the objects array directly – nothing is actually changed in our Core Data
set up. So if you "delete" a commit, it will be there when you relaunch the app rather than
gone for good.

Fortunately, this is really easy to change: our managed object context has a deleteObject()
method that will delete any object regardless of its type or location in the object graph. Once
an object has been deleted from the context, we can then call saveContext() to write that
change back to the persistent store so that the change is permanent.

All this is easy to do by adding three new lines of code to the commitEditingStyle method.
Here's the new method:

override func tableView(tableView: UITableView, commitEditingStyle
editingStyle: UITableViewCellEditingStyle, forRowAtIndexPath
indexPath: NSIndexPath) {

 if editingStyle == .Delete {

 let commit = objects[indexPath.row]

 managedObjectContext.deleteObject(commit)

 objects.removeAtIndex(indexPath.row)

 tableView.deleteRowsAtIndexPaths([indexPath],
withRowAnimation: .Fade)

 saveContext()

 } else if editingStyle == .Insert {

 // Create a new instance of the appropriate class, insert it into
the array, and add a new row to the table view.

 }

}

So, it 1) pulls out the Commit object that the user selected to delete, 2) removes it from the
managed object context, 3) removes it from the objects array, 4) deletes it from the table

www.hackingwithswift.com 983

view, then 5) saves the context. Lines 3 and 4 were there in the original template, so it's only
lines 1, 2, and 5 that are new. Remember: you must call saveContext() whenever you want
your changes to persist.

Try running the app now, and either swiping to delete rows or using the Edit button in the top
left. As you'll see you can delete as many commits as you want, and everything seems to
work great. Now try running the app once again, and you'll get a nasty shock: the deleted
commits reappear! What's going on?

Well, if you think about it, the app is doing exactly what we told it to do: every time it runs it
re-fetches the list of commits from GitHub, and merges it with the commits in its data store.
This means any commits we try to delete just get redownloaded again – they really are being
deleted, but then they get recreated as soon as the app is relaunched.

This problem is not a hard one to fix, and it gives me a chance to show you another part of
NSFetchRequest: the fetchLimit property. This tells Core Data how many items you want it
to return. What we're going to do is find the newest commit in our data store, then use the
date from that to ask GitHub to provide only newer commits.

First, go to the fetchCommits() method and modify the start of it to this:

func fetchCommits() {

 let newestCommitDate = getNewestCommitDate()

 if let data = NSData(contentsOfURL: NSURL(string: "https://
api.github.com/repos/apple/swift/commits?per_page=100&since=\
(newestCommitDate)")!) {

 let jsonCommits = JSON(data: data)

We'll be adding the getNewestCommitDate() method shortly, but what it will return is a date
formatted as an ISO-8601 string. This date will be set to one second after our most recent
commit, and we can send that to the GitHub API using its "since" parameter to receive back
only newer commits.

Here is the getNewestCommitDate() method – only three pieces of it are new, and I'll
explain them momentarily.

www.hackingwithswift.com 984

explain them momentarily.

func getNewestCommitDate() -> String {

 let formatter = NSDateFormatter()

 formatter.timeZone = NSTimeZone(name: "UTC")

 formatter.dateFormat = dateFormatISO8601

 let newestCommitFetchRequest = NSFetchRequest(entityName: "Commit")

 let sort = NSSortDescriptor(key: "date", ascending: false)

 newestCommitFetchRequest.sortDescriptors = [sort]

 newestCommitFetchRequest.fetchLimit = 1

 if let commits = try?
managedObjectContext.executeFetchRequest(newestCommitFetchRequest)
as! [Commit] {

 if commits.count > 0 {

 return
formatter.stringFromDate(commits[0].date.dateByAddingTimeInterval(1))

 }

 }

 return formatter.stringFromDate(NSDate(timeIntervalSince1970: 0))

}

The first of the new pieces of code is the fetchLimit property for the fetch request. As you
might imagine, it's always more efficient to fetch as few objects as needed, so if you can set
a fetch limit you should do so. Second, the stringFromDate() method is the inverse of the
dateFromString() method we used when parsing the commit JSON. We use the same date
format that was defined earlier, because GitHub's "since" parameter is specified in an
identical way. Finally, dateByAddingTimeInterval() is used to add one second to the time
from the previous commit, otherwise GitHub will return the newest commit again.

If no valid date is found, the method returns a date from the 1st of January 1970, which will

www.hackingwithswift.com 985

reproduce the same behavior we had before introducing this date change.

This solution is a good start, but it has a small flaw – see if you can spot it! If not, don't worry:
I'll be setting it as homework for you. Regardless, it gave me the chance to show you the
fetchLimit property, and you know how much I love squeezing new knowledge in…

www.hackingwithswift.com 986

Optimizing Core Data Performance using
NSFetchedResultsController
You've already seen how Core Data takes a huge amount of work away from you, which is
great because it means you can focus on writing the interesting parts of your app rather than
data management. But, while our current project certainly works, it's not going to scale well.
To find out why open the Commit.swift file and modify it to this:

class Commit: NSManagedObject {

 override init(entity: NSEntityDescription,
insertIntoManagedObjectContext context: NSManagedObjectContext?) {

 super.init(entity: entity, insertIntoManagedObjectContext:
context)

 print("Init called!")

 }

}

When you run the program now you'll see "Init called!" in the Xcode log at least a hundred
times - once for every Commit object that gets pulled out in our loadSavedData() method.
So what if there are 1000 objects? Or 10,000? Clearly it's inefficient to create a new object
for everything in our object graph just to load the app, particularly when our table view can
only show a handful at a time.

Core Data has a brilliant solution to this problem, and it's called
NSFetchedResultsController. It takes over our existing NSFetchRequest to load data,
replaces our objects array with its own storage, and even works to ensure the user interface
stays in sync with changes to the data by controlling the way objects are inserted and
deleted.

No tutorial on Core Data would be complete without teaching NSFetchedResultsController,
so that's the last thing we'll be doing in this project. I left it until the end because, although
it's very clever and certainly very efficient, NSFetchedResultsController is entirely optional:
if you're happy with the project as it is, you're welcome to skip over this last chapter.

First, add a new property for the fetched results controller:

www.hackingwithswift.com 987

var fetchedResultsController: NSFetchedResultsController!

We now need to rewrite our loadSavedData() method so that the existing NSFetchRequest
is wrapped inside a NSFetchedResultsController. We want to create that fetched results
controller only once, but retain the ability to change the predicate when the method is called
again.

Before I show you the code, there are three new things to learn. First, we're going to be using
the fetchBatchSize property of our fetch request so that only 20 objects are loaded at a
time. Second, we'll be setting the master view controller as the delegate for the fetched
results controller – you'll see why soon. Third, we need to use the performFetch() method on
our fetched results controller to make it load its data.

Here's the revised loadSavedData() method:

func loadSavedData() {

 if fetchedResultsController == nil {

 let fetch = NSFetchRequest(entityName: "Commit")

 let sort = NSSortDescriptor(key: "date", ascending: false)

 fetch.sortDescriptors = [sort]

 fetch.fetchBatchSize = 20

 fetchedResultsController =
NSFetchedResultsController(fetchRequest: fetch, managedObjectContext:
managedObjectContext, sectionNameKeyPath: nil, cacheName: nil)

 fetchedResultsController.delegate = self

 }

 fetchedResultsController.fetchRequest.predicate = commitPredicate

 do {

 try fetchedResultsController.performFetch()

www.hackingwithswift.com 988

 try fetchedResultsController.performFetch()

 tableView.reloadData()

 } catch {

 print("Fetch failed")

 }

}

Because we're setting delegate, you'll also need to make MasterViewController conform to
the NSFetchedResultsControllerDelegate protocol, like this:

class MasterViewController: UITableViewController,
NSFetchedResultsControllerDelegate {

That was the easy part. When you use NSFetchedResultsController, you need to use it
everywhere: that means it tells you how many sections and rows you have, it keeps track of
all the objects, and it is the single source of truth when it comes to inserting or deleting
objects.

You can get an idea of what work needs to be done by deleting the objects property: we
don't need it any more, because the fetched results controller stores our results. Immediately
you'll see five errors appear wherever that property was being touched, and we need to
rewrite all those instances to use the fetched results controller.

First, the prepareForSegue() method. This line will be flagged as an error:

let object = objects[indexPath.row]

Please replace it with this:

let object = fetchedResultsController.objectAtIndexPath(indexPath)
as! Commit

www.hackingwithswift.com 989

You'll note that the fetched results controller uses index paths (i.e., sections as well as rows)
rather than just a flat array. We also need to typecast its contents, because it returns
AnyObject by default.

Second, replace the numberOfSectionsInTableView() and numberOfRowsInSection
methods with these two new implementations:

override func numberOfSectionsInTableView(tableView: UITableView) ->
Int {

 return fetchedResultsController.sections?.count ?? 0

}

override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 let sectionInfo = fetchedResultsController.sections![section]

 return sectionInfo.numberOfObjects

}

As you can see, we can read the sections array, each of which contains an array of
NSFetchedResultsSectionInfo objects describing the items in that section. For now, we're
just going to use that for the number of objects in the section.

Third, find this line inside the cellForRowAtIndexPath method:

let object = objects[indexPath.row]

And replace it with this instead:

let object =
self.fetchedResultsController.objectAtIndexPath(indexPath) as! Commit

www.hackingwithswift.com 990

The final two errors are in the commitEditingStyle method, where deleting items happens.
And this is where things get more complicated: we can't just delete items from the fetched
results controller, and neither can we use deleteRowsAtIndexPaths() on the table view.
Instead, Core Data is much more clever: we just delete the object from the managed object
context directly.

You see, when we created our NSFetchedResultsController, we hooked it up to our
existing managed object context, and we also made our current view controller its delegate.
So when the managed object context detects an object being deleted, it will inform our
fetched results controller, which will in turn automatically notify our view controller if needed.

So, to delete objects using fetched results controllers you need to rewrite the
commitEditingStyle method to this:

override func tableView(tableView: UITableView, commitEditingStyle
editingStyle: UITableViewCellEditingStyle, forRowAtIndexPath
indexPath: NSIndexPath) {

 if editingStyle == .Delete {

 let commit =
fetchedResultsController.objectAtIndexPath(indexPath) as! Commit

 managedObjectContext.deleteObject(commit)

 saveContext()

 } else if editingStyle == .Insert {

 // Create a new instance of the appropriate class, insert it into
the array, and add a new row to the table view.

 }

}

As you can see, that code pulls the object to delete out from the fetched results controller,
deletes it, then saves the changes – we no longer touch the table view here.

That being said, we do need to add one new method that gets called by the fetched results
controller when an object changes. We'll get told the index path of the object that got

www.hackingwithswift.com 991

changed, and all we need to do is pass that on to the deleteRowsAtIndexPaths() method of
our table view:

func controller(controller: NSFetchedResultsController,
didChangeObject anObject: AnyObject, atIndexPath indexPath:
NSIndexPath?, forChangeType type: NSFetchedResultsChangeType,
newIndexPath: NSIndexPath?) {

 switch type {

 case .Delete:

 tableView.deleteRowsAtIndexPaths([indexPath!],
withRowAnimation: .Automatic)

 default:

 break

 }

}

Now, you might wonder why this approach is an improvement – haven't we just basically
written the same code only in a different place? Well, no. That new delegate method we just
wrote could be called from anywhere: if we delete an object in any other way, for example in
the detail view, that method will now automatically get called and the table will update. In
short, it means our data is driving our user interface, rather than our user interface trying to
control our data.

Previously, I said "Using attribute constraints can cause problems with
NSFetchedResultsController, but in this tutorial we're always doing a full save and load of
our objects because it's an easy way to avoid problems later." It's time for me to explain the
problem: attribute constraints are only enforced as unique when a save happens, which
means if you're inserting data then an NSFetchedResultsController may contain duplicates
until a save takes place. This won't happen for us because I've made the project perform a
save before a load to make things easier, but it's something you need to watch out for in your
own code.

If you run the app now, you'll see "Init called!" appears far less frequently because the
fetched results controller lazy loads its data – a significant performance optimization.

www.hackingwithswift.com 992

Before we're done with NSFetchedResultsController, I want to show you one more piece of
its magic. You've seen how it has sections as well as rows, right? Well, try changing its
constructor in loadSavedData() to be this:

fetchedResultsController = NSFetchedResultsController(fetchRequest:
fetch, managedObjectContext: managedObjectContext,
sectionNameKeyPath: "author.name", cacheName: nil)

The only change there is that I've provided a value for sectionNameKeyPath rather than nil.
Now try adding this new method to MasterViewController:

override func tableView(tableView: UITableView,
titleForHeaderInSection section: Int) -> String? {

 return fetchedResultsController.sections![section].name

}

If you run the app now, you'll see the table view has sections as well as rows, with each
section marked out with the author of those commits. So, NSFetchedResultsController is
not only faster, but it even adds powerful functionality with one line of code – what's not to
like?

www.hackingwithswift.com 993

The final app, running in landscape on an iPhone 6 Plus – the section names are inserted
automatically by NSFetchedResultsController.

www.hackingwithswift.com 994

Wrap up
Core Data is complicated. It really is. So if you've made it this far, you deserve a pat on the
back because you've learned a huge amount in this one project – good job! You've learned
about model design, relationships, predicates, sort descriptors, persistent stores, managed
object contexts, fetch requests, fetched results controllers, indexes, hashes and more, and I
hope you're pleased with the final project.

But I'm afraid I have some bad news: even with everything you've learned, there's still a lot
more to go if you really want to master Core Data. Migrating data models, multiple managed
object contexts, delete rules, and thread safety should be top of that list, but at the very least
I hope I've managed to give you a firm foundation on the technology – and perhaps even get
you a bit excited about what it can do for you!

At this point, you know enough about Core Data that you should be able to start a new
project with the Master-Detail Application template, but this time enabling the Core Data
option for the template. You'll see all the code Apple generates for you, and hopefully you'll
see how it's similar to our own code in this project.

Before you're done, I have two small tips for you. First, go to the Product menu and choose
Scheme > Edit Scheme. In the window that appears, choose your Run target and select the
Arguments tab. Now click + and enter the text -com.apple.CoreData.SQLDebug 1. Once
that's done, running your app will print debug SQL into the Xcode log pane, allowing you to
see what Core Data is up to behind the scenes.

www.hackingwithswift.com 995

Enable the SQLDebug option for Core Data if you want to see how much work Core Data is
doing on your behalf. Pay particular attention to the timings it prints out – this can help you

identify and resolve slower parts of your code.

Warning: when this option is enabled, you will see scary language like "fault fulfilled from
database." No, there isn't really a fault in your code – it's Core Data's way of saying that the
objects it lazy loaded need to be loaded for real, so it's going back to the database to read
them. You'll get into this more when you explore Core Data further, but for now relax: it's just
a poor choice of phrasing from Apple.

Second, if you make changes to your model, watch out for the message "The model used to
open the store is incompatible with the one used to create the store." If you intend to turn
this into a production app, you need to check your managed object context after
startCoreData() has run to see whether everything was started correctly, and handle things
gracefully on failure. While you're testing, don't be afraid to reset the iOS simulator as often
as you need to in order to clean out old models.

If you want to take the app further, here are some suggestions for homework:

 • Fun: Now that we have section names in our table, using a sort descriptor for date
descending makes things look out of order. Try to add a second sort descriptor so that the

www.hackingwithswift.com 996

descending makes things look out of order. Try to add a second sort descriptor so that the
fetch request sorts on author name ascending first, then date descending second.
 • Tricky: Use the "url" attribute of Commit in the detail view controller to show the GitHub
page in a WKWebView rather than just a label.
 • Taxing: Rewrite the getNewestCommitDate() method so that it uses NSUserDefaults
rather than a fetch request in order to fix the bug in the current implementation. (Didn't spot
the bug? If users delete the most recent commit message, we also lose our most recent
date!)
 • Mayhem: Complete the showAuthorCommits() method in the detail view controller. This
should show a new table view controller listing other commits by the same author. To make
your life easier, you might want to try going to the Author entity, choosing its "commits"
relationship, then checking the "Ordered" box and recreating the NSManagedObject
subclass. Don't forget to remove the optionality from the properties that get generated!

www.hackingwithswift.com 997

Project 39
Unit testing with XCTest
Learn how to write unit tests and user interface tests using
Xcode's built-in testing framework.

www.hackingwithswift.com 998

Setting up
Although this is a technique project, it's a technique project with a difference because you're
going to make an app from scratch. It's not a complicated app, don't worry: it will load a
large file containing the text of all of Shakespeare's comedies, then have a table view
showing how often each word is used.

Easy, right? Right. But here's why it's a technique project: while building this app you'll be
learning all about XCTest, which is Xcode's testing framework. Although this isn't a tutorial
on test-driven development, I will at least walk you through the concepts and apply them
with you. Even better, I'll also be introducing you to some functional programming using
filter(), so there's a lot to learn.

Please note: as I write this, Xcode 7.3 and Swift 2.2 are still in late beta. To avoid problems,
there is one piece of code where I've given specific instructions for 2.2 and 2.1 so that
everyone can follow along.

All set? Let's do this! Launch Xcode, then create a new Single View Application named
Project39. For device please choose Universal, then check both Include Unit Tests and
Include UI Tests. Click Create, then save the project somewhere safe.

www.hackingwithswift.com 999

For the first time in this series, I'd like you to check Include Unit Tests and Include UI Tests.

This project draws upon a text file containing the comedies of Shakespeare. The Hacking
with Swift GitHub repository contains all the resources for these projects, and you'll find
plays.txt inside the project39-files folder. Please drag that into your Xcode project before
continuing.

We started with a Single View Application template, but we want to have a table view
controller instead so we need to make a few changes:

1. Open ViewController.swift, then change class ViewController: UIViewController { to
class ViewController: UITableViewController {2. Open Main.storyboard and delete its view
controller. If you have trouble deleting it, try selecting it using the Document Outline.
3. Look in the Object library for a table view controller, then drag that out to where the
previous view controller was.
4. Select the new table view controller, then change its class to be ViewController. This is
done in the Identity inspector (Alt+Cmd+3) by setting the Class field.
5. In the Attributes inspector (Alt+Cmd+4) please check the box marked "Is Initial View
Controller".

www.hackingwithswift.com 1000

6. Go to the Editor menu and choose Embed In > Navigation Controller.
7. Select the prototype cell of your table view and change its style to be "Right Detail" and its
reuse identifier to be "Cell".
8. If you want to, give your navigation bar a title, but this isn't required. Just double-click in
the navigation bar space at the top of your table view controller and type some text.

Once you've made all those changes your user interface should look like this.

At this point in your coding career, that should all come as second nature. You're welcome to
try running the app now, but I'm afraid there isn't much to see yet – in fact, it should be
almost blank!

www.hackingwithswift.com 1001

Creating our first unit test using XCTest
At the core of test-driven development lies the concept that you should begin by writing a
test that succeeds only when your code works the way you want it to. It might seem strange
at first, but it makes a lot of sense: your new test will fail at first because your program
doesn't do the right thing, then it's your job to write just enough code (but no more!) to make
that test pass.

We're going to follow this approach here, but we need to do a little bit of setup work first so
that we're able to write a failing test. So: go to the File menu and choose New > File. From
the list of options, choose iOS > Source > Swift File. Click Next, then name it PlayData. We'll
be using this to store all the words in the plays.

The goal right now is to write just enough code for us to return to testing, so for now just put
this text into the file:

class PlayData {

 var allWords = [String]()

}

That's it: there's a class called PlayData, and we've given it a property called allWords that
will hold an array of strings. We're not going to fill that array with data yet, though: first we
need to write a test to check that allWords has been populated with the words from the
plays.txt file. For now, just to make sure you understand how an XCTest works, we're going
to write a test that checks allWords has exactly 0 strings inside it.

Look in the "Project39Tests" for Project39Tests.swift and open it for editing. You'll see it
contains four methods: setUp(), tearDown(), as well as two example test methods, all
wrapped up in a class that inherits from XCTestCase. Please delete the two test methods,
so your file is left like this:

import XCTest

@testable import Project39

class Project39Tests: XCTestCase {

www.hackingwithswift.com 1002

class Project39Tests: XCTestCase {

 override func setUp() {

 super.setUp()

 // Put setup code here. This method is called before the
invocation of each test method in the class.

 }

 override func tearDown() {

 // Put teardown code here. This method is called after the
invocation of each test method in the class.

 super.tearDown()

 }

}

We're going to write a very basic test that checks allWords has 0 items inside. Please add
this method just below tearDown():

func testAllWordsLoaded() {

 let playData = PlayData()

 XCTAssertEqual(playData.allWords.count, 0, "allWords must be 0")

}

If we include the method name and the closing brace, that's only four lines of code, none of
which look that difficult. However, it masks quite a lot of functionality, so I want to walk
through exactly what it does and why.

First, the method has a very specific name: it starts with "test" all in lowercase, it accepts no
parameters and returns nothing. When you create a method like this inside an XCTestCase
subclass, Xcode automatically considers it to be a test that should run on your code. When
Xcode recognizes a test, you'll see an empty gray diamond appear in the left-hand gutter,
next to the line numbers. If you hover over that – but don't click it just yet! – it will turn into a
play button, which will run the test.

www.hackingwithswift.com 1003

play button, which will run the test.

Xcode expects you to use a precise naming convention for your test methods, and if you follow
these guidelines you should see empty gray diamonds next to your tests.

The first line of our testAllWordsLoaded() method does nothing surprising: it just creates a
new PlayData object so we have something to test with. The second line is new, though, and
uses a function called XCTAssertEqual(). This checks that its first parameter
(playData.allWords.count) equals its second parameter (0). If it doesn't, the test will fail and
print the message given in parameter three ("allWords must be 0").

XCTAssertEqual() lies at the center of XCTest: if all the calls to XCTAssertEqual() in a test
return true, the test is considered a pass, otherwise it will fail. There are other assert
functions you can use (XCTAssertGreaterThan(), XCTAssertNotNil(), etc), but you can do
almost everything with XCTAssertEqual() just by using the correct parameters.

Now that you understand how the test works, hover over the gray diamond next to the test
and click its play button. Xcode will run this single test, which means launching the app in
the iOS Simulator and verifying that the allWords array contains 0 items. Because we haven't
written any loading code yet, this test will succeed and the diamond will turn into a green
checkmark. You'll also see a green checkmark next to the class name at the top, which
means that all tests in this class passed last time they were run.

www.hackingwithswift.com 1004

When tests have run successfully you'll be rewarded with green checkmarks. Pat yourself on
the back!

www.hackingwithswift.com 1005

Loading our data and splitting up words:
filter()
The next step in our project is to get our app working a little bit, which means writing a
method that loads the input text and splits it up into words.
Sticking with TDD for now, this means we first need to write a test that fails before updating
our code to fix it.

Right now we're checking allWords contains 0 items, which needs to change: there are in
fact 384,001 words in the input text (based on the character splitting criteria we'll get to
shortly), so please update your testAllWordsLoaded() method to this:

XCTAssertEqual(playData.allWords.count, 384001, "allWords was not
384001")

This number, 384,001, is of course entirely arbitrary because it depends on the input data.
But that's not the point: we need to tell XCTest what "correct" looks like, because it has no
way of knowing what constitutes a pass or a fail unless we give it specific criteria.

If you click the green checkmark next to the test now, it will be run again and will fail this time
because we haven't written the loading code – XCTest expects allWords to contain 384,001
strings, but it contains 0. This is good, honest!

Our tests are now failing, which is a core part of test-driven development: write tests that fail,
then write the code that makes those tests pass.

Let's put testing to one side for now and fill in some of our program – we'll be back with the
testing soon enough, don't worry.

Add this to PlayData.swift:

www.hackingwithswift.com 1006

init() {

 if let path = NSBundle.mainBundle().pathForResource("plays",
ofType: "txt") {

 if let plays = try? String(contentsOfFile: path, usedEncoding:
nil) {

 allWords =
plays.componentsSeparatedByCharactersInSet(NSCharacterSet.alphanumeri
cCharacterSet().invertedSet)

 }

 }

}

The only new line there is the one that sets allWords, which uses two new things at once.
Previously we used componentsSeparatedByString() to convert a string into an array, but
this time we're using componentsSeparatedByCharactersInSet() instead. This new
method splits a string by any number of characters rather than a single string, which is
important because we want to split on periods, question marks, exclamation marks, quote
marks and more.

There are a number of ways of specifying character sets, including a helpful
NSCharacterSet(charactersInString:) initializer that we could have used to specify the full
list of characters we want to break on. But the simplest approach is to split on anything that
isn't a letter or number, which can be achieved by inverting the alphanumeric character set
as seen in the code.

That's all it takes to load enough data for us to move on with, but we can't tell that it works
unless we also update the user interface to show our data. So, open ViewController.swift and
add this property:

var playData = PlayData()

That gives the ViewController class its own PlayData object to work with. That one line also

www.hackingwithswift.com 1007

creates the object immediately, which in turn will call the init() method we just wrote to load
the word data – not bad for a single line of code!

All that's left in this step is to add the basic table view code to show some cells. Please add
these two methods to ViewController:

override func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return playData.allWords.count

}

override func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

 let word = playData.allWords[indexPath.row]

 cell.textLabel!.text = word

 return cell

}

There is nothing new there, so I hope it posed no challenge for you.

Press Cmd+R to run the app and you'll see a long table full of words – it works! It's a long
way from perfect, though: it's breaking on apostrophes (so ALL and S are on different lines),
there are blank lines, there are duplicate words (the I after ACT and SCENE is repeated), and
the detail text label just says "Detail" again and again.

www.hackingwithswift.com 1008

The results so far: word splitting works fine, but all those empty lines aren't great, and the detail
text label needs to be fixed.

We're going to fix all those except the first one, which is a text issue rather than a coding
issue. In fact, we need to fix the second one straight away because my calculation of
384,001 words excludes empty strings – we need to modify our init() method so that empty
strings are removed if we want our test to pass.

As promised, I'm going to use this project to teach you a little bit of functional programming,
in particular the filter() method. This creates a new array from an existing one, selecting from
it only items that match a function you provide. Stick with me for a moment, because this is
important: a function that accepts a function as a parameter, like filter(), is called a higher-
order function, and allows you to write extremely concise, expressive code that is efficient to
run.

Let's take a look at filter() now. Please add this to init(), just after the call to
componentsSeparatedByCharactersInSet():

allWords = allWords.filter { $0 != "" }

www.hackingwithswift.com 1009

allWords = allWords.filter { $0 != "" }

That one line is all it takes to remove empty lines from the allWords array. However, this
syntax can look like line noise if you're new to Swift, so I want to deconstruct what it does by
first rewriting that code in a way you're more familiar with. I don't want you to put any of this
into your code – this is just to help you understand what's going on.

Here is that one line written out more verbosely:

allWords = allWords.filter({ (testString: String) -> Bool in

 if testString != "" {

 return true

 } else {

 return false;

 }

})

In that form, you can see that filter() is a method that takes a single parameter, which is a
closure. That closure must accept a string, named testString, and return a Bool. The code
then checks whether testString is empty or not, and returns either true or false.

Swift lives up to its name not only in that Swift code executes quickly, but it's also quick to
write. So, there are a few shortcuts it offers to help reduce that long code down in size. For
example, all that (testString: String) -> Bool definition isn't really needed: Swift can see that
filter() wants a closure that accepts a string and returns true or false, so we don't need to
repeat ourselves. So, let's take it out:

allWords = allWords.filter({ testString in

 if testString != "" {

 return true

 } else {

 return false;

www.hackingwithswift.com 1010

 return false;

 }

})

Next, we can collapse that if/else block into one line of code: return testString != "".

When Swift runs testString != "" it will either find that statement to be true (yes, testString is
not empty) or false (no, testString is empty), and pass that straight to return. So, this will
return true if testString has any text, which is exactly what we want.

With that change, here's the code now:

allWords = allWords.filter({ testString in

 return testString != ""

})

Moving on, we can take advantage of Swift's trailing closure syntax, because filter()'s only
parameter is a closure. If you remember, that means the parentheses aren't needed. So, the
code can become this:

allWords = allWords.filter { testString in

 return testString != ""

}

Next, if your closure has only one expression – which ours does – and the closure must
return a value, Swift lets you omit the return keyword entirely. This is because it knows the
closure must return a value, and it can see you're only providing one line of code, so that
must be the one that returns something. So, you can write this:

allWords = allWords.filter { testString in

 testString != ""

}

www.hackingwithswift.com 1011

}

And now for the bit that usually confuses people: shorthand parameter names. When you
use a closure like this, Swift automatically creates anonymous parameter names that start
with a dollar sign then have a number: $0, $1, $2, $3 and so on. This unique naming really
helps them stand out, so if you see them in code you immediately know they are shorthand
parameter names – you literally cannot use names like this yourself, so they only have one
meaning.

Swift gives you one of these shorthand parameters for every parameter that your closure
accepts. In this case, our filter closure accepts exactly one parameter, which is testString. If
we want to use Swift's shorthand parameter names instead, we don't need testString any
more because testString and $0, so that whole testString in part can go away:

allWords = allWords.filter {

 $0 != ""

}

Now all that's left is to put that on a single line, and we're done:

allWords = allWords.filter { $0 != "" }

Now, even though I've explained the thinning process that goes from long code to tiny code,
you might still look at that one line and find it confusing. That's OK: you should write code
however you want to write code. But in this instance, I hope you'll agree that having one
simple, clutter-free line of code is easier to read, understand, and maintain than five or six
lines.

Now that empty lines are being stripped out, you should be able to return back to
testAllWordsLoaded() and have it pass.

www.hackingwithswift.com 1012

With blank lines removed this app is almost starting to look useful!

www.hackingwithswift.com 1013

Counting unique strings in an array
Running the allWords array through filter() solved the problem of empty lines in the array,
but there are still two more problems we need to address: duplicate words, and that pesky
"Detail" text in the detail text label.

Well, we're going to fix two of them right now, at the same time. And, for the first time in this
series, I'm going to have you write some bad code. Trust me: this will all become clear
shortly, and it will be corrected.

Our app is going to show the number of times each word is used inside Shakespeare's
comedies. To do that, we need to calculate how often each word appears, so we're going to
add a new property to PlayData to store that calculation. Please add this now:

var wordCounts = [String: Int]()

That dictionary will hold a string as its key (e.g. "yonder") and a number as its value (e.g. 14),
so that we can check the frequency of any word whenever we need to.

Our init() method already splits all the text up into words, but we need to add some new
code to add the counting. This is fairly straightforward to write: loop through every word in
the allWords array, add one to its wordCounts count if we have it, or set its count to 1 if we
don't have it.

Modify the init() method in PlayData.swift so that this code appears after the call to filter():

for word in allWords {

 if wordCounts[word] == nil {

 wordCounts[word] = 1

 } else {

 wordCounts[word]! += 1

 }

}

www.hackingwithswift.com 1014

Note that I used a force unwrap with the += operator, because at that point we know there is
a value to modify.

Once that loop completes, allWords will contain every word that is used in the plays, as well
as its frequency. Because we're using words as the dictionary keys, each word can appear
only once in the dictionary. This means we can instantly remove duplicates from allWords by
creating a new array from the keys of wordCounts. Add this code just after the previous
loop:

allWords = Array(wordCounts.keys)

Our app has taken a leap towards its end goal, but we also just broke our test: now that we
show each word only once, our testAllWordsLoaded() test will fail because there are
substantially fewer strings in the allWords. So, please go to Project39Tests.swift and amend
it one last time:

XCTAssertEqual(playData.allWords.count, 18440, "allWords was not
18440")

That's the first of two problems down: every word now appears only once in the table, and
you can run the app now to verify that.

The last problem is to fix the detail text label so that it says how many times a word is used
rather than just "Detail". With our new wordCounts dictionary we can fix this in just one line
of code in ViewController.swift – add this line to cellForRowAtIndexPath just before the
return line:

cell.detailTextLabel!.text = "\(playData.wordCounts[word]!)"

If you run the app now you'll see every word now has its count next to it – that wasn't so
hard, was it?

www.hackingwithswift.com 1015

hard, was it?

Using our word counting code, we can now show frequency next to every word in the plays.

Before we're done, let's add another test to make sure our word counting code doesn't
break in the future. Have a look through the table to find some words that interest you, and
note down their frequencies. I chose "home" (174 times), "fun" (4 times), and "mortal" (41
times), but you're welcome to choose any words that interest you. Switch to
Project39Tests.swift and add a new test:

func testWordCountsAreCorrect() {

 let playData = PlayData()

 XCTAssertEqual(playData.wordCounts["home"], 174, "Home does not
appear 174 times")

 XCTAssertEqual(playData.wordCounts["fun"], 4, "Fun does not appear
4 times")

 XCTAssertEqual(playData.wordCounts["mortal"], 41, "Mortal does not
appear 41 times")

}

www.hackingwithswift.com 1016

}

That test should pass, which is great. But more importantly it provides a fail-safe for future
work: in the next chapter we're going to rewrite our word counting code, and this test will
ensure we don't break anything while we work.

www.hackingwithswift.com 1017

measureBlock(): How to optimize our
slow code and adjust the baseline
You might have noticed there's a pre-written method called setup() in our unit tests, which
contains this comment: "Put setup code here. This method is called before the invocation of
each test method in the class." Why, then, do we have let playData = PlayData() in both our
tests – couldn't that go into setup() to avoid repetition?

Well, no, and you're about to see why. You will probably have noticed that our new word
frequency code has slowed down our app quite a bit. Even when running in the iOS
Simulator, using the full power of your Mac, this code now takes about two seconds to run –
try to imagine how much slower it would be on a real device!

Of course, this is all a clever ruse to teach you more things, and here I want to teach you how
to use XCTest to check performance. Our new word counting code is slow, but the only
reliable way to ensure it gets faster when we make changes is to create a new test that times
how long it takes for our PlayData object to be created. This is why we can't create it inside
the setup() method: we need to create it as part of a measurement in this next test, as you'll
see.

XCTest makes performance testing extraordinarily easy: you give it a closure to run, and it
will execute that code 10 times in a row. You'll then get a report back of how long the call
took on average, what the standard deviation was (how much variance there was between
runs), and even how fast each of those 10 runs performed if you want the details.

Let's write a performance test now – please add this to Project39Tests.swift:

func testWordsLoadQuickly() {

 measureBlock {

 _ = PlayData()

 }

}

Were you expecting something more complicated? I told you it was easy and I meant it! That
tiny amount of code is all it takes: assigning a new PlayData object to _ will load the file, split

www.hackingwithswift.com 1018

it up by lines and count the unique words, so our test couldn't be any simpler.

Click the diamond in the gutter to run this performance test now, but be warned: it will take a
little while because that closure is run 10 times. For me, each run took about 2 seconds, so
the whole thing took about 20 seconds. If you have a slower computer, you might need to
wait for a minute or two.

Once the test finishes you'll see a green arrow to show it succeeded, but that doesn't mean
much right now because the test can't ever fail. But you'll also see something new: a gray
line that tells you the results. On the right of the line it will say something like "Time: 2.060
sec (3% STDDEV)" so you can see the mean average time it took to run the code and also
the standard deviation.

Performance tests offer different information to regular tests. As you can see here, you'll see
the mean average time as well as the standard deviation, which helps you identify performance

hotspots.

On the left of the line, in the gutter next to the line number, is a small gray diamond – clicking
that will show you pop up information about all 10 runs. Also in that pop up is an important
button that I want you to click now: Set Baseline. That marks your previous test run as the
baseline against which future test runs should be compared to see whether performance has
improved or worsened.

www.hackingwithswift.com 1019

You can see detailed performance data, and set a baseline, by clicking the tiny gray diamond on
the left of the standard deviation line.

Now that you've set a baseline, run the test again and wait for it to complete. When it
finishes, you should see another green checkmark and you might also see a slight natural
variance in the performance results. But now the checkmark means something: it means
your code executed within a reasonable variance of the baseline, which in Xcode's eyes
means that the deviation from the baseline was under 10%. If your code becomes a great
deal slower, Xcode will warn you because it means something major has changed.

I promised earlier that I was going to make you write some bad code, and that it was going
to be fixed. I hope you can see why: even though our loading code is very simple, it takes an
extremely long time to load and we need to make it faster. In doing so you'll also get to see
how XCTest helps you identify major performance changes and adjust your baseline as
needed.

As a reminder, here's the slow code:

for word in allWords {

 if wordCounts[word] == nil {

 wordCounts[word] = 1

 } else {

www.hackingwithswift.com 1020

 } else {

 wordCounts[word]! += 1

 }

}

allWords = Array(wordCounts.keys)

You might wonder how we could optimize something so trivial, but it turns out we can take
out most of the code while also making it run significantly faster. This is possible thanks to
one of my favorite iOS classes: NSCountedSet. This is a set data type, which means that
items can only be added once. But it's a specialized set object: it keeps track of how many
times items you tried to add and remove each item, which means it can handle de-
duplicating our words while storing how often they are used. Did I also mention it's fast?

To use NSCountedSet we need to make a few changes. First, change the wordCounts
property of PlayData to this:

var wordCounts: NSCountedSet!

Now remove all the slow code (the nine lines I showed you above) and put these two in their
place:

wordCounts = NSCountedSet(array: allWords)

allWords = wordCounts.allObjects as! [String]

The first line creates a counted set from all the words, which immediately de-duplicates and
counts them all. The second line updates the allWords array to be the words from the
counted set, thus ensuring they are unique.

Two more changes. First, in the cellForRowAtIndexPath method of ViewController.swift we
need to use the countForObject() method to find out how often a word was used:

www.hackingwithswift.com 1021

cell.detailTextLabel!.text = "\
(playData.wordCounts.countForObject(word))"

Then we need to make the same change in the testWordCountsAreCorrect() method of
Project39Tests.swift:

func testWordCountsAreCorrect() {

 let playData = PlayData()

 XCTAssertEqual(playData.wordCounts.countForObject("home"), 174,
"Home does not appear 174 times")

 XCTAssertEqual(playData.wordCounts.countForObject("fun"), 4, "Fun
does not appear 174 times")

 XCTAssertEqual(playData.wordCounts.countForObject("mortal"), 41,
"Mortal does not appear 41 times")

}

That's it: click the green checkmark next to testWordsLoadQuickly() to re-run the
performance test, and you'll see it now runs two or even three times faster. Xcode won't
mark this test as a failure, though: Xcode only considers a test to be failed if it performs at
least 10% slower than the baseline.

Our new code is significantly faster, and works just as well, so we're going to update our
measurement baseline so it's used in the future. To do that, click the small gray diamond in
the gutter at the end of testWordsLoadQuickly(), then click its Edit button. An Accept
button will appear, which you should click to transfer the latest result to the baseline, then
finally click Save.

If you were wondering, Xcode does two neat things with these benchmarks. First, they are
checked into source control, which means they are shared with other team members.
Second, they are stored against specific device configurations, which means Xcode won't
warn when you your iPhone 4s performs slower than an iPhone 6s.

Before we're done with this chapter, there's one more thing I want to do: sort the array so
that the most frequent words appear at the top of the table. This can be done with the sort()

www.hackingwithswift.com 1022

method, which takes a closure describing how objects should be sorted. Swift will call this
closure with a pair of words, and the closure should return true if the first word is sorted
before the second. Using all the shorthand techniques you learned earlier, this means
returning true if $0 should be sorted before $1.

Replace these two lines:

wordCounts = NSCountedSet(array: allWords)

allWords = wordCounts.allObjects as! [String]

…with these:

wordCounts = NSCountedSet(array: allWords)

let sorted = wordCounts.allObjects.sort
{ wordCounts.countForObject($0) > wordCounts.countForObject($1) }

allWords = sorted as! [String]

Remember, that closure needs to accept two strings ($0 and $1) and needs to return true if
the first string comes before the second. We call countForObject() on each of those strings,
so this code will return true ("sort before") if the count for $0 is higher than the code for $1 –
perfect.

If you run the app now you'll see the most frequently used words appear at the top – good
job! Note, though, that running this sort takes a little time, so make sure you update the
baseline for testWordsLoadQuickly() to reflect that change.

www.hackingwithswift.com 1023

The table view is now finished: it shows all words, with no duplicates, and sorted by frequency
descending.

www.hackingwithswift.com 1024

Filtering using functions as parameters
We're going to add the ability for users to filter the word list in one of two ways: by showing
only words that occur at or greater than a certain frequency, or by showing words that
contain a specific string. This will work by giving PlayData a new array, filteredWords, that
will store all words that matches the user's filter. This will also be used for the table view's
data source.

As before, we're going to be writing the tests first so we can be sure the code we right is
correct, but first we must create some skeleton code in PlayData that the test will work. Start
by adding this filteredWords property to PlayData:

var filteredWords = [String]()

Now add this empty method, just below the existing init() method:

func applyUserFilter(input: String) {

}

That's just enough functionality for us to start writing tests: an applyUserFilter() method that
accepts a single string parameter, such as "home" or "100". What it needs to do is decide
whether that parameter contains a number ("100") or not ("home"), then either show words
with that frequency or words that match that substring.

I've done some number crunching for you, and have found that 495 words appear at least
100 times, whereas only one word appears more than 10,000 times. I've also found that
"test" appears 56 times, "Swift" appears 7 times, and "Objective-C" doesn't appear once –
 conclusive proof, I think, that Shakespeare prefers Swift.

Using these numbers, as well as some more, we can write the following test in
Project39Tests.swift:

func testUserFilterWorks() {

 let playData = PlayData()

www.hackingwithswift.com 1025

 let playData = PlayData()

 playData.applyUserFilter("100")

 XCTAssertEqual(playData.filteredWords.count, 495)

 playData.applyUserFilter("1000")

 XCTAssertEqual(playData.filteredWords.count, 55)

 playData.applyUserFilter("10000")

 XCTAssertEqual(playData.filteredWords.count, 1)

 playData.applyUserFilter("test")

 XCTAssertEqual(playData.filteredWords.count, 56)

 playData.applyUserFilter("swift")

 XCTAssertEqual(playData.filteredWords.count, 7)

 playData.applyUserFilter("objective-c")

 XCTAssertEqual(playData.filteredWords.count, 0)

}

I haven't included any messages to print when the tests fail, but I'm sure you can fill those in
yourself!

Finding the numbers for this wasn't hard, so you're welcome to try it yourself once you've
written the real applyUserFilter() later on: just pass anything you want into applyUserFilter()
then assert that it's equal to 0. When you run the test, Xcode will check all the assertions
you've made, and tell you what the actual answer was. You can then update your number
with Xcode's number, and you're done.

If you run that new test now it will fail – after all, filteredWords is never actually being set in
the PlayData class, so it will always contain 0. This is a feature of test-driven development:
write tests that fail, then write just enough code to make those tests pass. For us, that means

www.hackingwithswift.com 1026

write tests that fail, then write just enough code to make those tests pass. For us, that means
filling in applyUserFilter() so that it does something useful.

To make this test pass is surprisingly easy, although I'm going to make your life more difficult
by squeezing some extra knowledge into you.

Let's start with identifying what the user is trying to do. They will enter a string into a
UIAlertController, which could be "100", "556", "dog" or even "objective-c". Our code
needs to decide whether the string they entered was an integer (in which case it is used to
filter by frequency) or not (in which case it's used to filter by substring).

Swift has a built-in way to find out whether a string contains an integer, because it comes
with a special Int failable initializer that accepts a string. A failable initializer is just like that
init() method we wrote for PlayData, but instead of init() it's init?() because it can fail – it can
return nil. In this situation, we'll get nil back if Swift was unable to convert the string we gave
it into an integer.

Using this approach, we can begin to fill in applyUserFilter():

func applyUserFilter(input: String) {

 if let userNumber = Int(input) {

 // we got a number!

 } else {

 // we got a string!

 }

}

You've already seen how to use filter() and the countForObject() method of NSCountedSet,
plus we used rangeForString() way back in project 4, so you should know everything you
need to be able to write some filtering code to replace those two comments.

If you're not sure, have a think for a moment. My solution is below:

if let userNumber = Int(input) {

 filteredWords = allWords.filter

www.hackingwithswift.com 1027

 filteredWords = allWords.filter
{ self.wordCounts.countForObject($0) >= userNumber }

} else {

 filteredWords = allWords.filter { $0.rangeOfString(input,
options: .CaseInsensitiveSearch) != nil }

}

The first filter creates an array out of words with a count great or equal to the number the
user entered, which is used when their text input was parsed as an integer. The second filter
creates an array out of words that contain the user's text as a substring, which is used when
their text input was not a number.

But I already said I want to squeeze some more knowledge into you, and in this case I want
to extend our app so that rather than apply a filter directly, applyUserFilter() just calls a
different method, applyFilter(), telling it what the filter function should be. This will allow you
to add your own filters later on from inside ViewController.swift, without having to manipulate
the contents of the PlayData object directly.

To make this work, we're going to create a new method called applyFilter(), which will
accept a function as its only parameter. This function needs to accept a single string
parameter, and return true or false depending on whether that string should be included in
the filteredWords array. That's the exact format required by the filter() method, so we can
just pass it straight in.

Accepting a function as a parameter has syntax that can hurt your eyes at first, but the
important thing to remember is that Swift considers functions to be a data type, just like
strings, integers and others. This means they have a parameter name, just like strings and
other data types.

First, here's what the applyFilter() method would look like if our filter was a regular string:

func applyFilter(filter: String) { }

Now, I'll modify that so that the filter parameter is actually a function that accepts a string
and returns a boolean:

www.hackingwithswift.com 1028

func applyFilter(filter: (String) -> Bool) { }

Let's break that down. First, the parameter is still called filter, which means that's how we
can refer to it inside applyFilter(). Then we have (String), which means this parameter is a
function that accepts a single string parameter. Finally, we have -> Bool, which means the
function should return a boolean.

It's possible to have as many of these as you want, so we could have written a method that
accepts three filters if we wanted to:

func applyFilter(filter1: (String) -> Bool, filter2: (Int) -> String,
filter3: (Double)) { }

In that code, filter2 must be a function that accepts an integer parameter and returns a
string, and filter3 must be a function that accepts a double and returns nothing. We don't
need anything that complicated here, but I hope you can see the syntax isn't that scary once
you're used to it!

Here's the definition of applyFilter() again:

func applyFilter(filter: (String) -> Bool) { }

It accepts a single parameter, which must be a function that takes a string and returns a
boolean. This is exactly what filter() wants, so we can just pass that parameter straight on.
Here's the final code for applyFilter():

func applyFilter(filter: (String) -> Bool) {

 filteredWords = allWords.filter(filter)

}

www.hackingwithswift.com 1029

With that method written, we can now update applyUserFilter() so that it calls applyFilter()
rather than modifying filteredWords directly, like this:

func applyUserFilter(input: String) {

 if let userNumber = Int(input) {

 applyFilter { self.wordCounts.countForObject($0) >= userNumber }

 } else {

 applyFilter { $0.rangeOfString(input,
options: .CaseInsensitiveSearch) != nil }

 }

}

Does this code work? Well, there's only one way to find out: re-run the
testUserFilterWorks() test and see what it returns. This test was failing before because we
weren't even modifying filteredWords, but hopefully now all six assertions will evaluate to
true, and the test will pass.

Having two methods rather than one might seem pointless to you, but it's actually smart
forward-thinking. Modifying the filteredWords property in only one place means that if we
add more code to applyFilter() later on, it will immediately be used everywhere the method is
called. If we had modified filteredWords directly, we'd need to remember all the places it
was changed and copy-paste code there every time a change was made.

This two-method approach also gives us encapsulation, which means that functionality is
encapsulated inside an object rather than exposed for others to manipulate. If you want to
adjust filters directly from ViewController.swift – which is a perfectly valid thing to want to do
– you really wouldn't want to change the filteredWords property directly. Instead, it's much
nicer to call a method, and trust that PlayData will do the right thing.

There is a catch with this approach: what's stopping you from (unwisely!) trying to change
the filteredWords property from ViewController.swift? The answer is "nothing" - you could
put something like this in viewDidLoad() if you really wanted to:

playData.filteredWords = ["Neener!"]

www.hackingwithswift.com 1030

playData.filteredWords = ["Neener!"]

Doing that would unpick all the work we did to avoid accessing filteredWords. Fortunately,
Swift comes to the rescue: we can specify that everyone can read from the filteredWords
property, but only the PlayData class can write to it. This restores our safety, and forces
everyone to use the applyUserFilter() and applyFilter() methods.

To make this change, adjust the filteredWords property in PlayData to this:

private(set) var filteredWords = [String]()

That marks the setter of filteredWords – the code that handles writing – as private, which
means only code inside PlayData.swift can use it. The getter – the code that handles reading
– is unaffected.

You might think I engineered all this just to teach you even more Swift, but I couldn't possibly
comment…

www.hackingwithswift.com 1031

Updating the user interface with filtering
We've written the tests to prove that filtering works, but those filters don't do anything in the
user interface just yet. We're going to make a few small changes so that our view controller
uses filteredWords rather than allWords, then we'll add an alert controller so that users can
enter a filter by hand.

First: using filteredWords. This is done in three changes, two of which are trivial: open
ViewController.swift, and replace the two instances of allWords with filteredWords. If you
run the app now you'll see no text in the table view, which is where we need to make the
third change.

By default, filteredWords contains nothing, which is why the table is empty. It's only when a
filter is applied that words are added, so our fix is just a matter of adding one line of code
immediately before the end of init() in PlayData:

applyUserFilter("swift")

That will run an initial filter looking for the word "swift". If you want to show all words when
the app first runs, use this code instead:

filteredWords = allWords

For now, though, please stick with applyUserFilter("swift") – the reason for this will become
clear soon.

Now onto the interesting stuff: letting the user enter a filter value. This needs to show a
UIAlertController with a text field and two buttons, Filter and Cancel. When the user taps
Filter, whatever they entered in the text field needs to be sent to the applyUserFilter()
method of PlayData, and the table reloaded to reflect their changes.

We've covered how to do all this before, but I'll give you a few reminders once you've read
the code. Please add this new method to ViewController.swift:

func searchTapped() {

www.hackingwithswift.com 1032

func searchTapped() {

 let ac = UIAlertController(title: "Filter…", message: nil,
preferredStyle: .Alert)

 ac.addTextFieldWithConfigurationHandler(nil)

 ac.addAction(UIAlertAction(title: "Filter", style: .Default,
handler: { [unowned self] _ in

 let userInput = ac.textFields?[0].text ?? "0"

 self.playData.applyUserFilter(userInput)

 self.tableView.reloadData()

 }))

 ac.addAction(UIAlertAction(title: "Cancel", style: .Cancel,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

We haven't used addTextFieldWithConfigurationHandler() for a while, but here our use is
simple because we don't need any special configuration for the text field – just calling it with
nil will add a text field with no special options.

The one line your brain might have stalled on is this one:

let userInput = ac.textFields?[0].text ?? "0"

That contains two optionals: the textFields property might be nil (i.e., if there aren't any text
fields) and even if we pull out the first text field from the array it might not have any text.
Rather than try to fight our way through the maze of optionals, this code takes an easier
approach: if either of the two optionals return nil, the nil coalescing operator (??) kicks in,
and ensures that "0" is returned instead. This means userInput will always be a String and
not a String?: it will either be something the user entered, or "0".

www.hackingwithswift.com 1033

not a String?: it will either be something the user entered, or "0".

To finish up the user interface, we need to add a right bar button item to the navigation bar
that will trigger the searchTapped() method. If you haven't used Swift 2.2 before, the syntax
for this is a little different than what you're used to: add this line to viewDidLoad():

navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Search, target: self, action:
#selector(searchTapped))

In Swift 2.1 or earlier, #selector(searchTapped) would have been written as just
"searchTapped", but the Swift 2.2 approach gives us compile-time safety – if the
searchTapped() method didn't exist, Xcode would refuse to build the app.

With that new line of code in place, please run the app now and try using the search button
in the top-right corner. Thanks to us having a clear separation of our data model and our
view controller, doing all the user interface work was pretty quick!

Users can filter either by substring or frequency from a single text field.

www.hackingwithswift.com 1034

www.hackingwithswift.com 1035

User interface testing with XCTest
There's one more trick XCTest has up its sleeve, and if you're not already impressed then I
think this will finally win you over.

We've written tests for our data model: are the words loaded correctly? Are the word counts
correct? Did the words get counted in an appropriate time? Does our user filtering work?
These are all useful tests, and help make sure our code works now and in the future when
further changes are made.

But none of those tests tell us whether our user interface is working as expected, so it's
possible that the app could still be broken even though our model is in perfect condition.

XCTest has a solution, and it's a beautiful one: integrated user interface tests that manipulate
your app as if there were a real user in control. XCTest is smart enough to understand how
the system works, so it will automatically wait for things like animations to complete before
trying to check your assertions.

When we created our project we added both unit tests (Project39Tests.swift) and also UI
tests (Project39UITests.swift), and we'll be working with the latter now so please open
Project39UITests.swift for editing.

You'll see Xcode has written setup() and tearDown() methods again, although this time the
setup() method actually has some code in to get things started. You'll also see a
testExample() method, but please just delete that – we'll be writing our own.

We're going to start with a very simple test: when the view controller loads, does it show the
correct number of words? If you remember, our app applies an immediate filter for the word
"swift", which appears 7 times in Shakespeare's comedies. So, to test that our initial app
state is correct, we need to write this test:

func testInitialStateIsCorrect() {

 let table = XCUIApplication().tables

 XCTAssertEqual(table.cells.count, 7, "There should be 7 rows
initially")

}

www.hackingwithswift.com 1036

Please go ahead and run that test now to make sure it works correctly.

OK, so how does that code work? There are only two lines, but it masks a whole lot of
complexity:

 • Calling XCUIApplication() gets you access to the test harness for your running application.
This lets you query its user interface and perform actions as if you were a user.
 • .tables will return an XCUIElementQuery, which in our situation would point to our table.
 • If there were more than one table visible, this would point to an array of tables, and we'd
need to query them further to narrow it down to one table before acting on it. Trying to
manipulate a query that points to more than one thing will crash your test.
 • This is the really mind-bending bit: the results of queries aren't fixed. So in our code the let
table will point to a single table, but if the app adds two more tables for whatever reason,
that table constant will now point to three tables – trying to manipulate it will crash your test.
 • Xcode uses the iOS accessibility system to navigate around these user interface tests. This
is good because it means any application that is accessibility aware is ready for UI testing,
but also because it encourages developers to add accessibility to their apps – which makes
the world a better place for everyone. However, it's bad because the accessibility system has
to read things from the screen rather than making API calls.
 • In our app, we start by applying a filter for the word "swift", which was for a reason:
without this filter there are 18,000+ rows in our table, and the accessibility system seems to
try to scan them all to perform our test. This is so slow that it simply wouldn't work, which is
why the initial filter is applied.

So: user interface testing might look simple, but it's actually surprisingly hard. Fortunately,
Xcode has a smart, simple and almost magical solution: test recording. Let's try it now –
 please create this empty method in your user interface tests:

func testUserFilteringByString() {

}

Click inside that method, so that if you were to type you would be typing inside the method.
Now click the red circle button just below your editing window: this will build and launch your
app, but place it in record mode. It's a small button, but you can see it in the screenshot

www.hackingwithswift.com 1037

below.

Create an empty method, click inside it, then click the small red circle that you can see in this
screenshot.

When your app is recording a UI test, any taps, swipes, or other actions you perform in the
app will automatically be converted to code inside your test – Xcode will literally write your
test for you. However, there are three catches: first, it will usually write some fairly unpleasant
code, and certainly rarely writes what a trained developer would do; second, it still doesn't
know what a pass or fail looks like, so you need to add your own assertions at the end; third,
sometimes it won't even write valid code.

So, it's a long way from perfect, but it does at least give you something to start with that you
can easily rewrite. Your app is already in record mode, because you clicked the red circle to
start it off. I want you to switch to the simulator, click the Search button, then use the on-
screen keyboard to type "test". Finally, click the Filter button to dismiss the alert view, then
go back to Xcode and click the red circle button again to end recording.

Note: Xcode does not like working with the iOS Simulator's hardware keyboard option – you
need to use the on-screen keyboard.

www.hackingwithswift.com 1038

Try to position your Xcode window so you can see Xcode write its code while you work in the
simulator.

Xcode will have written some code for you, but it might well be useless. Here's what I got:

func testUserFilteringByString() {

 let app = app2

 app.navigationBars["Project39.View"].buttons["Search"].tap()

 let app2 = app

 app2.keys["t"].tap()

 let filterAlert = app.alerts["Filter…"]

 let element =
filterAlert.childrenMatchingType(.Other).element.childrenMatchingType
(.Other).elementBoundByIndex(1).childrenMatchingType(.Other).element.
childrenMatchingType(.Other).element.collectionViews.childrenMatching
Type(.Other).element.childrenMatchingType(.Other).element.childrenMat

www.hackingwithswift.com 1039

chingType(.Other).element.childrenMatchingType(.Other).element.childr
enMatchingType(.Other).elementBoundByIndex(1)

 element.childrenMatchingType(.TextField).element

 app2.keys["e"].tap()

 app2.keys["s"].tap()

 app2.keys["t"].tap()

 filterAlert.collectionViews.buttons["Filter"].tap()

}

That code is poor: it won't compile because the very first line contains a reference to an
undefined "app2", the lines let app = app2 and let app2 = app seem deeply confused, and
don't get me started on the whole let element = filterAlert line. Worse, even if you fix the
bugs, this test will work maybe only 1 in 10 times, and there's really no point adding tests
that provide false positives.

However, like I said Xcode's attempt does give us something to build on:

 • We'll need to add let app = XCUIApplication() at the start, because Xcode didn't.
 • app.navigationBars["Project39.View"].buttons["Search"].tap() can be simplified to
app.buttons["Search"].tap() because there's only one search button in view.
 • let filterAlert = app.alerts["Filter…"] can be simplified to let filterAlert = app.alerts,
again because there's only one of them.
 • The massive long line that starts with let element = filterAlert.childrenMatchingType and
the following one, can both be collapsed down into let textField =
filterAlert.textFields.element, which is significantly shorter!
 • All those app2.keys["t"].tap() won't work, but can be replaced with
textField.typeText("test") to type everything at once.
 • filterAlert.collectionViews.buttons["Filter"].tap() can be simplified to
filterAlert.buttons["Filter"].tap() because we don't need to go via the collection view.
 • To finish things off, we need to tell Xcode what a passing test looks like, so we'll add
XCTAssertEqual(app.tables.cells.count, 56, "There should be 56 words matching 'test'")
to match the "test" string that was entered.

With all that in mind, here's a vastly improved version of the test:

func testUserFilteringString() {

www.hackingwithswift.com 1040

func testUserFilteringString() {

 let app = XCUIApplication()

 app.buttons["Search"].tap()

 let filterAlert = app.alerts

 let textField = filterAlert.textFields.element

 textField.typeText("test")

 filterAlert.buttons["Filter"].tap()

 XCTAssertEqual(app.tables.cells.count, 56, "There should be 56
words matching 'test'")

}

Now, you might wonder why it's worth using Xcode's UI recording system only to rewrite
literally everything it produced. And I'll be honest: once you understand how Xcode UI testing
works you'll probably write all your tests by hand, and you'll even add things like comments
and shared code to make them a valuable part of your project. However, Xcode's UI
recordings are useful when you're learning because it becomes significantly easier to get
started when Xcode gives you something basic to work with.

Go ahead and run the test now, and you should see Xcode behaving like a real user. All being
well, the assertion will prove true, and you'll get a green checkmark for your hard work – well
done!

www.hackingwithswift.com 1041

Wrap up
This has been the longest technique project by a long way, but I think you've learned a lot
about the importance of good unit testing. We also managed to cover some functional
programming techniques, discussed private setters, used functions as parameters, and even
tried NSCountedSet, so I hope you're happy with the result!

Now that the full suite of tests are complete, you have three options ahead of you. First, you
can run all the tests in a file by clicking the diamond (or green checkmark) next to the name
of the test class. So, in Project39UITests.swift look in the gutter next to class
Project39UITests: XCTestCase and click that. Second, you can run all the tests in your
entire project by pressing Cmd+U. Give it a few moments to run, then you'll get a complete
report.

Third, and most impressively, you can run all your tests on Xcode Server, which is the
beginning of continuous integration: every time you commit a code change to source control,
Xcode Server can pull down those changes, build the app, and run the full suite of tests. If
you're working in a team, Xcode can produce a visual display of tests that are passing and
failing, which is either motivational or depressing depending on your workplace!

If you'd like to take this app further, you should concentrate on testing. Can you write a test
that verifies there are 55 table rows when the user filters by words that appear 1000 or more
times? Can you write a test that ensures something sensible happens if the cancel button is
pressed? Can you write a performance test to ensure applyUserFilter() doesn't get any
slower?

There's also a bug in the code that you ought to be able to fix easily: if the user enters
nothing into the filter text box, applyUserFilter() gets called with an empty string as its
parameter and no results will be shown. It's down to you to think up a better solution: is it
better to pretend Cancel was tapped instead? Or perhaps consider an empty string to mean
"show all words"? It's your project now, so please choose what you think best.

Keep in mind that testing is only part of a sensible code review process. Yes, Xcode Server
can check out your code and automatically validate that tests pass, but it is not a substitute
for actual human interaction – looking through each other's code, and providing constructive
criticism. Taking the time to read someone else's code, then encouraging and supporting
them as they improve it, is a key developer skill – remember, code review is where mistakes
get rubbed out, not rubbed in.

www.hackingwithswift.com 1042

Appendix
The Swift Knowledge Base
Quick tips, tricks, and practical examples to help you do
more with Cocoa Touch.

www.hackingwithswift.com 1043

Arrays
How to count objects in a set using NSCountedSet
Availability: iOS 2.0 or later.

One of my favorite little gems in Cocoa Touch is called NSCountedSet, and it's the most
efficient way to count objects in a set. Here's the code:

let set = NSCountedSet()

set.addObject("Bob")

set.addObject("Charlotte")

set.addObject("John")

set.addObject("Bob")

set.addObject("James")

set.addObject("Sophie")

set.addObject("Bob")

print(set.countForObject("Bob"))

Now to how it works: a set is like an array, except each item can appear only once. If we
used an array in the above code, it would contain seven objects: three Bobs, one Charlotte,
one John, one James and one Sophie. If we used a Swift set in the above code, it would
contain four objects: one Bob, one Charlotte, one John, one James and one Sophie – the set
ensures each item appears only once.

Now for the twist: NSCountedSet works similar to a set insofar as each object can appear
only once, but it keeps track of how many times each item was added and removed. So, our
counted set will have four objects in (like it would if it were a regular set), but NSCountedSet
has a countForObject() method that will report back that Bob was added three times.

How to enumerate items in an array

www.hackingwithswift.com 1044

Availability: iOS 7.0 or later.

There several ways to loop through an array in Swift, but using the enumerate() method is
one of my favorites because it iterates overy each of the items while also telling you the
items's position in the array.

Here's an example:

let array = ["Apples", "Peaches", "Plums"]

for (index, item) in array.enumerate() {

 print("Found \(item) at position \(index)")

}

That will print "Found Apples at position 0", "Found Peaches at position 1", and "Found
Plums at position 2".

How to find an item in an array using indexOf()
Availability: iOS 7.0 or later.

The indexOf() method tells you the index of an element in an array if it exists, or returns nil
otherwise. Because it's an optional value, you need to unwrap it carefully or at least check
the result, like this:

let array = ["Apples", "Peaches", "Plums"]

if let index = array.indexOf("Peaches") {

 print("Found peaches at index \(index)")

}

www.hackingwithswift.com 1045

How to join an array of strings into a single string
Availability: iOS 7.0 or later.

If you have an array of strings and want to merge all the elements together into a single
string, it's just one line of code in Swift – albeit one you can't guess very easily!

For example, this joins array elements with a comma:

let array = ["Andrew", "Ben", "John", "Paul", "Peter", "Laura"]

let joined = array.joinWithSeparator(", ")

The result is that joined is set to "Andrew, Ben, John, Paul, Peter, Laura".

How to loop through an array in reverse
Availability: iOS 7.0 or later.

If you want to read through an array in reverse, you should use the reverse() method. You
can use this as part of the regular fast enumeration technique if you want, which would give
you code like this:

let array = ["Apples", "Peaches", "Plums"]

for item in array.reverse() {

 print("Found \(item)")

}

You can also reverse an enumerated array just by appending the method call, like this:

let array = ["Apples", "Peaches", "Plums"]

www.hackingwithswift.com 1046

for (index, item) in array.reverse().enumerate() {

 print("Found \(item) at position \(index)")

}

Note that whether you call reverse() then enumerate or vice versa matters! In the above
code, enumerate will count upwards, but if you use array.enumerate().reverse() it will count
backwards.

How to loop through items in an array
Availability: iOS 7.0 or later.

Swift offers a selection of ways to loop through an array, but the easiest and fastest is known
as fast enumeration and looks like this:

let array = ["Apples", "Peaches", "Plums"]

for item in array {

 print("Found \(item)")

}

That will print "Found Apples", "Found Peaches" then "Found Plums" to the Xcode console.
Each time the loop goes around, one item is read from the array and placed into the constant
item – and note that is a constant, so don't try to change it.

How to shuffle an array in iOS 8 and below
Availability: iOS 2.0 or later.

Nate Cook wrote a simple shuffle() extension to arrays that implements the Fisher-Yates
shuffle algorithm in Swift. I use it a lot, or at least did until GameplayKit came along in iOS

www.hackingwithswift.com 1047

9.0 – it has its own shuffle algorithm, and so is preferable.

If you're stuck on iOS 8.0 or below, here's the code:

extension Array {

 mutating func shuffle() {

 for i in 0 ..< (count - 1) {

 let j = Int(arc4random_uniform(UInt32(count - i))) + i

 swap(&self[i], &self[j])

 }

 }

}

For more information see Hacking with Swift tutorial 35.

How to shuffle an array in iOS 9 using GameplayKit
Availability: iOS 9.0 or later.

iOS 9.0 has a built-in way to shuffle arrays thanks to GameplayKit, and it's a simple one-liner.
Here's an example of creating an array of lottery balls and picking six random ones:

let lotteryBalls = [Int](1...49)

let shuffledBalls =
GKRandomSource.sharedRandom().arrayByShufflingObjectsInArray(lotteryB
alls)

print(shuffledBalls[0])

print(shuffledBalls[1])

print(shuffledBalls[2])

print(shuffledBalls[3])

print(shuffledBalls[4])

print(shuffledBalls[5])

www.hackingwithswift.com 1048

print(shuffledBalls[5])

That uses the system's built-in random number generator, which means it's guaranteed to be
in a random state by the time it gets to you.

For more information see Hacking with Swift tutorial 35.

How to sort an array using sort()
Availability: iOS 7.0 or later.

All arrays have a built-in sort() method that can be used to sort the array. If the array is
simple you can just call it directly, like this:

var names = ["Jemima", "Peter", "David", "Kelly", "Isabella"]

names.sort()

If you have a custom struct or class and want to sort them arbitrarily, you should call sort()
using a trailing closure that sorts on a field you specify. Here's an example using an array of
custom structs that sorts on a particular property:

struct MyCustomStruct {

 var someSortableField: String

}

var customArray = [

 MyCustomStruct(someSortableField: "Jemima"),

 MyCustomStruct(someSortableField: "Peter"),

 MyCustomStruct(someSortableField: "David"),

 MyCustomStruct(someSortableField: "Kelly"),

 MyCustomStruct(someSortableField: "Isabella")

]

www.hackingwithswift.com 1049

]

let sortedArray = customArray.sort { (element1, element2) -> Bool in

 return element1.someSortableField < element2.someSortableField

}

If you want to sort the array in place rather than assign it to another value, use sortInPlace()
like this:

customArray.sortInPlace { (element1, element2) -> Bool in

 return element1.someSortableField < element2.someSortableField

}

How to tell if an array contains an object
Availability: iOS 7.0 or later.

It's easy to find out whether an array contains a specific value, because Swift has a
contains() method that returns true or false depending on whether that item is found. For
example:

let array = ["Apples", "Peaches", "Plums"]

if array.contains("Apples") {

 print("We've got apples!")

} else {

 print("No apples here – sorry!")

}

www.hackingwithswift.com 1050

That example array does indeed contain "Apples" so that code will print "We've got apples!"
to the Xcode console.

CALayer
How to add a border outline color to a UIView
Availability: iOS 3.2 or later.

Any UIView subclass has a built-in way to draw a border around it using its underlying
CALayer. For example, to draw a 10-point black border around a view, you'd use this:

yourView.layer.borderWidth = 10

yourView.layer.borderColor = UIColor.blackColor().CGColor

Note that you need to use the CGColor property of your UIColor in order for this to work.
Adding a border to a view even works if you also round the corners of your view – it's very
flexible!

How to create keyframe animations using
CAKeyframeAnimation
Availability: iOS 2.0 or later.

Keyframe animations offer extraordinary power for developers because they let you set
multiple values and have iOS animate between them over times you specify. There are three
components: a key path (the property to animate), an array of values (the value you want to
use for that property), and an array of key times (when that value should be used for the
property).

www.hackingwithswift.com 1051

The number of key times needs to match the number of values, because each value is
applied in order when its key time is reached. In the example code below, a view will be
moved down 300 points then back to its starting point over 2 seconds. It's important that
you understand the key times and duration are separate: the key times should be between 0
and 1, where 0 means "the start of the animation" and 1 means "the end of the animation."

let animation = CAKeyframeAnimation()

animation.keyPath = "position.y"

animation.values = [0, 300, 0]

animation.keyTimes = [0, 0.5, 1]

animation.duration = 2

animation.additive = true

vw.layer.addAnimation(animation, forKey: "move")

Because the animation is marked as additive, it means that 300 is relative to its starting
position.

We can use key frame animations to create a simple shake effect that moves a view left and
right across a brief animation. This will use additive animations again because we want to
specify relative values (move to the left and right a bit) rather than absolute values:

func shakeView(vw: UIView) {

 let animation = CAKeyframeAnimation()

 animation.keyPath = "position.x"

 animation.values = [0, 10, -10, 10, -5, 5, -5, 0]

 animation.keyTimes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1]

 animation.duration = 0.4

 animation.additive = true

 vw.layer.addAnimation(animation, forKey: "shake")

www.hackingwithswift.com 1052

 vw.layer.addAnimation(animation, forKey: "shake")

}

How to draw color gradients using CAGradientLayer
Availability: iOS 3.0 or later.

I love CAGradientLayer because it takes just four lines of code to use, and yet looks great
because it quickly and accurately draws smooth color gradients use Core Graphics. Here's a
basic example:

let layer = CAGradientLayer()

layer.frame = CGRect(x: 64, y: 64, width: 160, height: 160)

layer.colors = [UIColor.redColor().CGColor,
UIColor.blackColor().CGColor]

view.layer.addSublayer(layer)

Note that you need to fil in an array of colors that will be used to draw the gradient. You can
provide more than one if you want to, at which point you will also need to fill in the locations
array to tell CAGradientLayer where each color starts and stops. Note that you need to
specify your colors as CGColor and not UIColor.

If you want to make your gradient work in a different direction, you should set the startPoint
and endPoint properties. These are both CGPoints where the X and Y values are between 0
and 1, where 0 is one edge and 1 is the opposite edge. The default start point is X 0.5, Y 0.0
and the default end point is X 0.5, Y 1.0, which means both points are in the center of the
layer, but it starts at the top and ends at the bottom.

You might be interested to know that CAGradientLayer happily works with translucent
colors, meaning that you can make a gradient that fades out.

How to draw shapes using CAShapeLayer
Availability: iOS 3.0 or later.

www.hackingwithswift.com 1053

There are lots of CALayer subclasses out there, but CAShapeLayer is one of my favorites: it
provides hardware-accelerated drawing of all sorts of 2D shapes, and includes extra
functionality such as fill and stroke colors, line caps, patterns and more.

To get you started, this uses UIBezierPath to create a rounded rectangle, which is then
colored red using CAShaperLayer. Remember, CALayer sits underneath UIKit, so you need
to use CGColor rather than UIColor.

let layer = CAShapeLayer()

layer.path = UIBezierPath(roundedRect: CGRect(x: 64, y: 64, width:
160, height: 160), cornerRadius: 50).CGPath

layer.fillColor = UIColor.redColor().CGColor

view.layer.addSublayer(layer)

How to emit particles using CAEmitterLayer
Availability: iOS 5.0 or later.

Believe it or not, iOS has a built-in particle system that works great in all UIKit apps and is
immensely customisable. To get started you need to create a CAEmitterLayer object and tell
it how to create particles: where it should create them, how big the emitter should be, and
what types of particles should exist.

The "type of particles" part is handled by CAEmitterCell, which covers details like how fast
to create, how long they should live, whether they should spin and/or fade out, what texture
to use, and more. You can add as many CAEmitterCells to a CAEmitterLayer as you need.

Here's some example code to get you started. This creates particles of three different colors,
all falling and spinning down from the top of the screen. The image "particle_confetti" is just
a small white triangle that I drew by hand – you should replace that with something more
interesting.

func createParticles() {

 let particleEmitter = CAEmitterLayer()

www.hackingwithswift.com 1054

 let particleEmitter = CAEmitterLayer()

 particleEmitter.emitterPosition = CGPoint(x: view.center.x, y: -96)

 particleEmitter.emitterShape = kCAEmitterLayerLine

 particleEmitter.emitterSize = CGSize(width: view.frame.size.width,
height: 1)

 let red = makeEmitterCellWithColor(UIColor.redColor())

 let green = makeEmitterCellWithColor(UIColor.greenColor())

 let blue = makeEmitterCellWithColor(UIColor.blueColor())

 particleEmitter.emitterCells = [red, green, blue]

 view.layer.addSublayer(particleEmitter)

}

func makeEmitterCellWithColor(color: UIColor) -> CAEmitterCell {

 let cell = CAEmitterCell()

 cell.birthRate = 3

 cell.lifetime = 7.0

 cell.lifetimeRange = 0

 cell.color = color.CGColor

 cell.velocity = 200

 cell.velocityRange = 50

 cell.emissionLongitude = CGFloat(M_PI)

 cell.emissionRange = CGFloat(M_PI_4)

 cell.spin = 2

 cell.spinRange = 3

 cell.scaleRange = 0.5

 cell.scaleSpeed = -0.05

www.hackingwithswift.com 1055

 cell.contents = UIImage(named: "particle_confetti")?.CGImage

 return cell

}

How to round the corners of a UIView
Availability: iOS 3.2 or later.

All UIView subclasses have the ability to round their corners thanks to their underlying
CALayer – that's the bit that handles the actual drawing of your views. To round the corners
of a view, use this code:

yourView.layer.cornerRadius = 10

The number you specify is how far the rounding should go, measured in points. This means
that if you have a view that's 128x128 points wide and give it a cornerRadius property of 64,
it will look like a circle.

Note that some types of view don't have clipsToBounds enabled by default, which means
their corners will not round until you enable this property.

Core Graphics
How to calculate the Manhattan distance between two
CGPoints
Availability: iOS 2.0 or later.

Manhattan distance is the distance between two integer points when you are unable to move
diagonally. It's named "Manhattan distance" because of the grid-like layout of New York:

www.hackingwithswift.com 1056

whether you go four streets up then five streets across, or five streets across then four
streets up, or you zig zag to and fro, the actual end distance is identical because you're just
moving across a grid.

If you want to calculate Manhattan distance in your own code, just drop in this function:

func CGPointManhattanDistance(from from: CGPoint, to: CGPoint) ->
CGFloat {

 return (abs(from.x - to.x) + abs(from.y - to.y));

}

How to calculate the distance between two CGPoints
Availability: iOS 2.0 or later.

You can calculate the distance between two CGPoints by using Pythagoras's theorem, but
be warned: calculating square roots is not fast, so if possible you want to avoid it. More on
that in a moment, but first here's the code you need:

func CGPointDistanceSquared(from from: CGPoint, to: CGPoint) ->
CGFloat {

 return (from.x - to.x) * (from.x - to.x) + (from.y - to.y) *
(from.y - to.y);

}

func CGPointDistance(from from: CGPoint, to: CGPoint) -> CGFloat {

 return sqrt(CGPointDistanceSquared(from: from, to: to));

}

Note that there are two functions: one for returning the distance between two points, and
one for returning the distance squared between two points. The latter one doesn't use a
square root, which makes it substantially faster. This means if you want to check "did the
user tap within a 10-point radius of this position?" it's faster to square that 10 (to make 100)

www.hackingwithswift.com 1057

user tap within a 10-point radius of this position?" it's faster to square that 10 (to make 100)
then use CGPointDistanceSquared() instead.

How to compare two CGRects with CGRectEqualToRect()
Availability: iOS 2.0 or later.

You could compare two CGRect values by evaluating their X, Y, width and height values, but
there's a much faster way: CGRectEqualToRect(). This takes two rects as its only two
parameters and returns true if they are the same, or false otherwise.

Here's an example:

let rect1 = CGRect(x: 64, y: 64, width: 128, height: 128)

let rect2 = CGRect(x: 256, y: 256, width: 128, height: 128)

if CGRectEqualToRect(rect1, rect2) {

 // rects equal!

} else {

 // rects not equal

}

How to draw a circle using Core Graphics:
CGContextAddEllipseInRect
Availability: iOS 4.0 or later.

Core Graphics is able to draw circles and ellipses with just a few lines of code, although
there is some set up to do first. The example code below creates a 512x512 circle with a red
fill and a black border:

UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

www.hackingwithswift.com 1058

512), false, 0)

let context = UIGraphicsGetCurrentContext()

let rectangle = CGRect(x: 0, y: 0, width: 512, height: 512)

CGContextSetFillColorWithColor(context, UIColor.redColor().CGColor)

CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

CGContextSetLineWidth(context, 10)

CGContextAddEllipseInRect(context, rectangle)

CGContextDrawPath(context, .FillStroke)

let img = UIGraphicsGetImageFromCurrentImageContext()

UIGraphicsEndImageContext()

Please note: although a 10-point border is specified, Core Graphics draws borders half-way
inside and half-way outside the path you create, so if you want to see the whole border
(rather than have it cropped) you either need to draw a smaller shape or create a bigger
context.

For more information see Hacking with Swift tutorial 27.

How to draw a square using Core Graphics:
CGContextAddRect()
Availability: iOS 4.0 or later.

You can draw a square (or indeed any size of rectangle) using the CGContextAddRect()
Core Graphics function. There's a little bit of set up work required, such as creating a context
big enough to hold the square and setting up colors, but the code below does everything you
need:

UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

www.hackingwithswift.com 1059

512), false, 0)

let context = UIGraphicsGetCurrentContext()

let rectangle = CGRect(x: 0, y: 0, width: 512, height: 512)

CGContextSetFillColorWithColor(context, UIColor.redColor().CGColor)

CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

CGContextSetLineWidth(context, 10)

CGContextAddRect(context, rectangle)

CGContextDrawPath(context, .FillStroke)

let img = UIGraphicsGetImageFromCurrentImageContext()

UIGraphicsEndImageContext()

Important note: when setting a line width using CGContextSetLineWidth(), the center of
the border is the edge of your path. This means our board will be 5 points inside the
rectangle and 5 points outside, because we have a total border width of 10 points. Because
the square's path is the same size as the context, this means the outside part of the border
will be clipped.

For more information see Hacking with Swift tutorial 27.

How to draw a text string using Core Graphics
Availability: iOS 4.0 or later.

To draw text in Core Graphics is trivial because every Swift string has a built-in
drawWithRect() method that takes an array of attributes and a position and size. There is,
like always, some Core Graphics set up work to do, but this next code snippet is a complete
example you can re-use easily:

UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

www.hackingwithswift.com 1060

let paragraphStyle = NSMutableParagraphStyle()

paragraphStyle.alignment = .Center

let attrs = [NSFontAttributeName: UIFont(name: "HelveticaNeue-Thin",
size: 36)!, NSParagraphStyleAttributeName: paragraphStyle]

let string = "How much wood would a woodchuck\nchuck if a woodchuck
would chuck wood?"

string.drawWithRect(CGRect(x: 32, y: 32, width: 448, height: 448),
options: .UsesLineFragmentOrigin, attributes: attrs, context: nil)

let img = UIGraphicsGetImageFromCurrentImageContext()

UIGraphicsEndImageContext()

For more information see Hacking with Swift tutorial 27.

How to draw lines in Core Graphics: CGContextMoveToPoint()
and CGContextAddLineToPoint()
Availability: iOS 4.0 or later.

You can draw lines in Core Graphics using CGContextMoveToPoint() and
CGContextAddLineToPoint(). The first function moves the Core Graphics path to a CGPoint
of your choosing, and the second function moves the path to a new point while also adding a
line. Once you add in the required code to set up a context and choose a color, you can draw
a triangle with this code:

UIGraphicsBeginImageContextWithOptions(CGSize(width: 500, height:
500), false, 0)

let context = UIGraphicsGetCurrentContext()

CGContextMoveToPoint(context, 50, 450)

CGContextAddLineToPoint(context, 250, 50)

www.hackingwithswift.com 1061

CGContextAddLineToPoint(context, 250, 50)

CGContextAddLineToPoint(context, 450, 450)

CGContextAddLineToPoint(context, 50, 450)

CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

CGContextStrokePath(context)

let img = UIGraphicsGetImageFromCurrentImageContext()

UIGraphicsEndImageContext()

Once you've mastered drawing basic lines, you can create neat effects by rotating the
context as you draw, like this:

UIGraphicsBeginImageContextWithOptions(CGSize(width: 512, height:
512), false, 0)

let context = UIGraphicsGetCurrentContext()

CGContextTranslateCTM(context, 256, 256)

var first = true

var length: CGFloat = 256

for i in 0 ..< 256 {

 CGContextRotateCTM(context, CGFloat(M_PI_2))

 if first {

 CGContextMoveToPoint(context, length, 50)

 first = false

 } else {

 CGContextAddLineToPoint(context, length, 50)

 }

www.hackingwithswift.com 1062

 }

 length *= 0.99

}

CGContextSetStrokeColorWithColor(context,
UIColor.blackColor().CGColor)

CGContextStrokePath(context)

let img = UIGraphicsGetImageFromCurrentImageContext()

UIGraphicsEndImageContext()

For more information see Hacking with Swift tutorial 27.

How to find the rotation from a CGAffineTransform
Availability: iOS 2.0 or later.

A CGAffineTransform value combines scale, translation and rotation all at once, but if you
just want to know its rotation value is then use this code:

func rotationFromTransform(transform: CGAffineTransform) -> Double {

 return atan2(Double(transform.b), Double(transform.a));

}

How to find the scale from a CGAffineTransform
Availability: iOS 2.0 or later.

If you have a CGAffineTransform and want to know what its scale component is –
regardless of whether it has been rotated or translated – use this code:

www.hackingwithswift.com 1063

func scaleFromTransform(transform: CGAffineTransform) -> Double {

 return sqrt(Double(transform.a * transform.a + transform.c *
transform.c));

}

How to find the translation from a CGAffineTransform
Availability: iOS 2.0 or later.

You can pull out the translation from a CGAffineTransform by using the function below.
Feed it a transform and it will return you a CGPoint:

func translationFromTransform(transform: CGAffineTransform) ->
CGPoint {

 return CGPointMake(transform.tx, transform.ty);

}

How to render a PDF to an image
Availability: iOS 3.0 or later.

iOS has built-in APIs for drawing PDFs, which means it's relatively straight forward to render
a PDF to an image. I say "relatively" because there's still some boilerplate you need to worry
about: figuring out the document size, filling the background in a solid color to avoid
transparency, and flipping the rendering so that the PDF draws the right way up.

To make things easy for you, here's a pre-made method you can use that takes a URL to a
PDF and returns either a rendered image or nil if it failed. To call it you should pull out the
URL to a resource in your bundle or another local PDF file.

func drawPDFfromURL(url: NSURL) -> UIImage? {

 guard let document = CGPDFDocumentCreateWithURL(url) else { return

www.hackingwithswift.com 1064

 guard let document = CGPDFDocumentCreateWithURL(url) else { return
nil }

 guard let page = CGPDFDocumentGetPage(document, 1) else { return
nil }

 let pageRect = CGPDFPageGetBoxRect(page, .MediaBox)

 UIGraphicsBeginImageContextWithOptions(pageRect.size, true, 0)

 let context = UIGraphicsGetCurrentContext()

 CGContextSetFillColorWithColor(context,
UIColor.whiteColor().CGColor)

 CGContextFillRect(context,pageRect)

 CGContextTranslateCTM(context, 0.0, pageRect.size.height);

 CGContextScaleCTM(context, 1.0, -1.0);

 CGContextDrawPDFPage(context, page);

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 return img

}

How to use Core Graphics blend modes to draw a UIImage
differently
Availability: iOS 2.0 or later.

If you're rendering images using Core Graphics you should definitely try out some of the
alternate blend modes that are available. If you've ever used Photoshop's blend modes

www.hackingwithswift.com 1065

these will be familiar: screen, luminosity, multiply and so on – these are all available right in
Core Graphics.

To give you an idea what's possible, here's some code that takes two UIImages and draws
them into one single image. The first image is drawn using normal rendering, and the second
using .Luminosity.

if let img = UIImage(named: "example"), img2 = UIImage(named:
"example2") {

 let rect = CGRect(x: 0, y: 0, width: img.size.width, height:
img.size.height)

 UIGraphicsBeginImageContextWithOptions(img.size, true, 0)

 let context = UIGraphicsGetCurrentContext()

 // fill the background with white so that translucent colors get
lighter

 CGContextSetFillColorWithColor(context,
UIColor.whiteColor().CGColor)

 CGContextFillRect(context, rect)

 img.drawInRect(rect, blendMode: .Normal, alpha: 1)

 img2.drawInRect(rect, blendMode: .Luminosity, alpha: 1)

 // grab the finished image and return it

 let result = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

}

How that looks depends on the source images you used – try drawing them the other way
around to see what difference it makes, or try using .Multiply rather than .Luminosity.

If you're looking for a more advanced example, this function accepts an image and returns

www.hackingwithswift.com 1066

the same image with a rainbow effect to it. This is done by drawing six colored strips onto an
image, then overlaying the original image using the blend mode .Luminosity along with a
slight alpha.

func addRainbowToImage(img: UIImage) -> UIImage {

 // create a CGRect representing the full size of our input iamge

 let rect = CGRect(x: 0, y: 0, width: img.size.width, height:
img.size.height)

 // figure out the height of one section (there are six)

 let sectionHeight = img.size.height / 6

 // set up the colors – these are based on my trial and error

 let red = UIColor(red: 1, green: 0.5, blue: 0.5, alpha:
0.8).CGColor

 let orange = UIColor(red: 1, green: 0.7, blue: 0.35, alpha:
0.8).CGColor

 let yellow = UIColor(red: 1, green: 0.85, blue: 0.1, alpha:
0.65).CGColor

 let green = UIColor(red: 0, green: 0.7, blue: 0.2, alpha:
0.5).CGColor

 let blue = UIColor(red: 0, green: 0.35, blue: 0.7, alpha:
0.5).CGColor

 let purple = UIColor(red: 0.3, green: 0, blue: 0.5, alpha:
0.6).CGColor

 let colors = [red, orange, yellow, green, blue, purple]

 // set up our drawing context

 UIGraphicsBeginImageContextWithOptions(img.size, true, 0)

 let context = UIGraphicsGetCurrentContext()

 // fill the background with white so that translucent colors get
lighter

 CGContextSetFillColorWithColor(context,

www.hackingwithswift.com 1067

 CGContextSetFillColorWithColor(context,
UIColor.whiteColor().CGColor)

 CGContextFillRect(context, rect)

 // loop through all six colors

 for i in 0 ..< 6 {

 let color = colors[i]

 // figure out the rect for this section

 let rect = CGRect(x: 0, y: CGFloat(i) * sectionHeight, width:
rect.width, height: sectionHeight)

 // draw it onto the context at the right place

 CGContextSetFillColorWithColor(context, color)

 CGContextFillRect(context, rect)

 }

 // now draw our input image over using Luminosity mode, with a
little bit of alpha to make it fainter

 img.drawInRect(rect, blendMode: .Luminosity, alpha: 0.6)

 // grab the finished image and return it

 let img = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

 return img

}

www.hackingwithswift.com 1068

Games
How to add physics to an SKSpriteNode
Availability: iOS 7.0 or later.

SpriteKit comes with a modified version of the Box2D physics framework, and it's wrapped
up a lot of complicated physics mathematics into just one or two lines of code. For example,
we can create a square, red sprite and give it rectangular physics like this:

let box = SKSpriteNode(color: UIColor.redColor(), size: CGSize(width:
64, height: 64))

box.physicsBody = SKPhysicsBody(rectangleOfSize: CGSize(width: 64,
height: 64))

That rectangle will wrap perfectly around the box's color, so it will bounce and rotate as it
collides with other objects in your scene.

If you want to create circular physics to simulate balls, this is done using the circleOfRadius
constructor:

let ball = SKSpriteNode(imageNamed: "ballRed")

ball.physicsBody = SKPhysicsBody(circleOfRadius: ball.size.width /
2.0)

For more information see Hacking with Swift tutorial 11.

How to add pixel-perfect physics to an SKSpriteNode
Availability: iOS 7.0 or later.

Pixel-perfect physics is just one line of code in SpriteKit. Don't believe me? Here you go:

player = SKSpriteNode(imageNamed: "player")

www.hackingwithswift.com 1069

player = SKSpriteNode(imageNamed: "player")

player.position = CGPoint(x: 100, y: 384)

player.physicsBody = SKPhysicsBody(texture: player.texture, size:
player.size)

That last line is the one that does the magic: SpriteKit will use the alpha values of your sprite
(i.e., the transparent pixels) to figure out which parts should be part of a collision.

As you might imagine, pixel-perfect collision detection is significantly slower than using
rectangles or circles, so you should use it carefully.

For more information see Hacking with Swift tutorial 23.

How to color an SKSpriteNode using colorBlendFactor
Availability: iOS 7.0 or later.

One powerful and under-used feature of SpriteKit is its ability to recolor SKSpriteNodes
dynamically. This has almost zero performance impact, which makes it perfect for having
multiple-colored enemies or players. It can also be animated, meaning that you could for
example make your player flash white briefly when they've been hit by a bad guy.

To tint a sprite cyan, use this code:

firework.color = UIColor.cyanColor()

firework.colorBlendFactor = 1

If you want to animate the sprite coloring, you'd use this:

let action = SKAction.colorizeWithColor(UIColor.redColor(),
colorBlendFactor: 1, duration: 1)

For more information see Hacking with Swift tutorial 20.

www.hackingwithswift.com 1070

For more information see Hacking with Swift tutorial 20.

How to create 3D audio sound using SKAudioNode
Availability: iOS 9.0 or later.

3D audio is a feature where a sound is dynamically altered so that listeners think it comes
from a particular location. Obviously they are looking at a flat 2D screen ahead of them, but
using some clever mathematics iOS can make sounds "feel" like they are behind you, or at a
more basic level adjust the panning so that sounds come from the left or right of the user's
audio device.

As of iOS 9.0, you get these features for free: all you need to do is create an SKAudioNode
for your sound and set its positional property to be true. That's it – iOS will automatically
use the position of the node to adjust the way its audio sounds, and it even adjusts the audio
as you move it around.

To give you a working example, this creates an audio node from a file called music.m4a
(you'll need to provide that), then makes the audio move left and right forever. If you listen to
this using headphones (which is the only effective way for 3D sound to work on iOS devices)
you'll really hear a pronounced panning effect.

override func didMoveToView(view: SKView) {

 let music = SKAudioNode(fileNamed: "music.m4a")

 addChild(music)

 music.positional = true

 music.position = CGPoint(x: -1024, y: 0)

 let moveForward = SKAction.moveToX(1024, duration: 2)

 let moveBack = SKAction.moveToX(-1024, duration: 2)

 let sequence = SKAction.sequence([moveForward, moveBack])

 let repeatForever = SKAction.repeatActionForever(sequence)

 music.runAction(repeatForever)

www.hackingwithswift.com 1071

 music.runAction(repeatForever)

}

How to create a SpriteKit texture atlas in Xcode
Availability: iOS 7.0 or later.

A SpriteKit texture atlas is actually just a folder with the extension .atlas, but it's more
efficient than loading textures individually because multiple images are stored in a single file
and thus can be loaded faster. Even better, you don't need to worry about how they are
placed or even orientation – you just use them as normal, and SpriteKit does the rest.

In Finder, go into your project directory (where your .swift files are), then create a new folder
called assets.atlas. Now go to where you have your SpriteKit assets stored and drag them
from there into your assets.atlas directory. Finally, drag your assets.atlas directory into your
Xcode project so that it gets added to the build.

That's it – enjoy your efficiency improvements!

For more information see Hacking with Swift tutorial 29.

How to create shapes using SKShapeNode
Availability: iOS 7.0 or later.

SpriteKit's SKShapeNode class is a fast and convenient way to draw arbitrary shapes in
your games, including circles, lines, rounded rectangles and more. You can assign a fill color,
a stroke color and width, plus other drawing options such as whether it should glow – yes,
really.

The example code below draws a rounded rectangle smack in the middle of the game scene,
giving it a red fill color and a 10-point blue border:

let shape = SKShapeNode()

shape.path = UIBezierPath(roundedRect: CGRect(x: -128, y: -128,

www.hackingwithswift.com 1072

width: 256, height: 256), cornerRadius: 64).CGPath

shape.position = CGPoint(x: CGRectGetMidX(frame), y:
CGRectGetMidY(frame))

shape.fillColor = UIColor.redColor()

shape.strokeColor = UIColor.blueColor()

shape.lineWidth = 10

addChild(shape)

For more information see Hacking with Swift tutorial 17.

How to emit particles using SKEmitterNode
Availability: iOS 7.0 or later.

SpriteKit has built-in support for particle systems, which are a realistic and fast way to create
effects such as smoke, fire and snow. Even better, Xcode has a built-in visual particle editor
so that you can tweak your designs until they look exactly right.

To get started, right-click on your project in Xcode and choose New File. Select iOS >
Resource > SpriteKit Particle File, then choose the Smoke template and click Next to name
your effect. Once that's done, your particle will be opened immediately in the visual editor so
you can adjust its design.

When it comes to using your effect, just create a new SKEmitterNode object using the name
of your particle effect, like this:

if let particles = SKEmitterNode(fileNamed: "yourParticleFile.sks") {

 particles.position = player.position

 addChild(particles)

}

Obviously you will want to set your own position rather than using an example player node.

www.hackingwithswift.com 1073

For more information see Hacking with Swift tutorial 11.

How to generate a random number with GKRandomSource
Availability: iOS 9.0 or later.

GameplayKit is a powerful new framework introduced in iOS 9.0, and one of the (many!)
things it does is provide a number of ways to generate random numbers easily. To get
started, import the framework into your code like this:

import GameplayKit

You can immediately start generating random numbers just by using this code:

print(GKRandomSource.sharedRandom().nextInt())

That code produces a number between -2,147,483,648 and 2,147,483,647, so if you're
happy with negative numbers then you're basically done. Alternatively, if you want a random
number between and an upper bound (inclusive!), you should use this code instead:

print(GKRandomSource.sharedRandom().nextIntWithUpperBound(10))

That will return a number between 0 and 10, including 0 and 10 themselves.

For more information see Hacking with Swift tutorial 35.

How to roll a dice using GameplayKit and
GKRandomDistribution
Availability: iOS 9.0 or later.

www.hackingwithswift.com 1074

GameplayKit's random number generator includes help constructors that produces numbers
in a specific range, simulating a six-sided die and a 20-sided die. To get started you should
import the GameplayKit framework like this:

import GameplayKit

You can then create a virtual six-sided die and "roll" it like this:

let d6 = GKRandomDistribution.d6()

d6.nextInt()

For a 20-sided die, do this:

let d20 = GKRandomDistribution.d20()

d20.nextInt()

If you want to set your own range for the virtual die, there's a special constructor just for you:

let massiveDie = GKRandomDistribution(lowestValue: 1, highestValue:
556)

massiveDie.nextInt()

For more information see Hacking with Swift tutorial 35.

How to run SKActions in a group
Availability: iOS 7.0 or later.

SpriteKit action groups let you run multiple SpriteKit actions simultaneously. The grouped

www.hackingwithswift.com 1075

actions become a new action that can go into a sequence, and SpriteKit automatically
ensures all actions in a group finish before the sequence continues.

The code below makes a spaceship shrink down to 10% of its original size while fading out,
with both actions happening at the same time:

let sprite = SKSpriteNode(imageNamed:"Spaceship")

let scale = SKAction.scaleTo(0.1, duration: 0.5)

let fade = SKAction.fadeOutWithDuration(0.5)

let group = SKAction.group([scale, fade])

sprite.runAction(group)

For more information see Hacking with Swift tutorial 17.

How to run SKActions in a sequence
Availability: iOS 7.0 or later.

One of the great features of SpriteKit's actions is that they can be chained together using
action sequences. SpriteKit automatically ensures each action finishes before the next one
begins – all you need to do is create the actions then put them into an array.

The example below makes a spaceship shrink down to 10% of its original size before fading
out:

let sprite = SKSpriteNode(imageNamed:"Spaceship")

let scale = SKAction.scaleTo(0.1, duration: 0.5)

let fade = SKAction.fadeOutWithDuration(0.5)

let sequence = SKAction.sequence([scale, fade])

www.hackingwithswift.com 1076

sprite.runAction(sequence)

For more information see Hacking with Swift tutorial 14.

How to stop an SKPhysicsBody responding to physics using
its dynamic property
Availability: iOS 7.0 or later.

Enabling physics in SpriteKit is just one line of code, but sometimes you want your physics
to be a little more nuanced. For example, your player might have circle physics and should
respond to gravity, whereas walls might have rectangle physics and not respond to gravity –
they are there to be bounced off, but nothing more.

This problem is solved in SpriteKit by using the dynamic property. It's true by default, which
means that your objects respond to the world's environment as you would expect, but if you
set it to be false then you get an object that has active physics but doesn't move as a result
of those physics.

Here's an example:

let wall = SKSpriteNode(imageNamed: "wall")

wall.position = CGPoint(x: 512, y: 0)

wall.physicsBody = SKPhysicsBody(circleOfRadius: wall.size.width /
2.0)

wall.physicsBody!.dynamic = false

addChild(wall)

For more information see Hacking with Swift tutorial 11.

How to write text using SKLabelNode

www.hackingwithswift.com 1077

Availability: iOS 7.0 or later.

The SKLabelNode class is a fast and efficient way to draw text in SpriteKit games. To use it,
first create a property in your game scene:

var scoreLabel: SKLabelNode!

Now create the label node by telling it want font use, its alignment, and also an initial text
value if you want one. This code creates a label node using the Chalkduster font, places it in
the top-right corner of the screen, and gives it the initial text "Score: 0":

scoreLabel = SKLabelNode(fontNamed: "Chalkduster")

scoreLabel.text = "Score: 0"

scoreLabel.horizontalAlignmentMode = .Right

scoreLabel.position = CGPoint(x: 980, y: 700)

addChild(scoreLabel)

With that score label in place, you can now create a score integer property to store the
actual number of a player's score, then use a property observer to modify the label whenever
the score changes:

var score: Int = 0 {

 didSet {

 scoreLabel.text = "Score: \(score)"

 }

}

For more information see Hacking with Swift tutorial 11.

www.hackingwithswift.com 1078

locationInNode(): How to find a touch's location in a node
Availability: iOS 7.0 or later.

It's just one line of code to find where the user touched the screen when you're using
SpritKit, and that one line can even be used to calculative relative positions of a touch
compared to any node in your game.

To get started, you should implement touchesBegan() in your SpriteKit node or scene. This
will get called when the user starts touching the node, regardless of where on the node. To
locate the exact position, call locationInNode() on any UITouch, passing in the node you
want to check, like this:

override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 if let touch = touches.first {

 let location = touch.locationInNode(self)

 print(location)

 }

}

For more information see Hacking with Swift tutorial 11.

presentScene(): How to change SKScene with a transition
Availability: iOS 7.0 or later.

You can change between SpriteKit scenes by calling the presentScene() method on your
SKView. This can be called either just with a new scene, or with a new scene and a transition
animation to use, depending on the effect you want. Here's an example with a transition:

let scene = NewGameScene(fileNamed: "NewGameScene")!

let transition = SKTransition.moveInWithDirection(.Right, duration:

www.hackingwithswift.com 1079

1)

self.view?.presentScene(scene, transition: transition)

There are several beautiful transition types you can try, with the
SKTransition.doorwayWithDuration(1) transition looking particularly neat.

For more information see Hacking with Swift tutorial 29.

Language
How to check for valid method input using the guard keyword
Availability: iOS 7.0 or later.

The guard keyword was introduced in Swift to signal early returns, which is a coding
technique that effectively means "make sure all these things are set up before I start doing
the real work in my function, others bail out."

For example, if you want to ensure a submit() is only ever run if an existing name property
has a value, you would do this:

func submit() {

 guard name != nil else { return }

 doImportantWork(name)

}

This might seem like a job for a regular if statement, and to be fair that's correct – the two are
very similar. The advantage with guard, however, is that it makes your intention clear: these

www.hackingwithswift.com 1080

values need to be set up correctly before continuing.

The guard keyword is also helpful because it can be used to check and unwrap optionals
that remain unwrapped until the end of the method. For example:

func submit() {

 guard let unwrappedName = name else { return }

 doImportantWork(unwrappedName)

}

So, if name is nil the method will return; otherwise, it will be safely unwrapped into
unwrappedName.

How to convert a float to a CGFloat
Availability: iOS 7.0 or later.

The Float and CGFloat data types sound so similar you might think they were identical, but
they aren't: CGFloat is flexible in that its precision adapts to the type of device it's running
on, whereas Float is always a fixed precision. Thus, you never lose precision converting from
Float to CGFloat, whereas you might going the other way.

To convert, just use the CGFloat constructor, like this:

let myCGFloat = CGFloat(myFloat)

How to convert a float to an int
Availability: iOS 7.0 or later.

You can convert between a Float and an Int just by using the integer's constructor, like this:

www.hackingwithswift.com 1081

let myFloat: Float = 10.756

let myInt = Int(myFloat)

Note that when you do this, your number will automatically be rounded downwards. In the
example above, the integer will be 10, not 11.

How to convert a string to a double
Availability: iOS 7.0 or later.

Swift strings don't have a built-in way to convert to a Double, but their NSString
counterparts do. To convert between strings and doubles, just do this:

let myString = "556"

let myFloat = (myString as NSString).doubleValue

How to convert a string to a float
Availability: iOS 7.0 or later.

There are several ways to convert between a string and a Float, but the easiest way is to use
NSString as an intermediate because that comes with several helpers built right in:

let myString = "556"

let myFloat = (myString as NSString).floatValue

www.hackingwithswift.com 1082

How to convert a string to an NSString
Availability: iOS 7.0 or later.

When Swift originally launched, NSString (older iOS strings) and native Swift strings were
completely interchangeable, as were NSArray and Swift arrays, plus NSDictionary and Swift
dictionaries. This got changed in Swift 1.2 so that you need to explicitly cast between these
data types, and this remains the same in Swift 2.0.

So, to cast between Swift strings and NSString, you need to do a simple typecast like this:

let str = "Hello"

let otherStr = str as NSString

Note that you don't need to force the typecast because the two data types are still
interoperable.

How to convert a string to an int
Availability: iOS 7.0 or later.

If you have an integer hiding inside a string, you can convert between the two just by using
the integer's constructor, like this:

let myString = "556"

let myInt = Int(myString)

As with other data types (Float and Double) you can also convert by using NSString:

let myString = "556"

let myInt = (myString as NSString).integerValue

www.hackingwithswift.com 1083

How to convert an int to a float
Availability: iOS 7.0 or later.

Swift's Float data type has a built-in constructor that can convert from integers with no extra
work from you. For example, to convert the integer 556 into its Float equivalent, you'd use
this:

let myInt = 556

let myFloat = Float(myInt)

How to convert an int to a string
Availability: iOS 7.0 or later.

Swift's string interpolation means you can convert all sorts of data – including integers – to a
string in just one line of code:

let str = "\(myInt)"

However, the more common way is just to use the string constructor, like this:

let str = String(myInt)

www.hackingwithswift.com 1084

How to create an Objective C bridging header to use code in
Swift
Availability: iOS 7.0 or later.

If you want to use Objective-C code in your Swift app – and let's face it, that's going to
happen quite a lot! – then you need to create a bridging header that allows your Swift code
to work with your Objective-C code.

To create an Objective-C bridging header file, all you need to do is drag some Objective-C
code into your Swift project – Xcode should prompt you with the message "Would you like to
configure an Objective-C bridging header?" Click "Creating Bridging Header" and you'll see
a file called YourProjectName-Bridging-Header.h appear in your project.

But that's only half the problem: Xcode has created the bridging header and modified your
build settings so that it gets used, but it hasn't actually put anything into it. If you want to
start using your Objective-C code in Swift, you need to add import lines to that bridging
header file, like this:

#import "YourFile.h"

You can add as many of these as you want, and indeed you'll want to import all the
Objective-C code you want to use in Swift.

How to delay execution of code using the defer keyword
Availability: iOS 7.0 or later.

The defer keyword is new in Swift 2 and lets you schedule some code to be run at a later
date. That later date is when your code exits its current scope, which might be when a
function returns or at the end of a loop, for example.

If you've used other programming languages, defer will seem similar to try/finally. Any code
you defer will run no matter what, even if you throw an exception.

www.hackingwithswift.com 1085

In the example code below, the closeFile() function will get called no matter how the
writeLog() function ends:

func writeLog() {

 let file = openFile()

 defer { closeFile(file) }

 let hardwareStatus = fetchHardwareStatus()

 guard hardwareStatus != "disaster" else { return }

 file.write(hardwareStatus)

 let softwareStatus = fetchSoftwareStatus()

 guard softwareStatus != "disaster" else { return }

 file.write(softwareStatus)

 let networkStatus = fetchNetworkStatus()

 guard neworkStatus != "disaster" else { return }

 file.write(networkStatus)

}

How to find the maximum of three numbers
Availability: iOS 2.0 or later.

The easiest way to find the maximum of three numbers is to use the max() function twice:
once with your first two numbers, and again with your third number and the result of the first
call. Here's an example:

let first = 10

let second = 15

www.hackingwithswift.com 1086

let second = 15

let third = 18

let largest = max(max(first, second), third)

How to find the maximum of two numbers
Availability: iOS 2.0 or later.

To find the largest of any two integers, use the max() function like this:

let first = 10

let second = 15

let largest = max(first, second)

This also works with floating-point numbers, as long as both numbers are floats – you can't
mix data types.

How to find the minimum of three numbers
Availability: iOS 2.0 or later.

You can find the minimum of three numbers by using the min() function twice. This function
takes either two integers or two floating-point numbers, but can't accept mixed types. Here's
an example:

let first = 10

let second = 15

let third = 18

www.hackingwithswift.com 1087

let smallest = min(min(first, second), third)

How to find the minimum of two numbers
Availability: iOS 2.0 or later.

To find the minimum of two numbers, either both integer or both floating point (not mixed!),
use the min() function. For example:

let first = 10

let second = 15

let smallest = min(first, second)

How to force your program to crash with assert()
Availability: iOS 7.0 or later.

This might seem like a strange topic – after all, why would anyone want their program to
crash? Well, the answer is two-fold.

First, if something has gone wrong that leaves your program in an unsafe state, continuing
might mean corrupting user data.

Second, if you're debugging your app (i.e., it's still in development), having your app refuse
to continue if a serious problem is found is a huge advantage and a very common way to
spot problems.

Swift lets you force an app crash using the assert() function. This takes two parameters: a
condition to check, and a message to print if the assertion fails. Helpfully, any calls to

www.hackingwithswift.com 1088

assert() are ignored when your app is compiled in release mode (i.e., for the App Store),
which means these checks have no impact on your code's final performance.

Here are two examples of assert() being used:

assert(1 == 1, "Maths failure!")

assert(1 == 2, "Maths failure!")

The first one asserts that 1 is equal to 1, which is clearly true, so nothing will happen. The
second one asserts that 1 is equal to 2, which is clearly false, so that assertion will fail: your
app will halt, and the message "Maths failure!" will be printed out to help you identify the
problem.

Because assertions are ignored in release builds, you don't need to worry about running
expensive checks in your assertions. For example:

assert(myReallySlowMethod() == false, "The slow method returned
false, which is a bad thing!")

In release builds, that code will never be run, so you won't see any performance impact.

How to print debug text in Swift
Availability: iOS 7.0 or later.

You can write text to the Xcode debug console using the print() function in Swift. In older
versions of Swift this was named println(), but this changed in Xcode 7 and Swift 2.

How to unwrap an optional in Swift
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1089

Optional values are a central concept in Swift, although admittedly they can be a little hard to
understand at first. Put simply, an optional value is one that may or may not exist, which
means Swift won't let you use it by accident – you need to either check whether it has a
value and unwrap it, or force unwrap. Of the two options the first is definitely preferable,
because it's significantly safer.

To check whether an optional has a value then unwrap it all in one, you should use if/let
syntax, like this:

// fetch an example optional string

let optionalString = fetchOptionalString()

// now unwrap it

if let unwrapped = optionalString {

 print(unwrapped)

}

In that example, the print(unwrapped) line will only be executed if optionalString has a
value. If that line is reached, you can know for sure that unwrapped has a value that you can
use, which makes that code safe.

For more information see Hacking with Swift tutorial 1.

How to use #available to check for API availability
Availability: iOS 7.0 or later.

One of my favorite Xcode 7 features is the ability to have Xcode automatically check API
availability for you, which means it will refuse to run code that is not available on the
minimum iOS version you support.

Of course, there are times when you really do need to use a newer feature, for example if you
want to use UIStackView where it's available but otherwise show a message to users asking

www.hackingwithswift.com 1090

them to upgrade. For this, Swift has #available, which lets you state that a certain block of
code should only execute on specific versions of iOS.

To use the previous example, this code checks whether the user has iOS 9.0 or later on their
device:

if #available(iOS 9, *) {

 // use UIStackView

} else {

 // show sad face emoji

}

Any code inside the // use UIStackView block can be executed as if your deployment target
were iOS 9.0.

If you want, you can mark whole functions or classes as requiring a specific iOS version by
using @available, like this:

@available(iOS 9, *)

func useStackView() {

 // use UIStackView

}

How to use compiler directives to detect the iOS Simulator
Availability: iOS 7.0 or later.

Swift makes it easy to write special code that should be executed only in the iOS Simulator.
This is helpful to test situations where the simulator and devices don't match, for example
testing the accelerometer or camera.

If you want certain code to be run only in the iOS simulator, you should use this:

www.hackingwithswift.com 1091

#if (arch(i386) || arch(x86_64))

// your code

#endif

Any code between the #if and #endif won't even exist when the app is run on devices, so it
has zero performance impact. If you want to specify alternate code that should only be run
on devices (and never on the simulator) you should use #else, like this:

func updateMotion() {

#if (arch(i386) || arch(x86_64))

 // we're on the simulator - calculate pretend movement

 if let currentTouch = lastTouchPosition {

 let diff = CGPoint(x: currentTouch.x - player.position.x, y:
currentTouch.y - player.position.y)

 physicsWorld.gravity = CGVector(dx: diff.x / 100, dy:
diff.y / 100)

 }

#else

 // we're on a device – use the accelerometer

 if let accelerometerData = motionManager.accelerometerData {

 physicsWorld.gravity = CGVector(dx:
accelerometerData.acceleration.y * -50, dy:
accelerometerData.acceleration.x * 50)

 }

#endif

}

For more information see Hacking with Swift tutorial 26.

www.hackingwithswift.com 1092

How to use try/catch in Swift to handle exceptions
Availability: iOS 7.0 or later.

The new try/catch syntax was added in Swift 2.0 to make exception handling clearer and
safer. It's made up of three parts: do starts a block of code that might fail, catch is where
execution gets transferred if any errors occur, and any function calls that might fail need to
be called using try.

Here's a working example that loads an input.txt file from the app bundle into a string:

if let filename = NSBundle.mainBundle().pathForResource("input",
ofType: "txt") {

 do {

 let str = try String(contentsOfFile: filename, usedEncoding: nil)

 print(str)

 } catch {

 print("The file could not be loaded")

 }

}

There are two other ways of using try, but neither are really recomended. The first is like this:

let str = try! String(contentsOfFile: filename, usedEncoding: nil)

Note the exclamanation mark: try!. This means "I realize this call might throw an exception,
but trust me: it never, ever will." This is useful only if you're 100% sure the call is safe. In our
example we're loading a file from the app bundle, and if that file isn't there it means our app
is corrupted, so it's OK to use here. You don't need do/catch when you use try!.

The second option is try? which means "if this call throws an exception, just return nil
instead." This is closer to the Objective C way of handling errors, which was a bit scruffy. If

www.hackingwithswift.com 1093

this is your preferred way of handling errors, then go for it! You don't need do/catch when
use try?, but you should check and unwrap the result carefully.

What are lazy variables?
Availability: iOS 7.0 or later.

It's very common in iOS to want to create complex objects only when you need them, largely
because with limited computing power at your disposal you need to avoid doing expensive
work unless it's really needed.

Swift has a mechanism built right into the language that enables just-in-time calculation of
expensive work, and it is called a lazy variable. These variables are created using a function
you specify only when that variable is first requested. If it's never requested, the function is
never run, so it does help save processing time.

I don't want to produce a complicated example because that would rather defy the point, so
instead I've built a simple (if silly!) one: imagine you want to calculate a person's age using
the Fibonacci sequence. This sequence goes 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on – each
number is calculated by adding the previous two numbers in the sequence. So if someone
was aged 8, their Fibonacci sequence age would be 21, because that's at position 8 in the
sequence.

I chose this because the most common pedagogical way to teach the Fibonacci sequence is
using a function like this one:

func fibonacci(num: Int) -> Int {

 if num < 2 {

 return num

 } else {

 return fibonacci(num - 1) + fibonacci(num - 2)

 }

}

www.hackingwithswift.com 1094

That function calls itself, which makes it a recursive function, and actually it's quite slow. If
you try to calculate the Fibonacci value of something over, say, 21, expect it to be slow in a
playground!

Anyway, we want to create a Person struct that has an age property and a fibonacciAge
property, but we don't want that second one to be evaluated unless it's actually used. So,
create this struct now:

struct Person {

 var age = 16

 lazy var fibonacciOfAge: Int = {

 return fibonacci(self.age)

 }()

}

There are five important things to note in that code:

 • The lazy property is marked as lazy var. You can't make it lazy let because lazy properties
must always be variables.
 • Because the actual value is created by evaluation, you need to declare its data type up
front. In the case of the code above, that means declaring the property as Int.
 • Once you've set your data type, you need to use an open brace ("{") to start your block of
code, then "}" to finish.
 • You need to use self inside the function. In fact, if you're using a class rather than a
structure, you should also declare [unowned self] inside your function so that you don't
create a strong reference cycle.
 • You need to end your lazy property with (), because what you're actually doing is making a
call to the function you just created.

Once that code is written, you can use it like this:

var singer = Person()

singer.fibonacciOfAge

www.hackingwithswift.com 1095

Remember, the point of lazy properties is that they are computed only when they are first
needed, after which their value is saved. This means if you create 1000 singers and never
touch their fibonacciOfAge property, your code will be lightning fast because that lazy work
is never done.

What are property observers
Availability: iOS 7.0 or later.

Property observers are Swift's way of letting you attach functionality to changes in property
values. For example, you might want to say, "whenever the player's score changes, update
this label to show their new score." Here's a basic example that prints message to the debug
console when a variable changes:

var score = 0 {

 willSet {

 print("Score is about to change to \(newValue)")

 }

 didSet {

 print("Score just changed from \(oldValue) to \(score)")

 }

}

score = 10

For more information see Hacking with Swift tutorial 1.

What are the changes in Swift 1.2?
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1096

Swift 1.2 was an interim release that fixed some early confusions and annoyances in the
language. Its changes weren't big, but they did help clean up and clarify Swift, and helped
tide us all over until the release of Swift 2.

The important changes are:

 • You can now check and unwrap multiple optionals using if/let rather than create a so-
called "pyramid of doom" with nested statements.
 • Many Objective C types that were being passed around now had correct nullability values
set. This was done by modifying Objective C then having many people scour through
existing Apple code to add new annotations.
 • Downcasting (a typecast from a higher type in your class hierarchy to a lower type) is now
done using as! and as? to mark forced downcasting and optional downcasting respectively.
 • Swift strings, arrays and dictionaries now no longer automatically typecast to NSString,
NSArray and NSDictionary.
 • A new Set data type was introduced to handle arrays where each value can appear only
once.
 • Constants can now be declared without a value, as long as they are provided with a value
before they are used.
 • Incremental build support was added, which makes it more efficient to build larger Swift
projects.

What are the changes in Swift 2.0?
Availability: iOS 7.0 or later.

Swift 2.0 introduced a lot of major language changes. You can read my full article explaining
the changes with code examples by clicking here, but here are the highlights:

 • Checked exceptions using try/catch • Automatically synthesized headers
 • The guard keyword to check input while unwrapping optionals
 • Measuring strings is now done using characters.count • Delayed code execution using
the defer keyword
 • You now get mutability warnings if you declare variables that never get changed
 • API availability checking is now built right in
 • The performSelector() family of functions is now available

www.hackingwithswift.com 1097

What does an exclamation mark mean?
Availability: iOS 7.0 or later.

Swift uses exclamation marks to signal both force unwrapping of optionals and expicitly
unwrapped optionals. The former means "I know this optional variable definitely has a value,
so let me use it directly." The latter means "this variable is going to be nil initially then will
definitely have a value afterwards, so don't make me keep unwrapping it."

Broadly speaking, using exclamation marks is frowned upon because "trust me it's safe"
isn't as good as the compiler absolutely enforcing it. That being said, it's your code: if you
know something cannot be nil (usually because if it were nil your program would explode!)
then do what works best.

For more information see Hacking with Swift tutorial 1.

What does override mean?
Availability: iOS 7.0 or later.

The override is used when you want to write your own method to replace an existing one in
a parent class. It's used commonly when you're working with UIViewControllers, because
view controllers already come with lots of methods like viewDidLoad() and
viewWillAppear(). When you want to override these default methods, you need to specify
this with the override keyword.

Now, you might be wondering why the override keyword is even needed, but it's really about
ensuring your code is safe – if you write a method and accidentally name it the same as
something that already exists, Xcode will simply refuse to build your app until you add in the
override keyword. Similarly, if you use override on a method that doesn't override
something that already exists, Xcode will refuse to build.

What does unowned mean?
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1098

Unowned variables are similar to weak variables in that they provide a way to reference data
without having ownership. However, weak variables can become nil – they are effectively
optional. In comparison, unowned variables must never be set to nil once they have been
initialized, which means you don't need to worry about unwrapping optionals.

The most common place you'll see unowned variables is with closures that declare
[unowned self] – this means "I want to reference self inside this closure but I don't want to
own it." Why unowned rather than weak? Both would work, but let's face it: if self is nil
inside a closure, something has gone wrong!

What does weak mean?
Availability: iOS 7.0 or later.

Unless you specific otherwise, all Swift properties are strong, which means they will not be
removed from RAM until whatever owns them is removed from RAM. So, if you create an
array in your view controller and you want it to stick around until the view controller is
destroyed, that's what strong does.

Weak on the other hand is there when you want to say "I want to be able to reference this
variable, but I don't mind if it goes away, so I don't want to own it." This might seem strange:
after all, where's the point in having a reference to a variable that might not be there?

Well, the answer lies in a thing called reference cycles. If object A has a strong variable
pointing at object B, and object B has a strong variable pointing at object A, neither object
would ever be deleted because they both keep each other alive.

In this situation, having one of the objects change their property to be weak would solve the
problem. For example, object A has a strong variable to object B, but object B has a weak
variable pointing at object A. This guarantees that B cannot be destroyed while A still exists,
but A can be destroyed because B doesn't have a strong variable owning it.

For more information see Hacking with Swift tutorial 1.

What is AnyObject?
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1099

This is one of those things that sounds obvious in retrospect: AnyObject is Swift's way of
saying, "I don't mind what type of object you pass in here, it could be a string, it could be a
string, it could be a number, it could be an array, or it could be a custom type you defined
yourself.

If you were wondering: the reason numbers work even though they clearly aren't objects is
because Swift silently makes them objects when they need to conform to AnyObject. Magic!

What is a CGFloat?
Availability: iOS 7.0 or later.

A CGFloat is a specialised form of Float that holds either 32-bits of data or 64-bits of data
depending on the platform. The CG tells you it's part of Core Graphics, and it's found
throughout UIKit, Core Graphics, Sprite Kit and many other iOS libraries.

If you have a Float or Double and need a CGFloat, you can convert it like this:

let myCGFloat = CGFloat(myDouble)

What is a closure?
Availability: iOS 7.0 or later.

If you're here because you find closures hard, that's OK: most people find closures hard. But
in truth, closures aren't actually that complicated, so I hope I can explain them to you quickly
and easily.

Here's my best, simplest definition: a closure is a kind of anonymous function that gets
stored as a variable so it can be called later on, and has the special ability to remember the
state of your program when you used it.

Some detail:

 • "Anonymous function": that is, a closure is a block of code you define, starting with { and

www.hackingwithswift.com 1100

ending with }. It's anonymous because it doesn't have a name – it doesn't need a name,
because it gets stored as a variable.
 • "Stored as a variable": yes, the closure code literally gets saved as a variable, for example,
myCode. Whoever is storing the closure (normally one of Apple's libraries) can then "call"
that variable to run your closure's code.
 • "Called later on": once your closure has been stored away by iOS, it can be called a
second later, a minute later, an hour later or never, depending on the situation. For example,
when you say "run this code when my animation completes," iOS will make sure it happens
at the right time.
 • "Remember the state of your program": if your closure references some variables that you
had created, Swift will automatically take a copy of those variables so they can be used later.
Remember, your closure can be called 20 minutes after you created it, so being able to store
the original program state is important.

The truth is that you've probably used closures without realising it. Even a simple UIView
animation call uses closures for the animations, and optionally also for the completion block.
Just think of it as a chunk of code that gets called later on, and you're most of the way there.

What is a delegate in iOS?
Availability: iOS 2.0 or later.

Delegates are extremely common in iOS development, but fortunately they are easy to
understand: a delegate is any object that should be notified when something interesting has
happened. What that "something interesting" means depends on the context: for example, a
table view's delegate gets notified when the user taps on a row, whereas a navigation
controller's delegate gets notified when the user moves between view controllers.

When you agree to be the delegate for an object, you will almost certainly need to conform to
a specific protocol, such as UITableViewDelete. These protocols will usually have some
optional methods that you can implement if you care when something happens, for example,
table views can notify you when users deselect a row, but most developers don't care. These
protocols may also have some required methods that you must implement.

For more information see Hacking with Swift tutorial 1.

What is a dictionary?

www.hackingwithswift.com 1101

Availability: iOS 7.0 or later.

A dictionary is a collection of values stored at named positions. Whereas you would access
values in an array using myArray[5], with a dictionary you use named positions such as
myDict["Paul"] or myDict["Scotland"]. You don't even need to use strings for the positions
– you can use another object if you choose, such as dates.

These named positions are called "keys", so dictionaries represent what's known as a key-
value pair: each key has exactly one value, and each can appear only once in a dictionary.

For more information see Hacking with Swift tutorial 0.

What is a double?
Availability: iOS 7.0 or later.

The Double data type is the standard Swift way of storing decimal numbers such as 3.1,
3.14159 and 16777216.333921. Whenever you create a variable or constant that holds a
number like this, Swift automatically assumes it's a Double rather than a Float, because it
has a higher precision and therefore less likely to lose valuable accuracy.

For more information see Hacking with Swift tutorial 0.

What is a float?
Availability: iOS 7.0 or later.

The Float data type stores low-precision decimal numbers such as 3.1, 3.14159 and 556.9. It
is not used that often in Swift, partly because Double is the default for these kinds of
numbers (it has a higher precision), and partly because when you come across libraries that
use regular floats they are more likely to want CGFloat instead.

For more information see Hacking with Swift tutorial 0.

What is a nib?
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1102

NIBs and XIBs are files that describe user interfaces, and are built using Interface Builder. In
fact, the acronym "NIB" comes from "NexSTEP Interface Builder", and "XIB" from "Xcode
Interface Builder". NIBs and XIBs are effectively the same thing: XIBs are newer and are used
while you're developing, whereas NIBs are what get produced when you create a build.

In modern versions of iOS and Mac OS X, NIBs and XIBs have effectively been replaced by
storyboards, although you may still meet them if you work on older projects.

What is a protocol?
Availability: iOS 2.0 or later.

A protocol is a collection of methods that describe a specific set of similar actions or
behaviors. I realise that probably didn't help much, so I'll try to rephrase in more detail: how
many rows should a table view have? How many sections? What should the section titles
be? Can the user move rows? If so, what should happen when they do?

All those questions concern a similar thing: data going into a UITableView. As a result, they
all go into a single protocol, called UITableViewDataSource. Some of the behaviors inside
that protocol are optional. For example, canEditRowAtIndexPath is optional and defaults to
true if you don't provide a value yourself.

When you work in Swift you will frequently have to make your class conform to a protocol.
This is done by adding the protocol name to your class definition, like this:

class ViewController: UIViewController, UITableViewDataSource {

When you do that – when you promise Swift that your class conforms to a protocol – you can
be darn sure it checks to make sure you're right. And that means it will refuse to build your
code if you haven't added support for all the required methods, which is a helpful security
measure.

For more information see Hacking with Swift tutorial 1.

www.hackingwithswift.com 1103

What is a selector?
Availability: iOS 7.0 or later.

Selectors are effectively the names of methods on an object or struct, and they are used to
execute some code at runtime. They were common in Objective C, but the earliest versions
of Swift didn't include some core selector functionality so their use declined for a while. As of
Swift 2 that functionality (things like performSelectorInBackground) has been restored.

In Swift, selectors are most commonly found when working with the target/action paradigm
that you find in classes such as NSTimer and UIBarButtonItem. For example, when you
create a timer you need to tell it who to notify when the timer fires (the target) and what
selector should be called (the action). The same goes for bar button items: when the button
is tapped, what selector should be called, and on what object?

What is a storyboard?
Availability: iOS 7.0 or later.

Storyboards were introduced way back in iOS 5 as a way to revamp interface design for iOS.
At the time they didn't add much in the way of features that weren't available with the older
XIBs, but in subsequent releases Apple have added helpful new features such as layout
guides that make them much more useful – and arguably indispensible since iOS 7.

All new iOS projects come with at least one storyboard ready to use: Main.storyboard. Inside
that you can create as many interfaces as you want, each representing one view controller in
your app. You can then design in segues (pronounced "segway", like the gyro-bike things)
that transition between view controllers – all without a single line of code.

There is one drawback to storyboards, and it's something you'll hit fairly quickly: if you have
more than four view controllers in your app, you'll probably find it a little cumbersome to
navigate around, particularly if you're working on a laptop. If you're working on something
important, move your view controllers around: keep them organised from the beginning,
otherwise your storyboard will soon become a nightmare!

For more information see Hacking with Swift tutorial 1.

www.hackingwithswift.com 1104

What is a struct?
Availability: iOS 7.0 or later.

Classes and structures (structs) are so similar in Swift that it's easy to get them confused at
first, but actually there are some important underlying differences:

 • A struct cannot inherit from another kind of struct, whereas classes can build on other
classes.
 • You can change the type of an object at runtime using typecasting. Structs cannot have
inheritance, so have only one type.
 • If you point two variables at the same struct, they have their own independent copy of the
data. With objects, they both point at the same variable.

That last point is particularly important: with a struct you know your data is fixed in place, like
an integer or other value. This means if you pass your struct into a function, you know it's not
going to get modified.

What is a tuple?
Availability: iOS 7.0 or later.

Tuples in Swift occupy the space between dictionaries and structures: they hold very specific
types of data (like a struct) but can be created on the fly (like dictionaries). They are
commonly used to return multiple values from a function call.

You can create a basic tuple like this:

let person = (name: "Paul", age: 35)

As you can see, it looks like an anonymous struct: you can read person.name and
person.age just like you would with a struct. But, helpfully, we haven't had to define the
struct ahead of time – this is something made to be thrown away. It also means you don't get
to conform to protocols or write methods inside your tuples, but that's OK.

Tuples can be accessed using element names ("name" and "age" above), or using a position

www.hackingwithswift.com 1105

in the tuple, e.g. 0 and 1. You don't have to give your tuple elements names if you don't want
to, but it's a good idea.

To give you a fully fledged tuple example, here's a function that splits a name like "Paul
Hudson" in two, and returns a tuple containing the first name (Paul) and the last name
(Hudson). Obviously this just a trivial example – it makes no attempt to cater for middle
names, honorifics, or languages where family names come first!

func splitName(name: String) -> (firstName: String, lastName: String)
{

 let split = name.componentsSeparatedByString(" ")

 return (split[0], split[1])

}

let split = splitName("Paul Hudson")

split.0

split.1

split.firstName

split.lastName

As you can see, the return value from that function is (firstName: String, lastName: String),
which is a tuple with named elements. Those elements then get accessed using split.0, split.
1, split.firstName and split.lastName.

What is an optional value in Swift?
Availability: iOS 7.0 or later.

Swift optionals are one of the most confusing parts of the language for beginners, but
actually are fairly easy to understand. Put simply, if I declare a variable as an integer, that
means it must hold a number. That number might be 0, 1, -1, 159, -758119, or whatever, but
it's definitely a number. This works great for telling me, for example, where in an array a
certain element can be found.

www.hackingwithswift.com 1106

But what happens if I ask for the position of an element that doesn't exist in an array? Clearly
returning 0 or any positive number isn't helpful, because you wouldn't be able to tell whether
0 meant "not found" or meant "found at the first position in an array." That's where optional
values come in: an optional data type might have a value (0, 1, -1, etc) or might have no
value at all.

Being able to say "has no value" for any kind of data is really important, and it's baked right
into the core of Swift. You see, by default Swift won't let you work directly with optional
values, because trying to work on data that isn't there causes a crash – imagine trying to
uppercase someone's name when they haven't entered it yet. So, Swift forces you to check
and unwrap optionals safely: if the optional has a value do something with it, otherwise do
something else.

For more information see Hacking with Swift tutorial 1.

What is copy on write?
Availability: iOS 7.0 or later.

Copy on write is a common computing technique that helps boost performance when
copying structures. To give you an example, imagine an array with 1000 things inside it: if
you copied that array into another variable, Swift would have to copy all 1000 elements even
if the two arrays ended up being the same.

This problem is solved using copy on write: when you point two variables at the same array
they both point to the same underlying data. Swift promises that structs like arrays and
dictionaries are copied as values, like numbers, so having two variables point to the same
data might seem to contradict that. The solution is simple but clever: if you modify the
second variable, Swift takes a full copy at that point so that only the second variable is
modified - the first isn't changed.

So, by delaying the copy operation until it's actually needed, Swift can ensure that no wasted
work is done.

Warning: copy on write is a feature specifically added to Swift arrays and dictionaries; you
don't get it for free in your own data types.

www.hackingwithswift.com 1107

What is whole module optimization?
Availability: iOS 7.0 or later.

Whole module optimization is a compiler pass that can add significant performance gains,
and so it's always worth enabling when doing a release build of your app for the App Store.
How it works is quite simple: when Swift builds the final version of your app it combines all
your source files together and can evaluate the whole structure of your program at once. This
lets it make extra optimizations that would be impossible before, when every file was
optimized individually.

What's the difference between let and var?
Availability: iOS 7 or later.

Swift lets you create both variables and constants as ways to reference your data, but there's
a strong push (even Xcode warnings!) if you create things as variables then never change
them. To make a constant, use let like this:

let x = 10

To make a variable, use var like this:

var x = 10

The reason Swift strongly encourages you to use constants wherever possible is because it's
safer: if you say "this value will never change," then Swift will refuse to let you change it even
by accident. It also opens the possibility of compiler optimizations if the system knows
certain data will not change.

For more information see Hacking with Swift tutorial 1.

www.hackingwithswift.com 1108

Libraries
How to get a Cover Flow effect on iOS
Availability: iOS 5.0 or later.

You can get an instant Cover Flow effect on iOS by using the marvellous and free iCarousel
library. You can download it from https://github.com/nicklockwood/iCarousel and drop it
into your Xcode project fairly easily by adding a bridging header (it's written in Objective C).

If you haven't added Objective C code to a Swift project before, follow these steps:

 • Download iCarousel and unzip it
 • Go into the folder you unzipped, open its iCarousel subfolder, then select iCarousel.h and
iCarousel.m and drag them into your project navigation – that's the left pane in Xcode. Just
beloe Info.plist is fine.
 • Check "Copy items if needed" then click Finish.
 • Xcode will prompt you with the message "Would you like to configure an Objective-C
bridging header?" Click "Create Bridging Header"
 • You should see a new file in your project, named YourProjectName-Bridging-Header.h.
 • Add this line to the file: #import "iCarousel.h"
Once you've added iCarousel to your project you can start using it. Here's a complete, albeit
simplified, example:

override func viewDidLoad() {

 super.viewDidLoad()

 let carousel = iCarousel(frame: CGRect(x: 0, y: 0, width: 300,
height: 200))

 carousel.dataSource = self

 carousel.type = .CoverFlow

 view.addSubview(carousel)

}

www.hackingwithswift.com 1109

}

func numberOfItemsInCarousel(carousel: iCarousel) -> Int {

 return 10

}

func carousel(carousel: iCarousel, viewForItemAtIndex index: Int,
reusingView view: UIView?) -> UIView {

 let imageView: UIImageView

 if view != nil {

 imageView = view as! UIImageView

 } else {

 imageView = UIImageView(frame: CGRect(x: 0, y: 0, width: 128,
height: 128))

 }

 imageView.image = UIImage(named: "example")

 return imageView

}

That example loads the same image for all 10 carousel slides, so you'll need to change that
to load data from your app.

If you have the time, do check out the other carousel types that iCarousel offers – they're
quite remarkable!

How to make empty UITableViews look more attractive using
DZNEmptyDataSet
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1110

If you use table views or collection views and you want to take one simple step to make your
app both more attractive and more user-friendly, let me tell you what the pros do: we use
DZNEmptyDataSet. This simple, free, open source library is designed to handle the case
when your data source is empty by showing some prompt text, and optionally also a button
or an image.

What I love about this library is that it's so astonishingly simple, and it even uses
NSAttributedString so you can provide custom formatting.

First things first: go here and click Download Zip to get the source code to
DZNEmptyDataSet. Now unzip it, then look inside its Source folder for two files:
UIScrollView+EmptyDataSet.h and UIScrollView+EmptyDataSet.m.

Drag these into your Xcode project, and Xcode should prompt you with the message "Would
you like to configure an Objective-C bridging header?" Click "Creating Bridging Header" and
you'll see a file called YourProjectName-Bridging-Header.h appear in your project. Open
that file for editing in Xcode and give it this text:

#import "UIScrollView+EmptyDataSet.h"

This is required because DZNEmptyDataSet is written in Objective-C, so these steps are
required to make it available to use in Swift.

Next, tell Swift that your current table view controller (or collection view controller) conforms
to the DZNEmptyDataSetSource and DZNEmptyDataSetDelegate protocols like this:

class MasterViewController: UITableViewController,
DZNEmptyDataSetSource, DZNEmptyDataSetDelegate {

You then need to add these three lines of code to your viewDidLoad() method:

tableView.emptyDataSetSource = self

tableView.emptyDataSetDelegate = self

tableView.tableFooterView = UIView()

www.hackingwithswift.com 1111

tableView.tableFooterView = UIView()

The first two lines set your code up ready to provide various DZNEmptyDataSet elements;
the third one is just there to make your interface cleaner.

One of the great things about DZNEmptyDataSet is that you only need to provide what you
want. This means you can provide just a heading, or perhaps a heading and an image, or a
heading, a description, an image and even a button. Even better, the button is made for you:
all you need to do is tell DZNEmptyDataSet what its title should be.

The example code below sets up a title, a description, an image and a button, and even
provides a response to the button being tapped. Remember: you don't need all these, just
the ones you want to use in your app.

func titleForEmptyDataSet(scrollView: UIScrollView!) ->
NSAttributedString! {

 let str = "Welcome"

 let attrs = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleHeadline)]

 return NSAttributedString(string: str, attributes: attrs)

}

func descriptionForEmptyDataSet(scrollView: UIScrollView!) ->
NSAttributedString! {

 let str = "Tap the button below to add your first grokkleglob."

 let attrs = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleBody)]

 return NSAttributedString(string: str, attributes: attrs)

}

func imageForEmptyDataSet(scrollView: UIScrollView!) -> UIImage! {

 return UIImage(named: "taylor-swift")

}

www.hackingwithswift.com 1112

func buttonTitleForEmptyDataSet(scrollView: UIScrollView!, forState
state: UIControlState) -> NSAttributedString! {

 let str = "Add Grokkleglob"

 let attrs = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleCallout)]

 return NSAttributedString(string: str, attributes: attrs)

}

func emptyDataSetDidTapButton(scrollView: UIScrollView!) {

 let ac = UIAlertController(title: "Button tapped!", message: nil,
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "Hurray", style: .Default,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

}

How to parse JSON using SwiftyJSON
Availability: iOS 7.0 or later.

SwiftyJSON is a super-simplified JSON parsing library that gives you clearer syntax than the
built-in iOS libraries, and better yet it's completely free. You can download it from here but
at the time of writing its Xcode 7 / Swift 2 support was kept in a separate branch – if that's
still the case when you click that link, try downloading from here instead.

Unzip the file you downloaded, then look in its Source directory and drag SwiftyJSON.swift
into your Xcode project. To use SwiftyJSON, you need to convert your JSON string into an
NSData object, then send it in for parsing. Once that's done, you simply request data in the
format you want, and (here's the awesome bit) SwiftyJSON is guaranteed to return
something.That "something" is going to be your data, if all things are in good shape. But if
you requested the wrong thing (either with a typo, or because you didn't understand your
JSON structure correctly) or if the JSON has changed, SwiftyJSON will just return a default
value instead.

www.hackingwithswift.com 1113

To get you started, here is some example JSON:

let json = "{ \"people\": [{ \"firstName\": \"Paul\", \"lastName\":
\"Hudson\", \"isAlive\": true }, { \"firstName\": \"Angela\",
\"lastName\": \"Merkel\", \"isAlive\": true }, { \"firstName\":
\"George\", \"lastName\": \"Washington\", \"isAlive\": false }] }";

That contains an array of three people, each of which have a first name, a last name, and an
"is alive" status. To parse that using SwiftyJSON and print out all the first names, here's the
code:

if let data = json.dataUsingEncoding(NSUTF8StringEncoding) {

 let json = JSON(data: data)

 for item in json["people"].arrayValue {

 print(item["firstName"].stringValue)

 }

}

It's the arrayValue and stringValue properties that do all the magic: the first one returns the
array of people or an empty array if the "people" element didn't exist, and the second one
returns the "firstName" property of a person, or an empty string if it wasn't set. So, no matter
what happens, that code will work, which means it's easy to write and safe to run.

Sometimes JSON has quite deeply nested dictionaries, but that's OK: SwiftyJSON can
navigate through multiple levels in one call, and if any one level fails you'll still get back your
default value. For example, if you have JSON like this:

{

 "metadata":{

 "responseInfo":{

 "status":200,

www.hackingwithswift.com 1114

 "status":200,

 "developerMessage":"OK",

 }

 }

}

You might want to check that the status code is 200 before continuing. To do that, just read
the "metaData", "responseInfo" and "status" values all at once, and ask SwiftyJSON for its
intValue – you'll either get the correct number (200) or 0 if any of those values don't exist.
Like this:

if json["metadata"]["responseInfo"]["status"].intValue == 200 {

 // we're OK to parse!

}

When Swift 1.2 came out with its smarter ability to do optional unwrapping, some people
thought SwiftyJSON was dead in the water. Those people must never have used SwiftyJSON
because it does so much more than unwrap things safely – have fun!

For more information see Hacking with Swift tutorial 7.

Location
How to add a button to an MKMapView annotation
Availability: iOS 2.0 or later.

The built-in MKPinAnnotationView annotation view has a rightCalloutAccessoryView
property that can be set to any kind of UIView, including buttons. The button doesn't need to

www.hackingwithswift.com 1115

have an action attached to it, because there's a separate method that gets called when it's
tapped.

First up, here's how you'd create a button inside an annotation view:

let btn = UIButton(type: .DetailDisclosure)

annotationView.rightCalloutAccessoryView = btn

For context, here's a complete implementation of viewForAnnotation that uses a button.
This is taken from project 19 of Hacking with Swift, where I created a class called Capital
that implemented the MKAnnotation protocol – you'll need to adjust this for your own
annotation type:

func mapView(mapView: MKMapView, viewForAnnotation annotation:
MKAnnotation) -> MKAnnotationView? {

 let identifier = "Capital"

 if annotation.isKindOfClass(Capital.self) {

 if let annotationView =
mapView.dequeueReusableAnnotationViewWithIdentifier(identifier) {

 annotationView.annotation = annotation

 return annotationView

 } else {

 let annotationView = MKPinAnnotationView(annotation:annotation,
reuseIdentifier:identifier)

 annotationView.enabled = true

 annotationView.canShowCallout = true

 let btn = UIButton(type: .DetailDisclosure)

 annotationView.rightCalloutAccessoryView = btn

 return annotationView

 }

www.hackingwithswift.com 1116

 }

 }

 return nil

}

When it comes to detecting taps on your button, implement the
calloutAccessoryControlTapped method. This tells you the annotation view that was
tapped (from which you can pull out the annotation), the control that was tapped (in our case
it's a button), and also the map view the whole thing belongs to. Here's an example:

func mapView(mapView: MKMapView, annotationView view:
MKAnnotationView, calloutAccessoryControlTapped control: UIControl) {

 let capital = view.annotation as! Capital

 let placeName = capital.title

 let placeInfo = capital.info

 let ac = UIAlertController(title: placeName, message: placeInfo,
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

}

For more information see Hacking with Swift tutorial 19.

How to add an MKMapView using MapKit
Availability: iOS 2.0 or later.

Map views are pretty easy in iOS, largely because they are baked right into Interface Builder.
That's right: open your storyboard, drag a map view into your view, and you're already most
of the way there! But there is one further thing to do, which is where people get confused: by

www.hackingwithswift.com 1117

default, the map framework won't actually be loaded when your app is run, which will make
your app crash when it tries to show the map view.

The solution is simple: go to your project navigation, choose the Capabilities tab, then look
for the "Maps" item and set it to be On. That's it!

For more information see Hacking with Swift tutorial 19.

How to detect iBeacons
Availability: iOS 7.0 or later.

Detecting iBeacons requires a number of steps. But first you need to decide whether you
want to detect beacons only when your app is running, or whether you want beacons to be
detected even if your app isn't in the background.

Have you decided? Good, because you need to set one of two keys in your Info.plist
depending on your choice. If you want to detect beacons only when your app is running, add
the key NSLocationWhenInUseUsageDescription and a short string explaining how you'll
use the location, e.g. "We want to detect where you are in our store."

If you want the app to detect beacons even when it isn't running (a feat accomplished by
handing control of scanning over to the OS), you should use the
NSLocationAlwaysUsageDescription key instead.

With that done, we can start to scan for beacons. Open your class in Xcode (it could be a
view controller, but it doesn't have to be), then import the Core Location framework like this:

import CoreLocation

Now tell Swift that your class conforms to the CLLocationManagerDelegate protocol so
that you can start to receive location updates. If you're using a view controller subclass, your
code will look something like this:

class ViewController: UIViewController, CLLocationManagerDelegate {

www.hackingwithswift.com 1118

iBeacon tracking is done using the CLLocationManager class, which is also responsible for
requesting location permission from users. You need to create a property for this in your
class so that you can store the active location manager, so add this:

var locationManager: CLLocationManager!

If you're using a view controller, you'll probably want to initialize this property in
viewDidLoad(), like this:

override func viewDidLoad() {

 super.viewDidLoad()

 locationManager = CLLocationManager()

 locationManager.delegate = self

 locationManager.requestAlwaysAuthorization()

}

If you're using another type of class, you should amend that appropriately. Note that that
calls requestAlwaysAuthorization(), which is the correct method to use if you set the
NSLocationAlwaysUsageDescription Info.plist key. If you set
NSLocationWhenInUseUsageDescription instead, you should use
requestWhenInUseAuthorization() instead.

Once you request permission to use your user's location, they'll see an alert with the
message you wrote earlier. When they make a choice you'll get a delegate callback called
didChangeAuthorizationStatus, at which point you can check whether they are authorized
you or not:

func locationManager(manager: CLLocationManager!,
didChangeAuthorizationStatus status: CLAuthorizationStatus) {

 if status == .AuthorizedAlways {

www.hackingwithswift.com 1119

 if status == .AuthorizedAlways {

 if
CLLocationManager.isMonitoringAvailableForClass(CLBeaconRegion.self)
{

 if CLLocationManager.isRangingAvailable() {

 startScanning()

 }

 }

 }

}

Don't worry, we haven't written the startScanning() method yet. If you're using "when in
use" mode you should check for .AuthorizedWhenInUse rather than .AuthorizedAlways.

Once you've been authorized to scan for iBeacons, you can create CLBeaconRegion
objects and pass them to the location manager. Each CLBeaconRegion is uniquely
identified by a long number (it's UUID), and optionally also major and minor numbers. As well
as monitoring for a beacon's existence, we're also going to ask iOS to range the beacon for
us – i.e., tell us how close it thinks we are.

Here's the code:

func startScanning() {

 let uuid = NSUUID(UUIDString: "5A4BCFCE-174E-4BAC-
A814-092E77F6B7E5")

 let beaconRegion = CLBeaconRegion(proximityUUID: uuid, major:
123, minor: 456, identifier: "MyBeacon")

 locationManager.startMonitoringForRegion(beaconRegion)

 locationManager.startRangingBeaconsInRegion(beaconRegion)

}

www.hackingwithswift.com 1120

Once you're ranging for beacons, you'll get a delegate callback called didRangeBeacons
every second or so, at which point you can read a beacon's distance using its proximity
value and take appropriate action.

For example, we can make our view change color depending on how far away an iBeacon is
with this code:

func locationManager(manager: CLLocationManager!, didRangeBeacons
beacons: [AnyObject]!, inRegion region: CLBeaconRegion!) {

 if beacons.count > 0 {

 let beacon = beacons[0] as! CLBeacon

 updateDistance(beacon.proximity)

 } else {

 updateDistance(.Unknown)

 }

}

func updateDistance(distance: CLProximity) {

 UIView.animateWithDuration(0.8) {

 switch distance {

 case .Unknown:

 self.view.backgroundColor = UIColor.grayColor()

 case .Far:

 self.view.backgroundColor = UIColor.blueColor()

 case .Near:

 self.view.backgroundColor = UIColor.orangeColor()

 case .Immediate:

 self.view.backgroundColor = UIColor.redColor()

 }

www.hackingwithswift.com 1121

 }

 }

}

For more information see Hacking with Swift tutorial 22.

How to find directions using MKMapView and
MKDirectionsRequest
Availability: iOS 6.0 or later.

MapKit is great for letting users navigate from place to place, but also makes it easy for you
to plot directions from one place to another. You just tell iOS where you're starting from,
where you're going, as well as how you're travelling (by car, foot, or mass transit), and it will
find routes for you.

First, make sure you have a map view in your app, and have the Maps entitlement enabled.
Now add this code:

import MapKit

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var mapView: MKMapView!

 override func viewDidLoad() {

 super.viewDidLoad()

 let request = MKDirectionsRequest()

 request.source = MKMapItem(placemark: MKPlacemark(coordinate:
CLLocationCoordinate2D(latitude: 40.7127, longitude: -74.0059),
addressDictionary: nil))

 request.destination = MKMapItem(placemark:

www.hackingwithswift.com 1122

 request.destination = MKMapItem(placemark:
MKPlacemark(coordinate: CLLocationCoordinate2D(latitude: 37.783333,
longitude: -122.416667), addressDictionary: nil))

 request.requestsAlternateRoutes = true

 request.transportType = .Automobile

 let directions = MKDirections(request: request)

 directions.calculateDirectionsWithCompletionHandler { [unowned
self] response, error in

 guard let unwrappedResponse = response else { return }

 for route in unwrappedResponse.routes {

 self.mapView.addOverlay(route.polyline)

self.mapView.setVisibleMapRect(route.polyline.boundingMapRect,
animated: true)

 }

 }

 }

 func mapView(mapView: MKMapView, rendererForOverlay overlay:
MKOverlay) -> MKOverlayRenderer {

 let renderer = MKPolylineRenderer(polyline: overlay as!
MKPolyline)

 renderer.strokeColor = UIColor.blueColor()

 return renderer

 }

}

That example requests driving directions between New York and San Francisco. It asks for
alternate routes if they exist (spoiler: they do), then sets up a closure to run when the
directions come back that adds them as overlays to the map. To make the overlays draw,

www.hackingwithswift.com 1123

you need to implement the rendererForOverlay method, but that's just three lines as you
can see.

Note: because I request alternative routes if they exist, I loop through the array of returned
routes to add them all to the map. The setVisibleMapRect() method is called once for each
route, but fortunately that isn't a problem as all routes have the same start and end location!

How to make an iPhone transmit an iBeacon
Availability: iOS 7.0 or later.

iOS 7.0 introduced not only the ability to detect iBeacons, but also the ability to create
iBeacons – for iPhones and iPads to broadcast their own beacon signal that can then be
detected by other devices. To make this work, you add these two imports:

import CoreBluetooth

import CoreLocation

Now make your view controller (or other class) conform to the
CBPeripheralManagerDelegate protocol, like this:

class ViewController: UIViewController, CBPeripheralManagerDelegate {

To make your beacon work, you need to create three properties: the beacon itself, plus two
Bluetooth properties that store configuration and management information. Add these three
now:

var localBeacon: CLBeaconRegion!

var beaconPeripheralData: NSDictionary!

var peripheralManager: CBPeripheralManager!

www.hackingwithswift.com 1124

Finally the code: here are three functions you can use to add local beacons to your app. The
first one creates the beacon and starts broadcasting, the second one stops the beacon, and
the third one acts as an intermediary between your app and the iOS Bluetooth stack:

func initLocalBeacon() {

 if localBeacon != nil {

 stopLocalBeacon()

 }

 let localBeaconUUID = "5A4BCFCE-174E-4BAC-A814-092E77F6B7E5"

 let localBeaconMajor: CLBeaconMajorValue = 123

 let localBeaconMinor: CLBeaconMinorValue = 456

 let uuid = NSUUID(UUIDString: localBeaconUUID)!

 localBeacon = CLBeaconRegion(proximityUUID: uuid, major:
localBeaconMajor, minor: localBeaconMinor, identifier: "Your private
identifer here")

 beaconPeripheralData =
localBeacon.peripheralDataWithMeasuredPower(nil)

 peripheralManager = CBPeripheralManager(delegate: self, queue: nil,
options: nil)

}

func stopLocalBeacon() {

 peripheralManager.stopAdvertising()

 peripheralManager = nil

 beaconPeripheralData = nil

 localBeacon = nil

}

func peripheralManagerDidUpdateState(peripheral: CBPeripheralManager)

www.hackingwithswift.com 1125

{

 if peripheral.state == .PoweredOn {

 peripheralManager.startAdvertising(beaconPeripheralData as!
[String: AnyObject]!)

 } else if peripheral.state == .PoweredOff {

 peripheralManager.stopAdvertising()

 }

}

How to request a user's location only once using
requestLocation
Availability: iOS 9.0 or later.

iOS 9.0 introduces a simple way to request a user's location just once, and it's called
requestLocation(). Calling this method returns immediately (meaning that your code carries
on executing) but when iOS has managed (or failed) to get a fix on the user's location you will
be told. Below is a complete example:

import CoreLocation

import UIKit

class ViewController: UIViewController, CLLocationManagerDelegate {

 let manager = CLLocationManager()

 override func viewDidLoad() {

 manager.delegate = self

 manager.requestLocation()

 }

 func locationManager(manager: CLLocationManager, didUpdateLocations

www.hackingwithswift.com 1126

locations: [CLLocation]) {

 if let location = locations.first {

 print("Found user's location: \(location)")

 }

 }

 func locationManager(manager: CLLocationManager, didFailWithError
error: NSError) {

 print("Failed to find user's location: \
(error.localizedDescription)")

 }

}

Media
CIDetectorTypeFace: How to detect faces in a UIImage
Availability: iOS 5.0 or later.

Core Image has a number of feature detectors built right in, including the ability to detect
faces, eyes, mouths, smiles and even blinking in pictures. When you ask it to look for faces in
a picture, it will return you an array of all the faces it found, with each one containing face
feature details such as eye position. Here's an example:

if let inputImage = UIImage(named: "taylor-swift") {

 let ciImage = CIImage(CGImage: inputImage.CGImage!)

 let options = [CIDetectorAccuracy: CIDetectorAccuracyHigh]

 let faceDetector = CIDetector(ofType: CIDetectorTypeFace, context:
nil, options: options)

www.hackingwithswift.com 1127

nil, options: options)

 let faces = faceDetector.featuresInImage(ciImage)

 if let face = faces.first as? CIFaceFeature {

 print("Found face at \(face.bounds)")

 if face.hasLeftEyePosition {

 print("Found left eye at \(face.leftEyePosition)")

 }

 if face.hasRightEyePosition {

 print("Found right eye at \(face.rightEyePosition)")

 }

 if face.hasMouthPosition {

 print("Found mouth at \(face.mouthPosition)")

 }

 }

}

How to choose a photo from the camera roll using
UIImagePickerController
Availability: iOS 2.0 or later.

The UIImagePickerController class is a super-simple way to select and import user photos
into your app. As a bonus, it also automatically handles requesting user permission to read
the photo library, so all you need to do is be ready to respond when the user selects a photo.

First, make sure your view controller conforms to the UINavigationControllerDelegate and
UIImagePickerControllerDelegate protocols, like this:

www.hackingwithswift.com 1128

class ViewController: UIViewController,
UINavigationControllerDelegate, UIImagePickerControllerDelegate {

Now you need three more pieces of code: one to show the image picker, one to handle the
user tapping cancel, and one to handle the user selecting a photo. Here is some example
code to get you started:

func selectPicture() {

 let picker = UIImagePickerController()

 picker.allowsEditing = true

 picker.delegate = self

 presentViewController(picker, animated: true, completion: nil)

}

func imagePickerControllerDidCancel(picker: UIImagePickerController)
{

 dismissViewControllerAnimated(true, completion: nil)

}

func imagePickerController(picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [String : AnyObject]) {

 var newImage: UIImage

 if let possibleImage = info["UIImagePickerControllerEditedImage"]
as? UIImage {

 newImage = possibleImage

 } else if let possibleImage =
info["UIImagePickerControllerOriginalImage"] as? UIImage {

 newImage = possibleImage

 } else {

 return

www.hackingwithswift.com 1129

 return

 }

 // do something interesting here!

 print(newImage.size)

 dismissViewControllerAnimated(true, completion: nil)

}

To use that code in your own project, replace the call to print() with something useful – you
have the image, now what?

For more information see Hacking with Swift tutorial 10.

How to convert text to speech using AVSpeechSynthesizer,
AVSpeechUtterance and AVSpeechSynthesisVoice
Availability: iOS 7.0 or later.

If you're looking for text-to-speech conversion, it's baked right into iOS thanks to the
AVSpeechSynthesizer class and its friends. As you can tell from the "AV" part of its name,
you'll need to add AVFoundation to your project, like this:

import AVFoundation

With that done, you can speak whatever you want. For example, to say "Hello world" in a
very slow British accent, use this:

let utterance = AVSpeechUtterance(string: "Hello world")

utterance.voice = AVSpeechSynthesisVoice(language: "en-GB")

utterance.rate = 0.1

www.hackingwithswift.com 1130

let synthesizer = AVSpeechSynthesizer()

synthesizer.speakUtterance(utterance)

You can omit the rate property entirely to have a natural-speed voice, or change the
language to "en-US" (English, American accent), "en-IE" (English, Irish accent), "en-
AU" (English, Australian accent) or whichever other accents Apple chooses to add in the
future.

How to create a PDF417 barcode
Availability: iOS 9.0 or later.

PDF417 barcodes - most frequently seen on boarding passes at airports, but also seen in
digital postage stamps and other places – are built right into iOS as of iOS 9.0. This function
below accepts a string as its only parameter and returns a UIImage containing the PDF417
barcode representing that string:

func generatePDF417BarcodeFromString(string: String) -> UIImage? {

 let data = string.dataUsingEncoding(NSISOLatin1StringEncoding)

 if let filter = CIFilter(name: "CIPDF417BarcodeGenerator") {

 filter.setValue(data, forKey: "inputMessage")

 let transform = CGAffineTransformMakeScale(3, 3)

 if let output =
filter.outputImage?.imageByApplyingTransform(transform) {

 return UIImage(CIImage: output)

 }

 }

 return nil

}

www.hackingwithswift.com 1131

}

let image = generatePDF417BarcodeFromString("Hacking with Swift")

How to create a QR code
Availability: iOS 7.0 or later.

iOS has a built-in QR code generator, but it's a bit tricksy to use because it's exposed as a
Core Image filter that needs various settings to be applied. Also, it generates codes where
every bit is just one pixel across, which looks terrible if you try to stretch it inside an image
view.

So, here's a simple function that wraps up QR code generation while also scaling up the QR
code so it's a respectable size:

func generateQRCodeFromString(string: String) -> UIImage? {

 let data = string.dataUsingEncoding(NSISOLatin1StringEncoding)

 if let filter = CIFilter(name: "CIQRCodeGenerator") {

 filter.setValue(data, forKey: "inputMessage")

 filter.setValue("H", forKey: "inputCorrectionLevel")

 let transform = CGAffineTransformMakeScale(10, 10)

 if let output =
filter.outputImage?.imageByApplyingTransform(transform) {

 return UIImage(CIImage: output)

 }

 }

 return nil

}

www.hackingwithswift.com 1132

let image = generateQRCodeFromString("Hacking with Swift is the best
iOS coding tutorial I've ever read!")

How to create a barcode
Availability: iOS 8.0 or later.

You can generate a string into a traditional barcode using iOS using Core Image, but you
should make sure and convert your input string to an NSData using
NSASCIIStringEncoding to ensure compatibility. Here's a function you can use that wraps it
all up neatly, including scaling up the barcode so it's a bit bigger:

func generateBarcodeFromString(string: String) -> UIImage? {

 let data = string.dataUsingEncoding(NSASCIIStringEncoding)

 if let filter = CIFilter(name: "CICode128BarcodeGenerator") {

 filter.setValue(data, forKey: "inputMessage")

 let transform = CGAffineTransformMakeScale(3, 3)

 if let output =
filter.outputImage?.imageByApplyingTransform(transform) {

 return UIImage(CIImage: output)

 }

 }

 return nil

}

let image = generateBarcodeFromString("Hacking with Swift")

www.hackingwithswift.com 1133

How to filter images using Core Image and CIFilter
Availability: iOS 5.0 or later.

Core Image is the one of the most powerful frameworks available to iOS developers: it makes
hardware-accelerated image manipulation ridiculously easy, which means you get to add
powerful graphical effects to your apps and games with very little work.

Most of the work is done by choosing the right CIFilter. Apple's official documentation goes
into great detail about the various filters you can use, and you can also read Hacking with
Swift project 13 for a hands-on tutorial showing off various effects. The code below applies a
50% sepia tone effect to an image:

let inputImage = UIImage(named: "taylor-swift")!

let context = CIContext(options: nil)

if let currentFilter = CIFilter(name: "CISepiaTone") {

 let beginImage = CIImage(image: inputImage)

 currentFilter.setValue(beginImage, forKey: kCIInputImageKey)

 currentFilter.setValue(0.5, forKey: kCIInputIntensityKey)

 if let output = currentFilter.outputImage {

 let cgimg = context.createCGImage(output, fromRect:
output.extent)

 let processedImage = UIImage(CGImage: cgimg)

 // do something interesting with the processed image

 }

}

For more information see Hacking with Swift tutorial 13.

www.hackingwithswift.com 1134

How to highlight text to speech words being read using
AVSpeechSynthesizer
Availability: iOS 7.0 or later.

iOS has text-to-speech synthesis built right into the system, but even better is that it allows
you to track when individual words are being spoken so that you can highlight the words on
the screen. This is extremely easy to do thanks to the AVSpeechSynthesizerDelegate
protocol: you get two callbacks in the form of willSpeakRangeOfSpeechString and
didFinishSpeechUtterance, where you can do your work.

First, make sure you import AVFoundation into your project. Now make your class conform to
the AVSpeechSynthesizerDelegate protocol. For example, if you're using a regular view
controller, you would write this:

class ViewController: UIViewController, AVSpeechSynthesizerDelegate {

Place a label into your view controller, then hook it up to an outlet called label. Now add
these two methods:

func speechSynthesizer(synthesizer: AVSpeechSynthesizer!,
willSpeakRangeOfSpeechString characterRange: NSRange, utterance:
AVSpeechUtterance!) {

 let mutableAttributedString = NSMutableAttributedString(string:
utterance.speechString)

mutableAttributedString.addAttribute(NSForegroundColorAttributeName,
value: UIColor.redColor(), range: characterRange)

 label.attributedText = mutableAttributedString

}

func speechSynthesizer(synthesizer: AVSpeechSynthesizer!,
didFinishSpeechUtterance utterance: AVSpeechUtterance!) {

 label.attributedText = NSAttributedString(string:

www.hackingwithswift.com 1135

utterance.speechString)

}

Finally, you need to trigger the text-to-speech engine – this might be by a button press
perhaps, but it's down to you. Here's the method I attached to a button press:

@IBAction func speak(sender: AnyObject) {

 let string = label.text

 let utterance = AVSpeechUtterance(string: string)

 utterance.voice = AVSpeechSynthesisVoice(language: "en-GB")

 let synthesizer = AVSpeechSynthesizer()

 synthesizer.delegate = self

 synthesizer.speakUtterance(utterance)

}

How to make resizable images using
resizableImageWithCapInsets()
Availability: iOS 2.0 or later.

If you use a small image in a large image view, you can make the image stretch to fit if you
want to but it probably won't look great. iOS provides an alternative known as resizable
images, which is where you define part of an image as being fixed in size and let iOS stretch
the remainder.

This technique is common with button graphics: you make the corners fixed in size, then
stretch the center part as big as it needs to be. The center part ought to be just one pixel by
one pixel in size so that it stretches perfectly, but you can also ask iOS to repeat the center
area as a tile if that's what you want.

This example code below creates a resizable image by defining the corners as 8 points each

www.hackingwithswift.com 1136

and stretching the rest:

if let img = UIImage(named: "button") {

 let resizable = img.resizableImageWithCapInsets(UIEdgeInsets(top:
8, left: 8, bottom: 8, right: 8), resizingMode: .Stretch)

}

How to play sounds using AVAudioPlayer
Availability: iOS 2.2 or later.

The most common way to play a sound on iOS is using AVAudioPlayer, and it's popular for
a reason: it's easy to use, you can stop it whenever you want, and you can adjust its volume
as often as you need. The only real catch is that you must store your player as a property or
other variable that won't get destroyed straight away – if you don't, the sound will stop
immediately.

AVAudioPlayer is part of the AVFoundation framework, so you'll need to import that:

import AVFoundation

Like I said, you need to store your audio player as a property somewhere so it is retained
while the sound is playing. In our example we're going to play a bomb explosion sound, so I
created a property for it like this:

var bombSoundEffect: AVAudioPlayer!

With those two lines of code inserted, all you need to do is play your audio file. This is done
first by finding where the sound is in your project using pathForResource(), then creating a
file URL out of it. That can then get passed to AVAudioPlayer to create an audio player
object, at which point – finally – you can play the sound. Here's the code:

www.hackingwithswift.com 1137

let path = NSBundle.mainBundle().pathForResource("sliceBombFuse.caf",
ofType:nil)!

let url = NSURL(fileURLWithPath: path)

do {

 let sound = try AVAudioPlayer(contentsOfURL: url)

 bombSoundEffect = sound

 sound.play()

} catch {

 // couldn't load file :(

}

If you want to stop the sound, you should use its stop() method. But be warned: if you try to
stop a sound that doesn't exist your app will crash, so it's best to check that it exists first like
this:

if bombSoundEffect != nil {

 bombSoundEffect.stop()

 bombSoundEffect = nil

}

For more information see Hacking with Swift tutorial 17.

How to record audio using AVAudioRecorder
Availability: iOS 3.0 or later.

While it's not hard to record audio with an iPhone, it does take quite a bit of code so give
yourself a few minutes to get this implemented. First you need to import the AVFoundation

www.hackingwithswift.com 1138

framework into your view controller, like this:

import AVFoundation

You will need to add three properties to your view controller: a button for the user to tap to
start or stop recording, an audio session to manage recording, and an audio recorder to
handle the actual reading and saving of data. You can create the button in Interface Builder if
you prefer; we'll be doing it in code here.

Put these three properties into your view controller:

var recordButton: UIButton!

var recordingSession: AVAudioSession!

var audioRecorder: AVAudioRecorder!

Recording audio requires a user's permission to stop malicious apps doing malicious things,
so we need to request recording permission from the user. If they grant permission, we'll
create our recording button. Put this into viewDidLoad():

recordingSession = AVAudioSession.sharedInstance()

do {

 try
recordingSession.setCategory(AVAudioSessionCategoryPlayAndRecord)

 try recordingSession.setActive(true)

 recordingSession.requestRecordPermission() { [unowned self]
(allowed: Bool) -> Void in

 dispatch_async(dispatch_get_main_queue()) {

 if allowed {

 self.loadRecordingUI()

www.hackingwithswift.com 1139

 self.loadRecordingUI()

 } else {

 // failed to record!

 }

 }

 }

} catch {

 // failed to record!

}

You should replace the // failed to record! comment with a meaningful error alert to your
user, or perhaps an on-screen label.

I made the code for loadRecordingUI() separate so you can replace it easily either with IB
work or something else. Here's the least you need to do:

func loadRecordingUI() {

 recordButton = UIButton(frame: CGRect(x: 64, y: 64, width: 128,
height: 64))

 recordButton.setTitle("Tap to Record", forState: .Normal)

 recordButton.titleLabel?.font =
UIFont.preferredFontForTextStyle(UIFontTextStyleTitle1)

 recordButton.addTarget(self, action: "recordTapped",
forControlEvents: .TouchUpInside)

 view.addSubview(recordButton)

}

That configures the button to call a method called recordTapped() when it's tapped. Don't
worry, we haven't written that yet!

Before we write the code for recordTapped() we need to do a few other things. First, we
need a method to start recording. This needs to decide where to save the audio, configure
the recording settings, then start recording. Here's the code:

www.hackingwithswift.com 1140

func startRecording() {

 let audioFilename =
getDocumentsDirectory().stringByAppendingPathComponent("recording.m4a
")

 let audioURL = NSURL(fileURLWithPath: audioFilename)

 let settings = [

 AVFormatIDKey: Int(kAudioFormatMPEG4AAC),

 AVSampleRateKey: 12000.0,

 AVNumberOfChannelsKey: 1 as NSNumber,

 AVEncoderAudioQualityKey: AVAudioQuality.High.rawValue

]

 do {

 audioRecorder = try AVAudioRecorder(URL: audioURL, settings:
settings)

 audioRecorder.delegate = self

 audioRecorder.record()

 recordButton.setTitle("Tap to Stop", forState: .Normal)

 } catch {

 finishRecording(success: false)

 }

}

That code won't build just yet, because it has two problems. First, it uses the method
getDocumentsDirectory(), which is a helper method I include in most of my projects. Here it
is:

class func getDocumentsDirectory() -> String {

www.hackingwithswift.com 1141

class func getDocumentsDirectory() -> String {

 let paths =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMa
sk, true)

 let documentsDirectory = paths[0]

 return documentsDirectory

}

Second, it assigns self to be the delegate of the audio recorder, which means you need to
conform to the AVAudioRecorderDelegate protocol like this:

class ViewController: UIViewController, AVAudioRecorderDelegate {

With the code written to start recording, we need matching code to finish recording. This will
tell the audio recorder to stop recording, then put the button title back to either "Tap to
Record" (if recording finished successfully) or "Tap to Re-record" if there was a problem.
Here's the code:

func finishRecording(success success: Bool) {

 audioRecorder.stop()

 audioRecorder = nil

 if success {

 recordButton.setTitle("Tap to Re-record", forState: .Normal)

 } else {

 recordButton.setTitle("Tap to Record", forState: .Normal)

 // recording failed :(

 }

}

www.hackingwithswift.com 1142

With those two in place, we can finally write recordTapped(), because it just needs to call
either startRecording() or finishRecording() depending on the state of the audio recorder.
Here's the code:

func recordTapped() {

 if audioRecorder == nil {

 startRecording()

 } else {

 finishRecording(success: true)

 }

}

Before you're done, there's one more thing to be aware of: iOS might stop your recording for
some reason out of your control, such as if a phone call comes in. We are the delegate of the
audio recorder, so if this situation crops up you'll be sent a
audioRecorderDidFinishRecording() message that you can pass on to finishRecording()
like this:

func audioRecorderDidFinishRecording(recorder: AVAudioRecorder,
successfully flag: Bool) {

 if !flag {

 finishRecording(success: false)

 }

}

For more information see Hacking with Swift tutorial 33.

How to record user videos using ReplayKit
Availability: iOS 9.0 or later.

www.hackingwithswift.com 1143

ReplayKit is one of the great new features introduced in iOS 9.0, and it's trivial to add to your
projects. What's more, it's not just for games – you can record any kind of app just fine. I
should add, though, that the recording quality is fairly low, so it's not worth trying to record
fine details.

Below is a complete example of how to use ReplayKit to record the screen. You'll need to
add a navigation controller around your view controller because the code uses the right bar
button item to start and stop recording, and of course it's down to you to add some
interesting user interface that's actually worth recording!

import ReplayKit

import UIKit

class ViewController: UIViewController,
RPPreviewViewControllerDelegate {

 override func viewDidLoad() {

 super.viewDidLoad()

 navigationItem.rightBarButtonItem = UIBarButtonItem(title:
"Start", style: .Plain, target: self, action: "startRecording")

 }

 func startRecording() {

 let recorder = RPScreenRecorder.sharedRecorder()

 recorder.startRecordingWithMicrophoneEnabled(true) { [unowned
self] (error) in

 if let unwrappedError = error {

 print(unwrappedError.localizedDescription)

 } else {

 self.navigationItem.rightBarButtonItem =
UIBarButtonItem(title: "Stop", style: .Plain, target: self, action:
"stopRecording")

 }

www.hackingwithswift.com 1144

 }

 }

 }

 func stopRecording() {

 let recorder = RPScreenRecorder.sharedRecorder()

 recorder.stopRecordingWithHandler { [unowned self] (preview,
error) in

 self.navigationItem.rightBarButtonItem = UIBarButtonItem(title:
"Start", style: .Plain, target: self, action: "startRecording")

 if let unwrappedPreview = preview {

 unwrappedPreview.previewControllerDelegate = self

 self.presentViewController(unwrappedPreview, animated: true,
completion: nil)

 }

 }

 }

 func previewControllerDidFinish(previewController:
RPPreviewViewController) {

 dismissViewControllerAnimated(true, completion: nil)

 }

}

ReplayKit does three more cool things for you:

 • It automatically asks the user for permission to start recording the first time you try.
 • While recording, no system user interface is shown, which means you can't see messages
coming in from other apps.
 • When the user stops recording, they'll get the chance to preview their recording, make
changes, save it to their devices and share it – your app doesn't get access to the recording.

www.hackingwithswift.com 1145

How to render a UIView to a UIImage
Availability: iOS 7.0 or later.

You can render any UIView into a UIImage in just four lines of code, and that even handles
drawing all the subviews automatically. Here's the code:

UIGraphicsBeginImageContextWithOptions(view.bounds.size, true, 0)

view.drawViewHierarchyInRect(view.bounds, afterScreenUpdates: true)

let image = UIGraphicsGetImageFromCurrentImageContext()

UIGraphicsEndImageContext()

Helpfully, that code works equally well no matter what the view contains - if you're using
UIKit, SpriteKit, Metal or whatever, it all works.

How to save a UIImage to a file using
UIImagePNGRepresentation
Availability: iOS 2.0 or later.

If you've generated an image using Core Graphics, or perhaps rendered part of your layout,
you might want to save that out as either a PNG or a JPEG. Both are easy thanks to two
functions: UIImagePNGRepresentation() and UIImageJPEGRepresentation(), both of
which convert a UIImage into an NSData so you can write it out.

Here's an example:

if let image = UIImage(named: "example.png") {

 if let data = UIImagePNGRepresentation(image) {

 let filename =
getDocumentsDirectory().stringByAppendingPathComponent("copy.png")

 data.writeToFile(filename, atomically: true)

 }

www.hackingwithswift.com 1146

 }

}

That call to getDocumentsDirectory() is a little helper function I include in most of my
projects, because it makes it easy to locate the user's documents directory where you can
save app files. Here it is:

func getDocumentsDirectory() -> NSString {

 let paths =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMa
sk, true)

 let documentsDirectory = paths[0]

 return documentsDirectory

}

If you want to save your image as a JPEG rather than a PNG, use this code instead:

if let image = UIImage(named: "example.png") {

 if let data = UIImageJPEGRepresentation(image, 0.8) {

 let filename =
getDocumentsDirectory().stringByAppendingPathComponent("copy.png")

 data.writeToFile(filename, atomically: true)

 }

}

The second parameter to UIImageJPEGRepresentation() is a float that represents JPEG
quality, where 1.0 is highest and 0.0 is lowest.

For more information see Hacking with Swift tutorial 10.

www.hackingwithswift.com 1147

How to scan a QR code
Availability: iOS 8.0 or later.

iOS has built-in support for scanning QR codes using AVFoundation, but the code isn't easy:
you need to create a capture session, create a preview layer, handle delegate callbacks, and
more. To make it easier for you, I've created a UIViewController subclass that does all the
hard work for you – you just need to modify the foundCode() method to do something more
interesting.

Note: rotation when using the camera can be quite ugly, which is why most apps fix the
orientation as you see below.

import AVFoundation

import UIKit

class ScannerViewController: UIViewController,
AVCaptureMetadataOutputObjectsDelegate {

 var captureSession: AVCaptureSession!

 var previewLayer: AVCaptureVideoPreviewLayer!

 override func viewDidLoad() {

 super.viewDidLoad()

 view.backgroundColor = UIColor.blackColor()

 captureSession = AVCaptureSession()

 let videoCaptureDevice =
AVCaptureDevice.defaultDeviceWithMediaType(AVMediaTypeVideo)

 let videoInput: AVCaptureDeviceInput

 do {

 videoInput = try AVCaptureDeviceInput(device:
videoCaptureDevice)

 } catch {

www.hackingwithswift.com 1148

 } catch {

 return

 }

 if (captureSession.canAddInput(videoInput)) {

 captureSession.addInput(videoInput)

 } else {

 failed();

 return;

 }

 let metadataOutput = AVCaptureMetadataOutput()

 if (captureSession.canAddOutput(metadataOutput)) {

 captureSession.addOutput(metadataOutput)

 metadataOutput.setMetadataObjectsDelegate(self, queue:
dispatch_get_main_queue())

 metadataOutput.metadataObjectTypes =
[AVMetadataObjectTypeQRCode]

 } else {

 failed()

 return

 }

 previewLayer = AVCaptureVideoPreviewLayer(session:
captureSession);

 previewLayer.frame = view.layer.bounds;

 previewLayer.videoGravity = AVLayerVideoGravityResizeAspectFill;

 view.layer.addSublayer(previewLayer);

 captureSession.startRunning();

www.hackingwithswift.com 1149

 captureSession.startRunning();

 }

 func failed() {

 let ac = UIAlertController(title: "Scanning not supported",
message: "Your device does not support scanning a code from an item.
Please use a device with a camera.", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

 captureSession = nil

 }

 override func viewWillAppear(animated: Bool) {

 super.viewWillAppear(animated)

 if (captureSession?.running == false) {

 captureSession.startRunning();

 }

 }

 override func viewWillDisappear(animated: Bool) {

 super.viewWillDisappear(animated)

 if (captureSession?.running == true) {

 captureSession.stopRunning();

 }

 }

 func captureOutput(captureOutput: AVCaptureOutput!,
didOutputMetadataObjects metadataObjects: [AnyObject]!,
fromConnection connection: AVCaptureConnection!) {

 captureSession.stopRunning()

www.hackingwithswift.com 1150

 captureSession.stopRunning()

 if let metadataObject = metadataObjects.first {

 let readableObject = metadataObject as!
AVMetadataMachineReadableCodeObject;

AudioServicesPlaySystemSound(SystemSoundID(kSystemSoundID_Vibrate))

 foundCode(readableObject.stringValue);

 }

 dismissViewControllerAnimated(true, completion: nil)

 }

 func foundCode(code: String) {

 print(code)

 }

 override func prefersStatusBarHidden() -> Bool {

 return true

 }

 override func supportedInterfaceOrientations() ->
UIInterfaceOrientationMask {

 return .Portrait

 }

}

How to scan a barcode
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1151

iOS supports barcode scanning out of the box, but to be honest it's not that easy to do. So,
here's a complete UIViewController subclass that you can add to your Swift project and get
immediate support with no hassle – all you need to do is update the foundCode() method to
take some interesting action, then present this view controller when you're ready:

import AVFoundation

import UIKit

class ScannerViewController: UIViewController,
AVCaptureMetadataOutputObjectsDelegate {

 var captureSession: AVCaptureSession!

 var previewLayer: AVCaptureVideoPreviewLayer!

 override func viewDidLoad() {

 super.viewDidLoad()

 view.backgroundColor = UIColor.blackColor()

 captureSession = AVCaptureSession()

 let videoCaptureDevice =
AVCaptureDevice.defaultDeviceWithMediaType(AVMediaTypeVideo)

 let videoInput: AVCaptureDeviceInput

 do {

 videoInput = try AVCaptureDeviceInput(device:
videoCaptureDevice)

 } catch {

 return

 }

 if (captureSession.canAddInput(videoInput)) {

 captureSession.addInput(videoInput)

www.hackingwithswift.com 1152

 captureSession.addInput(videoInput)

 } else {

 failed();

 return;

 }

 let metadataOutput = AVCaptureMetadataOutput()

 if (captureSession.canAddOutput(metadataOutput)) {

 captureSession.addOutput(metadataOutput)

 metadataOutput.setMetadataObjectsDelegate(self, queue:
dispatch_get_main_queue())

 metadataOutput.metadataObjectTypes =
[AVMetadataObjectTypeEAN8Code, AVMetadataObjectTypeEAN13Code,
AVMetadataObjectTypePDF417Code]

 } else {

 failed()

 return

 }

 previewLayer = AVCaptureVideoPreviewLayer(session:
captureSession);

 previewLayer.frame = view.layer.bounds;

 previewLayer.videoGravity = AVLayerVideoGravityResizeAspectFill;

 view.layer.addSublayer(previewLayer);

 captureSession.startRunning();

 }

 func failed() {

 let ac = UIAlertController(title: "Scanning not supported",

www.hackingwithswift.com 1153

message: "Your device does not support scanning a code from an item.
Please use a device with a camera.", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 presentViewController(ac, animated: true, completion: nil)

 captureSession = nil

 }

 override func viewWillAppear(animated: Bool) {

 super.viewWillAppear(animated)

 if (captureSession?.running == false) {

 captureSession.startRunning();

 }

 }

 override func viewWillDisappear(animated: Bool) {

 super.viewWillDisappear(animated)

 if (captureSession?.running == true) {

 captureSession.stopRunning();

 }

 }

 func captureOutput(captureOutput: AVCaptureOutput!,
didOutputMetadataObjects metadataObjects: [AnyObject]!,
fromConnection connection: AVCaptureConnection!) {

 captureSession.stopRunning()

 if let metadataObject = metadataObjects.first {

 let readableObject = metadataObject as!
AVMetadataMachineReadableCodeObject;

www.hackingwithswift.com 1154

AudioServicesPlaySystemSound(SystemSoundID(kSystemSoundID_Vibrate))

 foundCode(readableObject.stringValue);

 }

 dismissViewControllerAnimated(true, completion: nil)

 }

 func foundCode(code: String) {

 print(code)

 }

 override func prefersStatusBarHidden() -> Bool {

 return true

 }

 override func supportedInterfaceOrientations() ->
UIInterfaceOrientationMask {

 return .Portrait

 }

}

How to turn on the camera flashlight to make a torch
Availability: iOS 6.0 or later.

There is one simple property required to enable or disable a device's torch, but you do need
to put in some wrapper code to make it work safely. Specifically, you need to use the
lockForConfiguration() and unlockForConfiguration() methods of the AVCaptureDevice
class in order to make sure only one app can control the torch at a time.

www.hackingwithswift.com 1155

You will need to import the AVFoundation framework, because that's where the
AVCaptureDevice class comes from. Once that's done, add this function to your code and
you're good to code:

func toggleTorch(on on: Bool) {

 let device =
AVCaptureDevice.defaultDeviceWithMediaType(AVMediaTypeVideo)

 if device.hasTorch {

 do {

 try device.lockForConfiguration()

 if on == true {

 device.torchMode = .On

 } else {

 device.torchMode = .Off

 }

 device.unlockForConfiguration()

 } catch {

 print("Torch could not be used")

 }

 } else {

 print("Torch is not available")

 }

}

With that, you can now turn the torch on like this:

toggleTorch(on: true)

www.hackingwithswift.com 1156

UIImageWriteToSavedPhotosAlbum(): how to write to the iOS
photo album
Availability: iOS 2.0 or later.

It's not hard to save an image straight to the user's photo library, but I have to admit the
syntax isn't immediately obvious! iOS has a function called
UIImageWriteToSavedPhotosAlbum() that takes four parameters: parameter one is the
image to save, parameters two and three set a delegate and selector to send when the
image has been written successfully, and parameter four is any additional context
information you wan to send.

For example, you might use it like this:

UIImageWriteToSavedPhotosAlbum(yourImage, self,
"image:didFinishSavingWithError:contextInfo:", nil)

That will write the image to the photo library, then call a method when it completes. That
method needs to be named very precisely, which is where it's easy to go wrong. Using the
call above, you need to write your callback method like this:

func image(image: UIImage, didFinishSavingWithError error: NSError?,
contextInfo:UnsafePointer<Void>) {

 if error == nil {

 let ac = UIAlertController(title: "Saved!", message: "Your
altered image has been saved to your photos.",
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

 } else {

 let ac = UIAlertController(title: "Save error", message:
error?.localizedDescription, preferredStyle: .Alert)

www.hackingwithswift.com 1157

error?.localizedDescription, preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

 }

}

For more information see Hacking with Swift tutorial 13.

Strings
How to capitalize words in a string using capitalizedString
Availability: iOS 2.0 or later.

Swift offers several ways of adjusting the letter case of a string, but if you're looking for title
case – that is, Text Where The First Letter Of Each String Is Capitalized - then you need to
use the capitalizedString property, like this:

let str = "sunday, monday, happy days"

print(str.capitalizedString)

How to convert a string to lowercase letters
Availability: iOS 2.0 or later.

You can convert any string to lowercase – that is, going from "HELLO" to "hello" – by
accessing its lowercaseString property, like this:

let str = "Sunday, Monday, Happy Days"

www.hackingwithswift.com 1158

let str = "Sunday, Monday, Happy Days"

print(str.lowercaseString)

That will output "sunday, monday, happy days" to the Xcode console.

How to convert a string to uppercase letters
Availability: iOS 2.0 or later.

If you want to convert a string to uppercase – that is, WHERE EVERY LETTER IS A CAPITAL
LETTER – you should use the uppercaseString property of your string, like this:

let str = "Sunday, Monday, Happy Days"

print(str.uppercaseString)

That code will print "SUNDAY, MONDAY, HAPPY DAYS" into the Xcode console.

How to detect a URL in a String using NSDataDetector
Availability: iOS 4.0 or later.

The NSDataDetector class makes it easy to detect URLs inside a string using just a few
lines of code. This example loops through all URLs in a string, printing each one out:

let input = "This is a test with the URL https://
www.hackingwithswift.com to be detected."

let detector = try! NSDataDetector(types:
NSTextCheckingType.Link.rawValue)

let matches = detector.matchesInString(input, options: [], range:
NSMakeRange(0, input.characters.count))

for match in matches {

 let url = (input as NSString).substringWithRange(match.range)

www.hackingwithswift.com 1159

 let url = (input as NSString).substringWithRange(match.range)

 print(url)

}

Note that it takes a shortcut by casting to an NSString so that substringWithRange() can be
used – this is because the matches returned by the data detector have an NSRange rather
than a Swift string range. If you want to do things the "official way" you should use this
helper function:

func rangeFromNSRange(nsRange: NSRange, forString str: String) ->
Range<String.Index>? {

 if let from = String.Index(str.utf16.startIndex + nsRange.location,
within: str),

 let to = String.Index(str.utf16.startIndex + nsRange.location +
nsRange.length, within: str) {

 return from ..< to

 }

 return nil

}

With that in place you can now pull out a match like this:

let url = input.substringWithRange(rangeFromNSRange(match.range,
forString: input)!)

How to get the length of a string
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1160

In Swift 2 you should write yourString.characters.count to return the length of a string. This
is different from Swift 1.2, where you used count(yourString), and different again from Swift
1.0, where you used countElements(yourString). Hopefully the Swift 2.0 code will stay the
same for a while!

How to load a string from a file in your bundle
Availability: iOS 2.0 or later.

Although it's preferable to use Swift strings for most operations, there are some things that
are just done better by good old NSString – not least reading text in from a file. In fact,
NSString has a constructor just for this purpose, called contentsOfFile, and here it is in
action:

if let filepath = NSBundle.mainBundle().pathForResource("example",
ofType: "txt") {

 do {

 let contents = try NSString(contentsOfFile: filepath,
usedEncoding: nil) as String

 print(contents)

 } catch {

 // contents could not be loaded

 }

} else {

 // example.txt not found!

}

That code loads a file called example.txt into a string called contents. Note that I'm
typecasting the NSString to a regular Swift string so you can use it normally afterwards.

For more information see Hacking with Swift tutorial 1.

www.hackingwithswift.com 1161

How to load a string from a website URL
Availability: iOS 2.0 or later.

It takes just a few lines of Swift code to load the contents of a website URL, but there are
three things you need to be careful with:

 • Creating a NSURL might fail if you pass a bad site, so you need to unwrap its optional
return value.
 • Koading a URL's contents might fail because the site might be down (for example), so it
might throw an error. This means you need to wrap the call into a do/catch block.
 • Accessing network data is slow, so you really want to do this on a background thread.

Here's the code:

if let url = NSURL(string: "https://www.hackingwithswift.com") {

 do {

 let contents = try NSString(contentsOfURL: url, usedEncoding:
nil)

 print(contents)

 } catch {

 // contents could not be loaded

 }

} else {

 // the URL was bad!

}

If you want to run that on a background thread (and you really ought to!) you should either
use GCD's dispatch_async() or performSelectorInBackground().

How to loop through letters in a string
Availability: iOS 7.0 or later.

www.hackingwithswift.com 1162

You can loop through every character in a string by using its characters property, which is
an array containing each individual character inside a string. Thanks to Swift's extended
support for international languages and emoji, this works great no matter what kind of
language you're using.

This code prints out each character one at a time:

let str = "sunday, monday, happy days"

for char in str.characters {

 print("Found character: \(char)")

}

How to measure a string
Availability: iOS 7.0 or later.

Cunningly, Apple has changed the way you measure strings in Swift three times now, so
you'd be forgiven for not knowing how it's done. As of Swift 2, the correct way to measure
strings is like this:

let str = "Hello, world"

let count = str.characters.count

How to parse a sentence using NSLinguisticTagger
Availability: iOS 5.0 or later.

If you're looking to parse natural language entered by a user, you're looking for
NSLinguisticTagger: it automatically recognises English words (and words in other
languages too, if you ask) and tells you what kind of word it is. That is, this magic little class
distinguishes between verbs, nouns, adjectives and so on, so you can focus on the

www.hackingwithswift.com 1163

important stuff: how do I (verb) this (noun)?

Here's an example to get you started:

let options = NSLinguisticTaggerOptions.OmitWhitespace.rawValue |
NSLinguisticTaggerOptions.JoinNames.rawValue

let tagger = NSLinguisticTagger(tagSchemes:
NSLinguisticTagger.availableTagSchemesForLanguage("en"), options:
Int(options))

let inputString = "This is a very long test for you to try"

tagger.string = inputString

let range = NSMakeRange(0, inputString.characters.count)

tagger.enumerateTagsInRange(range, scheme:
NSLinguisticTagSchemeNameTypeOrLexicalClass, options:
NSLinguisticTaggerOptions(rawValue: options)) { tag, tokenRange,
sentenceRange, stop in

 let token = (inputString as
NSString).substringWithRange(tokenRange)

 print("\(tag): \(token)")

}

When you loop through the matches found by an NSLinguisticTagger, you get back an
NSRange describing where in the string each item was found. This is a bit ugly because the
Swift way is to use string indexes, so you need to cast the Swift string to an NSString.

If you want to make things slightly nicer, add this helper function:

func rangeFromNSRange(nsRange: NSRange, forString str: String) ->
Range<String.Index>? {

 if let from = String.Index(str.utf16.startIndex + nsRange.location,
within: str),

 let to = String.Index(str.utf16.startIndex + nsRange.location +

www.hackingwithswift.com 1164

nsRange.length, within: str) {

 return from ..< to

 }

 return nil

}

With that in place you can now pull out the token like this:

let token =
inputString.substringWithRange(rangeFromNSRange(tokenRange,
forString: inputString)!)

How to repeat a string
Availability: iOS 7.0 or later.

Swift strings have a built-in constructor that lets you create strings by repeating a character a
certain number of times. You can use it like this:

let str = String(count: 10, repeatedValue: Character("~"))

If you want to repeat a string rather than just a single character, you'll want to create a
function something like this:

extension String {

 public init?(byRepeatingString str: String, count: Int) {

 var newString = ""

 for _ in 0 ..< count {

www.hackingwithswift.com 1165

 for _ in 0 ..< count {

 newString += str

 }

 self.init(newString)

 }

}

To call that constructor use this:

let repeated = String(byRepeatingString: "hello", count: 4)

How to reverse a string using reverse()
Availability: iOS 7.0 or later.

Reversing a string in Swift is done by using the reverse() method on its characters, then
creating a new string out of the result. Here's the code:

let str = "Hello, world!"

let reversed = String(str.characters.reverse())

print(reversed)

That will print "!dlrow ,olleH" to the Xcode console.

How to split a string into an array:
componentsSeparatedByString()
Availability: iOS 7.0 or later.

You can convert a string to an array by breaking it up by a substring using the

www.hackingwithswift.com 1166

componentsSeparatedByString() method. For example, you can split a string up by a
comma and space like this:

let str = "Andrew, Ben, John, Paul, Peter, Laura"

let array = str.componentsSeparatedByString(", ")

That will return an array of six items, one for each name.

For more information see Hacking with Swift tutorial 5.

How to test localization by setting a debug locale and double
length pseudolanguage
Availability: iOS 2.0 or later.

If you want to check how your app works when running on devices with other languages, you
have two options: you can either instruct the simulator to use a specific language where you
have a localization in place, or you can have it use a special "Double length
pseudolanguage" that basically acts as a stress test.

Both of these options live under the the scheme settings for your app, which you can get to
by holding down Alt then going to the Product menu and clicking "Run…" – holding down Alt
makes it say "Run…" rather than "Run", which is what triggers the scheme settings window.

In the scheme settings window, click the dropdown next to Application Language. You can
either choose a language that you have localized to, or choose Double Length
Pseudolanguage. This option effectively makes all your strings take up twice as much space
on the screen, which shows you at a glance if your interface will cope with languages that
have longer words than your own.

How to trim whitespace in a string
Availability: iOS 2.0 or later.

It's not hard to trim whitespace from a string in Swift, but the syntax is a little wordy – or

www.hackingwithswift.com 1167

"self-descriptive" if you're feeling optimistic. You need to use the
stringByTrimmingCharactersInSet() method and provide a list of the characters you want
to trim. If you're just using whitespace (tabs, spaces and new lines) you can use the
predefined whitespaceAndNewlineCharacterSet() list of characters, like this:

let str = " Taylor Swift "

let trimmed =
str.stringByTrimmingCharactersInSet(NSCharacterSet.whitespaceAndNewli
neCharacterSet())

That will set trimmed to be "Taylor Swift".

How to use string interpolation to combine strings, integers
and doubles
Availability: iOS 7.0 or later.

String interpolation is Swift's way of letting you insert variables and constants into strings.
But at the same time, you can also perform simple operations as part of your interpolation,
such as changing letter case and basic mathematics. Swift is also smart enough to
understand how to bring values into strings, meaning that you can use other strings, integers
and floating-point numbers just fine.

Here's an example to get you started:

var name = "Paul"

var age = 35

var longestPi = 3.141592654

var combined = "This person's name is \(name.uppercaseString), their
age is \(age) so in \(age) years time they'll be \(age + age), and
they know π up to \(longestPi)"

www.hackingwithswift.com 1168

For more information see Hacking with Swift tutorial 0.

NSRegularExpression: How to match regular expressions in
strings
Availability: iOS 4.0 or later.

The NSRegularExpression class lets you find and replace substrings using regular
expressions, which are concise and flexible descriptions of text. For example, if we wanted
to pull "Taylor Swift" out of the string "My name is Taylor Swift", we could write a regular
expression that matches the text "My name is " followed by any text, then pass that to the
NSRegularExpression class.

The example below does just that. Note that we need to pull out the second match range
because the first range is the entire matched string, whereas the second range is just the
"Taylor Swift" part:

do {

 let input = "My name is Taylor Swift"

 let regex = try NSRegularExpression(pattern: "My name is (.*)",
options: NSRegularExpressionOptions.CaseInsensitive)

 let matches = regex.matchesInString(input, options: [], range:
NSMakeRange(0, input.characters.count))

 if let match = matches.first {

 let range = match.rangeAtIndex(1)

 if let swiftRange = rangeFromNSRange(range, forString: input) {

 let name = input.substringWithRange(swiftRange)

 }

 }

} catch {

 // regex was bad!

}

www.hackingwithswift.com 1169

That code uses a little helper function that you should take: rangeFromNSRange().
Annoyingly, regular expression matches demand Swift strings as input then return NSString
and NSRange in their output. This function converts from NSRange to Swift string ranges:

func rangeFromNSRange(nsRange: NSRange, forString str: String) ->
Range<String.Index>? {

 let fromUTF16 = str.utf16.startIndex.advancedBy(nsRange.location,
limit: str.utf16.endIndex)

 let toUTF16 = fromUTF16.advancedBy(nsRange.length, limit:
str.utf16.endIndex)

 if let from = String.Index(fromUTF16, within: str),

 let to = String.Index(toUTF16, within: str) {

 return from ..< to

 }

 return nil

}

Replacing text in a string using
stringByReplacingOccurrencesOfString()
Availability: iOS 2.0 or later.

It's easy to replace text inside a string thanks to the (exceedingly long!) method
stringByReplacingOccurrencesOfString(). This is a string method, and you tell it what to
look for and what to replace it with, and you're done.

For example:

www.hackingwithswift.com 1170

let str = "Swift 1.2 is the best version of Swift to learn, so if
you're starting fresh you should definitely learn Swift 1.2."

let replaced = str.stringByReplacingOccurrencesOfString("1.2",
withString: "2.0")

That will make replaced equal to "Swift 2.0 is the best version of Swift to learn, so if you're
starting fresh you should definitely learn Swift 2.0."

writeToFile(): How to save a string to a file on disk
Availability: iOS 2.0 or later.

All strings have a writeToFile() method that lets you save the contents of the string to disk.
You need to provide a filename to write to, plus two more parameters: whether the write
should be atomic, and what string encoding to use. The second parameter should nearly
always be true because it avoids concurrency problems. The third parameter should nearly
always be NSUTF8StringEncoding, which is pretty much the standard for reading and
writing text.

Be warned: writing a string to disk can throw an exception, so you need to catch any errors
and warn the user.

Here's the code:

let str = "Super long string here"

let filename =
getDocumentsDirectory().stringByAppendingPathComponent("output.txt")

do {

 try str.writeToFile(filename, atomically: true, encoding:
NSUTF8StringEncoding)

} catch {

 // failed to write file – bad permissions, bad filename, missing
permissions, or more likely it can't be converted to the encoding

}

www.hackingwithswift.com 1171

}

That code uses a helper function called getDocumentsDirectory(), which finds the path to
where you can save your app's files. Here it is:

func getDocumentsDirectory() -> NSString {

 let paths =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMa
sk, true)

 let documentsDirectory = paths[0]

 return documentsDirectory

}

System
How to cache data using NSCache
Availability: iOS 4.0 or later.

Here's an easy win for you that will make your apps immediately much better: NSCache is a
specialized class that behaves similarly to an NSMutableDictionary with one major
difference: iOS will automatically remove objects from the cache if the device is running low
on memory.

Helpfully, if the system does encounter memory pressure NSCache will automatically start to
remove items without you knowing about it, which means you won't get a memory warning
unless even more RAM needs to be cleared. It will also remove items intelligently, trying to
keep as much cached as possible.

Here's how to use it, imagining a fictional class called ExpensiveObjectClass that you want
to compute as infrequently as you can:

www.hackingwithswift.com 1172

let cache = NSCache()

let myObject: ExpensiveObjectClass

if let cachedVersion = cache.objectForKey("CachedObject") as?
ExpensiveObjectClass {

 // use the cached version

 myObject = cachedVersion

} else {

 // create it from scratch then store in the cache

 myObject = ExpensiveObjectClass()

 cache.setObject(myObject, forKey: "CachedObject")

}

How to copy objects in Swift using copy()
Availability: iOS 7.0 or later.

There are two main complex data types in Swift – objects and structs – and they do so many
things similarly that you'd be forgiven for not being sure exactly where they differ. Well, one of
the key areas is down to copying: two variables can point at the same object so that
changing one changes them both, whereas if you tried that with structs you'd find that Swift
creates a full copy so that changing the copy does not affect the original.

Having lots of objects point at the same data can be useful, but frequently you'll want to
modify copies so that modifying one object doesn't have an effect on anything else. To make
this work you need to do three things:

 • Make your class conform to NSCopying. This isn't strictly required, but it makes your
intent clear.
 • Implement the method copyWithZone(), where the actual copying happens.
 • Call copy() on your object.

www.hackingwithswift.com 1173

Here's an example of a Person class that conforms fully to the NSCopying protocol:

class Person: NSObject, NSCopying {

 var firstName: String

 var lastName: String

 var age: Int

 init(firstName: String, lastName: String, age: Int) {

 self.firstName = firstName

 self.lastName = lastName

 self.age = age

 }

 func copyWithZone(zone: NSZone) -> AnyObject {

 let copy = Person(firstName: firstName, lastName: lastName, age:
age)

 return copy

 }

}

Note that copyWithZone() is implemented by creating a new Person object using the
current person's information.

With that done, you can test out your copying like this:

let paul = Person(firstName: "Paul", lastName: "Hudson", age: 35)

let sophie = paul.copy() as! Person

sophie.firstName = "Sophie"

sophie.age = 5

www.hackingwithswift.com 1174

print("\(paul.firstName) \(paul.lastName) is \(paul.age)")

print("\(sophie.firstName) \(sophie.lastName) is \(sophie.age)")

How to copy text to the clipboard using UIPasteboard
Availability: iOS 3.0 or later.

You can write to and read from the iOS clipboard by using the UIPasteboard class, which
has a generalPasteboard() method that returns the shared system method of copying and
pasting data between apps. Using this you can write text to the clipboard just like this:

let pasteboard = UIPasteboard.generalPasteboard()

pasteboard.string = "\(number)"

To read text back from the clipboard, you should unwrap its optional value like this:

let pasteboard = UIPasteboard.generalPasteboard()

if let string = pasteboard.string {

 // text was found and placed in the "string" constant

}

How to create a peer-to-peer network using the multipeer
connectivity framework
Availability: iOS 7.0 or later.

The MultipeerConnectivity framework is designed to allow ad hoc data transfer between

www.hackingwithswift.com 1175

devices that are in close proximity. The connection is started managed for you by iOS, but
you're responsible for presenting useful interface to your users and for understanding the
data that is being sent and received.

First things first, import the MultipeerConnectivity framework:

import MultipeerConnectivity

Now define these three properties to hold the multipeer session information:

var peerID: MCPeerID!

var mcSession: MCSession!

var mcAdvertiserAssistant: MCAdvertiserAssistant!

The peer ID is simply the name of the current device, which is useful for identifying who is
joining a session. We're just going to use the current device's name when creating our
connection, but we're also going to require encryption. Add this to your viewDidLoad()
method:

peerID = MCPeerID(displayName: UIDevice.currentDevice().name)

mcSession = MCSession(peer: peerID, securityIdentity: nil,
encryptionPreference: .Required)

mcSession.delegate = self

You will need to tell iOS that your view controller conforms to the MCSessionDelegate and
MCBrowserViewControllerDelegate delegates, like this:

class ViewController: UIViewController, MCSessionDelegate,
MCBrowserViewControllerDelegate {

www.hackingwithswift.com 1176

Conforming to those two delegates means implementing quite a few methods. Fortunately,
five of them are super simple because three are empty and the other two just dismiss a view
controller. Add this code now:

func session(session: MCSession!, didReceiveStream stream:
NSInputStream!, withName streamName: String!, fromPeer peerID:
MCPeerID!) {

}

func session(session: MCSession!, didStartReceivingResourceWithName
resourceName: String!, fromPeer peerID: MCPeerID!, withProgress
progress: NSProgress!) {

}

func session(session: MCSession!, didFinishReceivingResourceWithName
resourceName: String!, fromPeer peerID: MCPeerID!, atURL localURL:
NSURL!, withError error: NSError!) {

}

func browserViewControllerDidFinish(browserViewController:
MCBrowserViewController!) {

 dismissViewControllerAnimated(true, completion: nil)

}

func browserViewControllerWasCancelled(browserViewController:
MCBrowserViewController!) {

 dismissViewControllerAnimated(true, completion: nil)

}

Next comes a slightly harder method: you need to do something when clients connect or

www.hackingwithswift.com 1177

disconnect. That something could just be "I don't care; do nothing," or it might be where you
show a message on the screen to tell your user. Here's a basic version that just prints out a
status message to the Xcode log:

func session(session: MCSession!, peer peerID: MCPeerID!,
didChangeState state: MCSessionState) {

 switch state {

 case MCSessionState.Connected:

 println("Connected: \(peerID.displayName)")

 case MCSessionState.Connecting:

 println("Connecting: \(peerID.displayName)")

 case MCSessionState.NotConnected:

 println("Not Connected: \(peerID.displayName)")

 }

}

Time for the important stuff: sending and receiving data. Now, obviously the data you will
send and receive depends on what your app does, so you will need to customize this code
to fit your needs. In the example I'm going to give, we'll use sending and receiving images,
but you could just as easily send strings or anything else.

So, here's how to encode an image into an NSData then send that to all connected peers:

func sendImage(img: UIImage) {

 if mcSession.connectedPeers.count > 0 {

 if let imageData = UIImagePNGRepresentation(img) {

 do {

 try mcSession.sendData(imageData, toPeers:
mcSession.connectedPeers, withMode: .Reliable)

 } catch let error as NSError {

www.hackingwithswift.com 1178

 } catch let error as NSError {

 let ac = UIAlertController(title: "Send error", message:
error.localizedDescription, preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

 }

 }

 }

}

To receive that on the other side, you need a method like this:

func session(session: MCSession!, didReceiveData data: NSData!,
fromPeer peerID: MCPeerID!) {

 if let image = UIImage(data: data) {

 dispatch_async(dispatch_get_main_queue()) { [unowned self] in

 // do something with the image

 }

 }

}

Note that I've explicitly pushed the work to the main thread so that you're safe to do UI work.

All that remains now is to either host a session or join a session. Add these two methods to
your code, then call whichever one you need:

func startHosting(action: UIAlertAction!) {

 mcAdvertiserAssistant = MCAdvertiserAssistant(serviceType: "hws-
kb", discoveryInfo: nil, session: mcSession)

 mcAdvertiserAssistant.start()

}

www.hackingwithswift.com 1179

}

func joinSession(action: UIAlertAction!) {

 let mcBrowser = MCBrowserViewController(serviceType: "hws-kb",
session: mcSession)

 mcBrowser.delegate = self

 presentViewController(mcBrowser, animated: true, completion: nil)

}

Note: to test this code you'll need either two iOS devices or one device and the simulator.

For more information see Hacking with Swift tutorial 25.

How to create rich formatted text strings using
NSAttributedString
Availability: iOS 6.0 or later.

Attributed strings are strings with formatting attached, which means fonts, colors, alignment,
line spacing and more. They are supported in many places around iOS, which means you
can assign a fully formatted string to a UILabel and have it look great with no further work.

Please keep in mind, when working with fonts it's preferable to use Dynamic Type where
possible so that a user's font size settings are honored. The example code below creates an
attributed string using the "Headline" Dynamic Type size, then colors it purple. That is then
placed into a UILabel by setting its attributedText property:

let titleAttributes = [NSFontAttributeName:
UIFont.preferredFontForTextStyle(UIFontTextStyleHeadline),
NSForegroundColorAttributeName: UIColor.purpleColor()]

let titleString = NSAttributedString(string: "Read all about it!",
attributes: titleAttributes)

myLabel.attributedText = titleString

www.hackingwithswift.com 1180

For more information see Hacking with Swift tutorial 32.

How to detect when your app moves to the background
Availability: iOS 4.0 or later.

There are two ways to be notified when your app moves to the background: implement the
applicationWillResignActive() method in your app delegate, or register for the
UIApplicationWillResignActiveNotification notification anywhere in your app. This
particular notification is sent as soon as your app loses focus, meaning that it's triggered
when the user taps the home button once (to return to the home screen) or double taps the
home button (to enter multi-tasking).

If you want to go down the app delegate route, you'll find a stub for
applicationWillResignActive() already in your AppDelegate.swift file. If you want to look for
the notification, use this:

override func viewDidLoad() {

 let notificationCenter = NSNotificationCenter.defaultCenter()

 notificationCenter.addObserver(self, selector:
"appMovedToBackground", name:
UIApplicationWillResignActiveNotification, object: nil)

}

func appMovedToBackground() {

 print("App moved to background!")

}

For more information see Hacking with Swift tutorial 28.

How to detect which country a user is in

www.hackingwithswift.com 1181

Availability: iOS 2.0 or later.

Being able to provide users with location-specific information immediately makes your app
more useful, but asking for a precise location brings up a permission alert and might make
them suspicious. Fortunately there's a coarse-grained way you can figure out a user's locate
without asking for location permission: NSLocale.

A locale is a user's region setting on their device, and you can read it without asking for
permission. For example, if the locale is en-US it means they speak English and are in the
US; if it's fr-CA it means they speak French are in Canada. This is all wrapped up inside
NSLocale and you can query various information from it, but for our simple purpose we're
just going to ask what country the user is in:

let locale = NSLocale.currentLocale()

if let country = locale.objectForKey(NSLocaleCountryCode) as? String
{

 if country == "US" {

 print("An American")

 } else {

 print("Not an American")

 }

}

Now, there is a catch, but this is actually a bonus feature in my eyes: if a user travels abroad,
their device will still be configured for their home country, so an American visting France will
still say "US". Yes, that means you can't use it for location information, but actually it works
out better for a lot of apps – for example, why would an American want to see distances in
metres rather than miles just because they are traveling?

How to find the user's documents directory
Availability: iOS 2.0 or later.

Every iOS app gets a slice of storage just for itself, meaning that you can read and write your

www.hackingwithswift.com 1182

app's files there without worrying about colliding with other apps. This is called the user's
documents directory, and it's exposed both in code (as you'll see in a moment) and also
through iTunes file sharing.

Unfortunately, the code to find the user's documents directory isn't very memorable, so I
nearly always use this helpful function – and now you can too!

func getDocumentsDirectory() -> String {

 let paths =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMa
sk, true)

 let documentsDirectory = paths[0]

 return documentsDirectory

}

For more information see Hacking with Swift tutorial 10.

How to format dates with an ordinal suffix using
NSNumberFormatter's OrdinalStyle
Availability: iOS 9 or later.

As of iOS 9.0, Apple introduced a simple way to make ordinal style numbers, which is a
fancy way of saying 1st, 2nd, 3rd or 100th – the kind of numbers you normally write for
dates, for example. This uses the new NSNumberFormatterStyle.OrdinalStyle style of
writing numbers with NSNumberFormatter, like this:

let formatter = NSNumberFormatter()

formatter.numberStyle = .OrdinalStyle

let first = formatter.stringFromNumber(1)

let second = formatter.stringFromNumber(2)

let tenth = formatter.stringFromNumber(10)

let oneThousandAndFirst = formatter.stringFromNumber(1001)

www.hackingwithswift.com 1183

How to generate a random identifier using NSUUID
Availability: iOS 6.0 or later.

A UUID is a universally unique identifier, which means if you generate a UUID right now using
NSUUID it's guaranteed to be unique across all devices in the world. This means it's a great
way to generate a unique identifier for users, for files, or anything else you need to reference
individually – guaranteed.

Here's how to create a UUID as a string:

let uuid = NSUUID().UUIDString

How to generate random numbers in iOS 8 and below
Availability: iOS 2.0 or later.

iOS 9.0 introduces Gameplay and its great new random tools, but if you have to support iOS
8.0 and earlier here's the code you're looking for:

let randNum = arc4random_uniform(6)

That will generate a number between 0 and 5. If you're looking for a random number
between any two numbers, try this helper function:

func RandomInt(min min: Int, max: Int) -> Int {

 if max < min { return min }

 return Int(arc4random_uniform(UInt32((max - min) + 1))) + min

}

www.hackingwithswift.com 1184

That generates numbers inclusive, meaning that RandomInt(0, 6) can return 0, 6, or any
value in between.

For more information see Hacking with Swift tutorial 35.

How to handle the HTTPS requirements in iOS 9 with App
Transport Security
Availability: iOS 9.0 or later.

As of iOS 9.0, you can't work with HTTP web data by default, because it's blocked by
something called App Transport Security that effectively requires data to be transmitted
securely. If possible, you should switch to HTTPS and use that instead, but if that's not
possible for some reason – e.g. if you're working with a third-party website – then you need
to tell iOS to make exceptions for you.

Note: the very fact that iOS calls these "exceptions" does imply the exception option
may go away in the future.Exceptions be defined per-site or globally, although if you're
going to make exceptions obviously it's preferable to do it for individual sites. This is all set
inside your application's Info.plist file, and this is one of the very few times when editing your
plist as source code is faster than trying to use the GUI editor in Xcode. So, right-click on
your Info.plist and choose Open As > Source Code.

Your plist should end like this:

</dict>

</plist>

Just before that, I'd like you to paste this:

<key>NSAppTransportSecurity</key>

<dict>

 <key>NSExceptionDomains</key>

www.hackingwithswift.com 1185

 <key>NSExceptionDomains</key>

 <dict>

 <key>hackingwithswift.com</key>

 <dict>

 <key>NSIncludesSubdomains</key>

 <true/>

 <key>NSThirdPartyExceptionAllowsInsecureHTTPLoads</key>

 <true/>

 </dict>

 </dict>

</dict>

That requests an exception for the site hackingwithswift.com so that it can be loaded using
regular HTTP rather than HTTPS. Note that I've set NSIncludesSubdomains to be true
because the site redirects you to www.hackingwithswift.com, which is a subdomain.

(Very observant readers might note that hackingwithswift.com actually supports HTTPS
and thus doesn't need App Transport Security, but you do still need to point to https://
otherwise the request will fail.)

If you want to add a global exception – effectively to mimic pre-iOS 9.0 behavior – you'll want
to use this instead:

<key>NSAppTransportSecurity</key>

<dict>

 <key>NSAllowsArbitraryLoads</key>

 <true/>

</dict>

Again, let me advise caution: these exceptions could go away in any future release, so please
don't rely extensively on them.

www.hackingwithswift.com 1186

How to identify an iOS device uniquely with
identifierForVendor
Availability: iOS 6.0 or later.

Early iOS releases gave every device a unique identifier, but this was soon abused by
developers to identify individual users uniquely – something that Apple really dislikes. So, as
of iOS 6.0 Apple removed the truly unique identifier and instead introduced an identifier for
each vendor: a UUID that's the same for all apps for a given developer for each user, but
varies between developers and between devices.

That is, if a user has five of your apps installed and five of mine, your five will all share the
same vendor identifier, and my five will all share the same vendor identifier, but our two
identifiers will be different.

Here's how to use it:

if let uuid =
UIDevice.currentDevice().identifierForVendor?.UUIDString {

 print(uuid)

}

How to make an action repeat using NSTimer
Availability: iOS 2.0 or later.

Timers are a great way to run code on a repeating basis, and iOS has the NSTimer class to
handle it for you. First, create a property of the type NSTimer!. For example:

var gameTimer: NSTimer!

You can then create that timer and tell it to execute every five seconds, like this:

www.hackingwithswift.com 1187

gameTimer = NSTimer.scheduledTimerWithTimeInterval(5, target: self,
selector: "runTimedCode", userInfo: nil, repeats: true)

The runTimedCode selector means that the timer will call a method named
runTimedCode() every five seconds until the timer is terminated, so you'll need to add this
method to your class:

func runTimedCode() {

}

Important note: because your object has a property to store the timer, and the timer calls a
method on the object, you have a strong reference cyle that means neither object can be
freed. To fix this, make sure you invalidate the timer when you're done with it, such as when
your view is about to disappear:

gameTimer.invalidate()

For more information see Hacking with Swift tutorial 20.

How to make tappable links in NSAttributedString
Availability: iOS 6.0 or later.

You can make tappable hyperlinks in any attributed string, which in turn means you can add
tappable hyperlinks to any UIKit control. If you're working with UITextView (which is likely,
let's face it), you get basic tappable hyperlink just by enabling the "Links" data detector in
Interface Builder, but that doesn't work for arbitrary strings – for example, maybe you want
the word "click here" to tappable.

www.hackingwithswift.com 1188

Below is a complete example of arbitrary tappable hyperlinks using a UITextView. Make sure
your text view has "Selectable" enabled, as this is required by iOS:

class ViewController: UIViewController, UITextViewDelegate {

 @IBOutlet var textView: UITextView!

 override func viewDidLoad() {

 let attributedString = NSMutableAttributedString(string: "Want to
learn iOS? You should visit the best source of free iOS tutorials!")

 attributedString.addAttribute(NSLinkAttributeName, value:
"https://www.hackingwithswift.com", range: NSMakeRange(19, 55))

 textView.attributedText = attributedString

 }

 func textView(textView: UITextView, shouldInteractWithURL URL:
NSURL, inRange characterRange: NSRange) -> Bool {

 UIApplication.sharedApplication().openURL(URL)

 return false

 }

}

There are two important things to note about this technique. First, the tap cannot be very
brief, which means quick taps are ignored by iOS. If you find find this annoying you might
consider something like this: https://gist.github.com/benjaminbojko/
c92ac19fe4db3302bd28. Second, this technique is easily used with custom URL schemes,
e.g. yourapp://, which you can catch and parse inside shouldInteractWithURL to trigger
your own behaviors.

How to open a URL in Safari
Availability: iOS 2.0 or later.

www.hackingwithswift.com 1189

If you want the user to exit your app and show a website in Safari, it's just one line of code in
Swift. I'll make it three here because I'll create the URL in the code too, then safely unwrap it:

if let url = NSURL(string: "https://www.hackingwithswift.com") {

 UIApplication.sharedApplication().openURL(url)

}

It's worth adding that since iOS 9 you have the option of using SFSafariViewController
inside your app, which recreates the entire Safari experience right inside your app. See
project 32 for a tutorial on how to do this.

How to parse JSON using NSJSONSerialization
Availability: iOS 5.0 or later.

The built-in iOS way of parsing JSON is called NSJSONSerialization and it can convert a
JSON string into a collection of dictionaries, arrays, strings and numbers in just a few lines of
code.

In the example below, I create a dummy piece of JSON that contains three names in an array
cunningly called "names". This then gets sent to NSJSONSerialization (via convert it into an
NSData, which is how NSJSONSerialization likes to receive its content), and I conditionally
pull out and print the names array:

let str = "{\"names\": [\"Bob\", \"Tim\", \"Tina\"]}"

let data = str.dataUsingEncoding(NSUTF8StringEncoding,
allowLossyConversion: false)!

do {

 let json = try NSJSONSerialization.JSONObjectWithData(data,
options: []) as! [String: AnyObject]

 if let names = json["names"] as? [String] {

 print(names)

 }

www.hackingwithswift.com 1190

 }

} catch let error as NSError {

 print("Failed to load: \(error.localizedDescription)")

}

There are a couple of things that might confuse you there. First, because parsing JSON will
fail if the JSON isn't valid, you need to use try/catch and have some sort of error handling.
Second, you need to force typecast the JSON to be a dictionary of type [String: AnyObject]
so that you can start working with your JSON values. Third, you don't know for sure that any
values exist inside the JSON, so you need to conditionally check for and unwrap the names
value.

For more information see Hacking with Swift tutorial 7.

How to post messages using NSNotificationCenter
Availability: iOS 2.0 or later.

iOS notifications are a simple and powerful way to send data in a loosely coupled way. That
is, the sender of a notification doesn't have to care about who (if anyone) receives the
notification, it just posts it out there to the rest of the app and it could be picked up by lots of
things or nothing depending on your app's state.

As a basic example, you might want various parts of your app to do some work when the
user logs in – you might want some views to refresh, you might want a database to update
itself, and so on. To do this, just post a notification name like this:

let nc = NSNotificationCenter.defaultCenter()

nc.postNotificationName("UserLoggedIn", object: nil)

Note: it is preferable, for type safety, to define your notification names as static strings that
belong to a class or struct or other global form so that you don't make a typo and introduce
bugs.

www.hackingwithswift.com 1191

To register to catch a notification being posted, use this:

nc.addObserver(self, selector: "userLoggedIn", name: "UserLoggedIn",
object: nil)

That will call a userLoggedIn() method when your notification is posted.

How to read the contents of a directory using NSFileManager
Availability: iOS 2.0 or later.

If you want to work with files NSFileManager almost certainly has the answer, and it's no
different in this case: it has a method called contentsOfDirectoryAtPath() that lists all the
files in a specific directory. For example, we could have it list all the files in our app's
resource directory like this:

let fm = NSFileManager.defaultManager()

let path = NSBundle.mainBundle().resourcePath!

do {

 let items = try fm.contentsOfDirectoryAtPath(path)

 for item in items {

 print("Found \(item)")

 }

} catch {

 // failed to read directory – bad permissions, perhaps?

}

In this particular case the try should never fail, but you should still have the catch block in
there just in case.

www.hackingwithswift.com 1192

For more information see Hacking with Swift tutorial 1.

How to run code after a delay using dispatch_after() and
performSelector
Availability: iOS 4.0 or later.

There are two ways to run code after a delay using Swift: GCD and
performSelector(_:withObject:afterDelay:). The first one has some clumsy syntax because
you need to specify a time in nanoseconds – most people just use the constant
NSEC_PER_SEC to let them specify seconds instead.

The easiest way to use GCD to run code after a delay is by using a helper function like this
one:

func runAfterDelay(delay: NSTimeInterval, block: dispatch_block_t) {

 let time = dispatch_time(DISPATCH_TIME_NOW, Int64(delay *
Double(NSEC_PER_SEC)))

 dispatch_after(time, dispatch_get_main_queue(), block)

}

With that function in place you can now use code like this:

runAfterDelay(0.5) {

 yourCodeHere()

}

An alternative option is to use performSelector(_:withObject:afterDelay:), which lets you
specify a method to call after a certain time has elapsed – and helpfully that time is specified
in seconds, which makes it easier to remember!

www.hackingwithswift.com 1193

To call the yourCodeHere() method after 1 second, you would use this code:

performSelector("yourCodeHere", withObject: nil, afterDelay: 1)

How to run code asynchronously using dispatch_async()
Availability: iOS 4.0 or later.

iOS gives you two ways to run code asynchronously: GCD and
performSelectorInBackground(). The first option looks like this:

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED,
0)) {

 runSomeCodeHere()

}

The QOS_CLASS_USER_INITIATED quality of service setting is the highest priority after
QOS_CLASS_USER_INTERACTIVE. You can also use QOS_CLASS_UTILITY (lower
priority) or QOS_CLASS_BACKGROUND (lowest priority.)

The second option looks like this:

performSelectorInBackground("runSomeCodeHere", withObject: nil)

You'll need to replace "runSomeCodeHere" with the name of an actual method. If you want
to pass a parameter, make sure and use "runSomeCodeHere:" and provide a value for the
withObject parameter.

For more information see Hacking with Swift tutorial 9.

www.hackingwithswift.com 1194

How to run code at a specific time
Availability: iOS 2.0 or later.

You can use performSelector(_:withObject:afterDelay:) to run a method after a certain
number of seconds have passed, but if you want to run code at a specific time – say at
exactly 4pm – then you should use NSTimer instead. This class is great for executing code
repeatly at a specific time interval, but it's also great for running code at an exact time that
you specify.

This is accomplished using an NSTimer constructor that accepts an NSDate for when the
timer should fire. You can make this date however you want, which is what makes this
approach so flexible.

As a simple example, this will create a timer that calls a runCode() method in five seconds:

let date = NSDate().dateByAddingTimeInterval(5)

let timer = NSTimer(fireDate: date, interval: 0, target: self,
selector: "runCode", userInfo: nil, repeats: false)

NSRunLoop.mainRunLoop().addTimer(timer, forMode:
NSRunLoopCommonModes)

Notice how you can specify a interval parameter? That's for when you set repeats to be
true. If you have an NSDate 5 seconds from now and an interval of 1 (after setting repeat to
be true!), it means "call runCode() after five seconds, then every one second after that."

How to run code on the main thread using dispatch_async()
Availability: iOS 4.0 or later.

Swift offers you two ways to run code on the main thread: GCD and
performSelectorOnMainThread. The first option looks like this:

dispatch_async(dispatch_get_main_queue()) {

www.hackingwithswift.com 1195

dispatch_async(dispatch_get_main_queue()) {

 yourCodeHere()

}

The second option looks like this:

performSelectorOnMainThread("yourCodeHere", withObject: nil,
waitUntilDone: false)

The GCD option (the first one) has the advantage that you can write your code inline,
whereas the second one requires a dedicated method you can call.

For more information see Hacking with Swift tutorial 9.

How to save and load objects with NSKeyedArchiver and
NSKeyedUnarchiver
Availability: iOS 2.0 or later.

You can write any kind of object to disk as long as it supports the NSCoding protocol –
which includes strings, arrays, dictionaries, UIView, UIColor and more right out of the box.
To write to disk, use this:

let data = NSKeyedArchiver.archivedDataWithRootObject(self)

let filename =
getDocumentsDirectory().stringByAppendingPathComponent(uuid)

data.writeToFile(filename, atomically: true)

That call to getDocumentsDirectory() is a small helper function I frequently use to write files
to disk:

www.hackingwithswift.com 1196

func getDocumentsDirectory() -> String {

 let paths =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMa
sk, true)

 let documentsDirectory = paths[0]

 return documentsDirectory

}

When you want to read your object back you need to use unarchiveObjectWithFile(), but be
warned: the file might not exist or might not be unarchivable, so this method returns an
optional value that you need to unwrap carefully.

For example, if you want to unarchive an array of strings, you would use this code:

if let names = NSKeyedUnarchiver.unarchiveObjectWithFile(filename)
as? [String] {

 savedNames = names

}

How to save user settings using NSUserDefaults
Availability: iOS 2.0 or later.

All iOS apps have a built in data dictionary that stores small amounts of user settings for as
long as the app is installed. This system, called NSUserDefaults can save integers,
booleans, strings, arrays, dictionaries, dates and more, but you should be careful not to save
too much data because it will slow the launch of your app.

Here's an example of setting some values:

let defaults = NSUserDefaults.standardUserDefaults()

defaults.setInteger(25, forKey: "Age")

www.hackingwithswift.com 1197

defaults.setInteger(25, forKey: "Age")

defaults.setBool(true, forKey: "UseTouchID")

defaults.setDouble(M_PI, forKey: "Pi")

defaults.setObject("Paul Hudson", forKey: "Name")

defaults.setObject(NSDate(), forKey: "LastRun")

When you set values like that, they become permanent – you can quit the app then re-launch
and they'll still be there, so it's the ideal way to store app configuration data.

As mentioned, you can use NSUserDefaults to store arrays and dictionaries, like this:

let array = ["Hello", "World"]

defaults.setObject(array, forKey: "SavedArray")

let dict = ["Name": "Paul", "Country": "UK"]

defaults.setObject(dict, forKey: "SavedDict")

When it comes to reading data back, it's still easy but has an important proviso:
NSUserDefaults will return a default value if the setting can't be found. You need to know
what these default values are so that you don't confuse them with real values that you set.
Here they are:

 • integerForKey() returns an integer if the key existed, or 0 if not.
 • boolForKey() returns a boolean if the key existed, or false if not.
 • floatForKey() returns a float if the key existed, or 0.0 if not.
 • doubleForKey() returns a double if the key existed, or 0.0 if not.
 • objectForKey() returns AnyObject? so you need to conditionally typecast it to your data
type.

With that in mind, you can read values back like this:

let defaults = NSUserDefaults.standardUserDefaults()

www.hackingwithswift.com 1198

let defaults = NSUserDefaults.standardUserDefaults()

let age = defaults.integerForKey("Age")

let useTouchID = defaults.boolForKey("UseTouchID")

let pi = defaults.doubleForKey("Pi")

When retrieving objects, the result is optional. This means you can either accept the
optionality, or typecast it to a non-optional type and use the nil coalescing operator to handle
missing values. For example:

let array = defaults.objectForKey("SavedArray") as? [String] ??
[String]()

For more information see Hacking with Swift tutorial 12.

How to set local alerts using UILocalNotification
Availability: iOS 8.0 or later.

Local notifications are messages that appear on the user's lock screen when your app isn't
running. The user can then swipe to unlock their device and go straight to your app, at which
point you can act on the notification.

As you might imagine, you need to ask for permission in order to show messages on the lock
screen. Here's how that's done:

let notificationSettings =
UIUserNotificationSettings(forTypes: .Alert | .Badge | .Sound,
categories: nil)

UIApplication.sharedApplication().registerUserNotificationSettings(no
tificationSettings)

www.hackingwithswift.com 1199

That will show an alert to the user asking them if they want to let you show notifications.
When it comes to scheduling a notification, you should check your permission setting to see
whether you have permission before you try to do anything.

Here's the code required to show a local notification, including how to first check you have
permission:

func scheduleLocal(sender: AnyObject) {

 let settings =
UIApplication.sharedApplication().currentUserNotificationSettings()

 if settings.types == .None {

 let ac = UIAlertController(title: "Can't schedule", message:
"Either we don't have permission to schedule notifications, or we
haven't asked yet.", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,
handler: nil))

 presentViewController(ac, animated: true, completion: nil)

 return

 }

 let notification = UILocalNotification()

 notification.fireDate = NSDate(timeIntervalSinceNow: 5)

 notification.alertBody = "Hey you! Yeah you! Swipe to unlock!"

 notification.alertAction = "be awesome!"

 notification.soundName = UILocalNotificationDefaultSoundName

 notification.userInfo = ["CustomField1": "w00t"]

UIApplication.sharedApplication().scheduleLocalNotification(notificat
ion)

}

The fireDate property means this notification will appear five seconds after you schedule it,

www.hackingwithswift.com 1200

although as you might imagine you probably want to specify an exact date in here. The
alertAction property should complete the string "Swipe to…", so in this case it will read
"Swipe to be awesome!"

That code also sets a userInfo property on the notification, which is a dictionary where you
can store any kind of context data you want. This dictionary gets given back to you when the
user unlocks their device using your notification, so you can act on the alert in a meaningful
way.

If your app gets launched when the user unlocked via a local notification, you should check
for the presence of the UIApplicationLaunchOptionsLocalNotificationKey key in your app
delegate's didFinishLaunchingWithOptions method, like this:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {

 if let options = launchOptions {

 if let notification =
options[UIApplicationLaunchOptionsLocalNotificationKey] as?
UILocalNotification {

 if let userInfo = notification.userInfo {

 let customField1 = userInfo["CustomField1"] as!
String

 // do something neat here

 }

 }

 }

 return true

}

That code pulls out the CustomField1 value that was set in the userInfo earlier.

It's also possible that your app receives a local notification while it's being used by the user,

www.hackingwithswift.com 1201

in which case your app delegate will have a different method called:

func application(application: UIApplication,
didReceiveLocalNotification notification: UILocalNotification) {

 if let userInfo = notification.userInfo {

 let customField1 = userInfo["CustomField1"] as! String

 println("didReceiveLocalNotification: \(customField1)")

 }

}

For more information see Hacking with Swift tutorial 21.

How to spell out numbers using NSNumberFormatter's
SpellOutStyle
Availability: iOS 2.0 or later.

iOS makes it easy to convert numbers like 10 or 100 into their written equivalents: "ten" and
"one hundred", and it even handles other languages. For example, to convert the number
556 into "five hundred fifty-six", you would use this code:

let formatter = NSNumberFormatter()

formatter.numberStyle = NSNumberFormatterStyle.SpellOutStyle

let english = formatter.stringFromNumber(556)

If you wanted to get that in Spanish, you would set a locale like this:

formatter.locale = NSLocale(localeIdentifier: "es_ES")

let spanish = formatter.stringFromNumber(556)

www.hackingwithswift.com 1202

Running that code would make the english constant equal to five hundred fifty-six and the
spanish constant equal to quinientos cincuenta y seis.

How to stop the screen from going to sleep
Availability: iOS 2.0 or later.

You can stop the iOS screen sleeping by using the idleTimerDisabled property of your
application. When set to true, this means the screen will never dim or go to sleep while your
app is running, so be careful – you don't want to waste your user's battery life!

Here's an example:

UIApplication.sharedApplication().idleTimerDisabled = true

How to store NSUserDefaults options in iCloud
Availability: iOS 5.0 or later.

iOS has a built-in iCloud sync system called NSUbiquitousKeyValueStore, but to be honest
it's pretty unpleasant to work with. Fortunately, other developers have written simple
wrappers around it so that you can forget about iCloud and focus on the interesting things
instead – i.e., the rest of your app.

One such example is called MKiCloudSync and it's available from here. It's open source
and so easy to use you literally don't notice that it's there once you've added it to your app –
 it just silently syncs your NSUserDefaults values to and from iCloud.

To use it, go here and click Download Zip. Inside the zip file you'll find MKiCloudSync.h and
MKiCloudSync.m, and you should drag them both into your Xcode project. Xcode will ask
you if you want to create an Objective-C bridging header, and you should click "Create
Bridging Header" - this is required because MKiCloudSync is written in Objective-C rather
than Swift.

To actually use the library, open your new bridging header (it'll be called something like

www.hackingwithswift.com 1203

YourProject-Bridging-Header.h) and add this:

#import "MKiCloudSync.h"

Now open your AppDelegate.swift file, find the didFinishLaunchingWithOptions method,
and add this line to it:

MKiCloudSync.startWithPrefix("sync")

The "sync" part is important, because changes are you won't want to sync everything to
iCloud. With that prefix, MKiCloudSync will copy to iCloud only NSUserDefaults keys that
start with sync – you can now choose what you want to sync just by naming your keys
appropriately.

There is one final, important thing to do: you need to enable iCloud for your app. This is done
inside the Capabilities tab of your target's settings – find iCloud, then flick its switch to be
On.

How to synchronize code to drawing using CADisplayLink
Availability: iOS 3.1 or later.

Lots of beginners think NSTimer is a great way to handle running apps or games so that
update code is executed every time the screen is redrawn. Their logic is simple: update the
app every 60th of a second and you're perfectly placed for smooth redraws. The problem is,
they are forgetting that NSTimer doesn't offer precise firing and can drift earlier or later than
requested updates, and also has no idea about screen redraws and so could happily fire
10ms after a screen redraw just happened – and when you're working to 16.666ms frames,
10ms is a long time!

A smarter and faster solution is the CADisplayLink class, which automatically calls a method
you define as soon as a screen redraw happens, so you always have maximum time to
execute your update code. It's extremely simple to use – here's an example to get you
started:

www.hackingwithswift.com 1204

let displayLink = CADisplayLink(target: self, selector: "update")

displayLink.addToRunLoop(NSRunLoop.currentRunLoop(), forMode:
NSDefaultRunLoopMode)

That will call a method called update() every 60th of a second by default. You can see it in
action with this method stub:

func update() {

 print("Updating!")

}

How to use Core Motion to read accelerometer data
Availability: iOS 4.0 or later.

Core Motion makes it ridiculously easy to read the accelerometer from iPhones and iPads,
and it even takes care of managing how the accelerometer and gyroscope work together to
report orientation. To get started import the Core Motion framework like this:

import CoreMotion

Now create a property that can store a CMMotionManager, like this:

var motionManager: CMMotionManager!

When you're ready to start reading accelerometer data (this will be inside viewDidLoad() for
most people), go ahead and create your motion manager then call its
startAccelerometerUpdates() method:

www.hackingwithswift.com 1205

motionManager = CMMotionManager()

motionManager.startAccelerometerUpdates()

Finally, read the accelerometer data as often as you want. It's optional, though, so make sure
you unwrap it carefully.

For example, if you want to change the gravity of a SpriteKit physics world so that tipping
your device makes things roll around, you'd look for something like this in your update()
method:

if let accelerometerData = motionManager.accelerometerData {

 physicsWorld.gravity = CGVector(dx:
accelerometerData.acceleration.y * -50, dy:
accelerometerData.acceleration.x * 50)

}

For more information see Hacking with Swift tutorial 26.

How to use Core Spotlight to index content in your app
Availability: iOS 9.0 or later.

One particularly popular feature in iOS 9.0 is the ability to have your app's content appear
inside the iOS Spotlight search so that users can search it alongside their other device
content.

First up, add these two imports to your class:

import CoreSpotlight

import MobileCoreServices

www.hackingwithswift.com 1206

Now I'm going to give you the code to handle indexing an item, and for this we'll create a
method called indxItem() that takes three parameters: the title of the item, a description
string for the item, plus a unique identifier. What that unique identifier is depends on you
project, but it should be a string. Here's the method:

func indexItem(title: String, desc: String, identifier: String) {

 let attributeSet = CSSearchableItemAttributeSet(itemContentType:
kUTTypeText as String)

 attributeSet.title = title

 attributeSet.contentDescription = desc

 let item = CSSearchableItem(uniqueIdentifier: "\(identifier)",
domainIdentifier: "com.hackingwithswift", attributeSet: attributeSet)

CSSearchableIndex.defaultSearchableIndex().indexSearchableItems([item
]) { (error: NSError?) -> Void in

 if let error = error {

 print("Indexing error: \(error.localizedDescription)")

 } else {

 print("Search item successfully indexed!")

 }

 }

}

That wraps the title and description up inside a CSSearchableItemAttributeSet, which in
turn goes inside a CSSearchableItem, and from there to Spotlight to index. If you have
several items to index you can have them processed all at once and it works faster.

Note that you should change domainIdentifier to your own domain, e.g. com.yoursite.

Now that your item is indexed, it will be available in Spotlight searches immediately. If a user
finds one of your index items and taps it, your app will get launched and you should be able

www.hackingwithswift.com 1207

to pull out the unique identifier of the item that was tapped – this tells you what item was
tapped so that you can take appropriate action.

Put this code inside your app delegate:

func application(application: UIApplication, continueUserActivity
userActivity: NSUserActivity, restorationHandler: ([AnyObject]?) ->
Void) -> Bool {

 if userActivity.activityType == CSSearchableItemActionType {

 if let uniqueIdentifier = userActivity.userInfo?
[CSSearchableItemActivityIdentifier] as? String {

 doSomethingCoolWith(uniqueIdentifier)

 }

 }

 return true

}

That's it!

For the sake of completeness, here's how you remove an item from the Spotlight index:

func deindexItem(identifier: String) {

CSSearchableIndex.defaultSearchableIndex().deleteSearchableItemsWithI
dentifiers(["\(identifier)"]) { (error: NSError?) -> Void in

 if let error = error {

 print("Deindexing error: \(error.localizedDescription)")

 } else {

 print("Search item successfully removed!")

 }

 }

}

www.hackingwithswift.com 1208

}

For more information see Hacking with Swift tutorial 32.

How to use Touch ID to authenticate users by fingerprint
Availability: iOS 8.0 or later.

Touch ID is an easy and secure way for users to authenticate themselves, so its no surprise
that it's caught on so quickly among apps. Authenticating with Touch ID automatically uses
the fingerprints registered by the user when they set up Touch ID, and you never have access
to those fingerprints, which means it's both low-friction and extra-secure.

To get started, you need to import the LocalAuthentication framework like this:

import LocalAuthentication

The actual act of authenticating users has a number of possible results, and you need to
catch them all:

 • The user might not have a Touch ID-capable device.
 • The user might have a Touch ID-capable device, but might not have configured it.
 • The user might hit cancel when asked to authenticate.
 • The user might ask to enter a passcode rather than use Touch ID.

The first three are easily handled just by showing a message with useful information, but the
last one is a quirk of Touch ID: Apple insists that your app provide a passcode method of
authentication as a back up. More annoyingly, you need to request and store this passcode
yourself – it's not even done by Apple using the system unlock code!

Asking for and setting a passcode is easy enough, so I'll leave that to you. The important bit
is asking for Touch ID authentication, which is done using this code:

func authenticateUser() {

 var context = LAContext()

www.hackingwithswift.com 1209

 var context = LAContext()

 var error: NSError?

 if
context.canEvaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics,
error: &error) {

 var reason = "Identify yourself!"

context.evaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics,
localizedReason: reason) {

 [unowned self] (success: Bool, authenticationError:
NSError?) -> Void in

 dispatch_async(dispatch_get_main_queue()) {

 if success {

 self.runSecretCode()

 } else {

 if let error = authenticationError {

 if error.code == LAError.UserFallback.rawValue {

 let ac = UIAlertController(title: "Passcode? Ha!",
message: "It's Touch ID or nothing – sorry!", preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK",
style: .Default, handler: nil))

 self.presentViewController(ac, animated: true,
completion: nil)

 return

 }

 }

 let ac = UIAlertController(title: "Authentication failed",
message: "Your fingerprint could not be verified; please try again.",
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default,

www.hackingwithswift.com 1210

handler: nil))

 self.presentViewController(ac, animated: true, completion:
nil)

 }

 }

 }

 } else {

 let ac = UIAlertController(title: "Touch ID not available",
message: "Your device is not configured for Touch ID.",
preferredStyle: .Alert)

 ac.addAction(UIAlertAction(title: "OK", style: .Default, handler:
nil))

 self.presentViewController(ac, animated: true, completion: nil)

 }

}

For more information see Hacking with Swift tutorial 28.

NSTextEffectLetterpressStyle: How to add a letterpress effect
to text
Availability: iOS 7.0 or later.

You can add a subtle embossing effect to any text in your app using NSAttributedString and
NSTextEffectLetterpressStyle. As an example, this code creates an attributed string using
24-point Georga Bold in red, with Apple's letterpress effect applied, then writes it into a label:

let attrs = [NSForegroundColorAttributeName: UIColor.redColor(),

 NSFontAttributeName: UIFont(name: "Georgia-Bold", size: 24)!,

 NSTextEffectAttributeName: NSTextEffectLetterpressStyle]

let string = NSAttributedString(string: "Hello, world!", attributes:
attrs)

www.hackingwithswift.com 1211

attrs)

yourLabel.attributedText = string

UIColor
How to convert a HTML name string into a UIColor
Availability: iOS 2.0 or later.

HTML color names let you use familiar titles like "steel blue" and "mint cream" rather than
hex values, but sadly these standardised names aren't available in iOS – or at least not by
default. Fortunately, it's easy to add an extension to UIColor that maps these names to
hexadecimal color values, then add another extension to convert hex colors to UIColors.
Here's the code:

extension UIColor {

 public convenience init?(hexString: String) {

 let r, g, b, a: CGFloat

 if hexString.hasPrefix("#") {

 let start = hexString.startIndex.advancedBy(1)

 let hexColor = hexString.substringFromIndex(start)

 if hexColor.characters.count == 8 {

 let scanner = NSScanner(string: hexColor)

 var hexNumber: UInt64 = 0

 if scanner.scanHexLongLong(&hexNumber) {

 r = CGFloat((hexNumber & 0xff000000) >> 24) / 255

 g = CGFloat((hexNumber & 0x00ff0000) >> 16) / 255

www.hackingwithswift.com 1212

 g = CGFloat((hexNumber & 0x00ff0000) >> 16) / 255

 b = CGFloat((hexNumber & 0x0000ff00) >> 8) / 255

 a = CGFloat(hexNumber & 0x000000ff) / 255

 self.init(red: r, green: g, blue: b, alpha: a)

 return

 }

 }

 }

 return nil

 }

 public convenience init?(name: String) {

 let allColors = [

 "aliceblue": "#F0F8FFFF",

 "antiquewhite": "#FAEBD7FF",

 "aqua": "#00FFFFFF",

 "aquamarine": "#7FFFD4FF",

 "azure": "#F0FFFFFF",

 "beige": "#F5F5DCFF",

 "bisque": "#FFE4C4FF",

 "black": "#000000FF",

 "blanchedalmond": "#FFEBCDFF",

 "blue": "#0000FFFF",

 "blueviolet": "#8A2BE2FF",

 "brown": "#A52A2AFF",

 "burlywood": "#DEB887FF",

 "cadetblue": "#5F9EA0FF",

 "chartreuse": "#7FFF00FF",

 "chocolate": "#D2691EFF",

www.hackingwithswift.com 1213

 "chocolate": "#D2691EFF",

 "coral": "#FF7F50FF",

 "cornflowerblue": "#6495EDFF",

 "cornsilk": "#FFF8DCFF",

 "crimson": "#DC143CFF",

 "cyan": "#00FFFFFF",

 "darkblue": "#00008BFF",

 "darkcyan": "#008B8BFF",

 "darkgoldenrod": "#B8860BFF",

 "darkgray": "#A9A9A9FF",

 "darkgrey": "#A9A9A9FF",

 "darkgreen": "#006400FF",

 "darkkhaki": "#BDB76BFF",

 "darkmagenta": "#8B008BFF",

 "darkolivegreen": "#556B2FFF",

 "darkorange": "#FF8C00FF",

 "darkorchid": "#9932CCFF",

 "darkred": "#8B0000FF",

 "darksalmon": "#E9967AFF",

 "darkseagreen": "#8FBC8FFF",

 "darkslateblue": "#483D8BFF",

 "darkslategray": "#2F4F4FFF",

 "darkslategrey": "#2F4F4FFF",

 "darkturquoise": "#00CED1FF",

 "darkviolet": "#9400D3FF",

 "deeppink": "#FF1493FF",

 "deepskyblue": "#00BFFFFF",

 "dimgray": "#696969FF",

 "dimgrey": "#696969FF",

 "dodgerblue": "#1E90FFFF",

 "firebrick": "#B22222FF",

www.hackingwithswift.com 1214

 "firebrick": "#B22222FF",

 "floralwhite": "#FFFAF0FF",

 "forestgreen": "#228B22FF",

 "fuchsia": "#FF00FFFF",

 "gainsboro": "#DCDCDCFF",

 "ghostwhite": "#F8F8FFFF",

 "gold": "#FFD700FF",

 "goldenrod": "#DAA520FF",

 "gray": "#808080FF",

 "grey": "#808080FF",

 "green": "#008000FF",

 "greenyellow": "#ADFF2FFF",

 "honeydew": "#F0FFF0FF",

 "hotpink": "#FF69B4FF",

 "indianred": "#CD5C5CFF",

 "indigo": "#4B0082FF",

 "ivory": "#FFFFF0FF",

 "khaki": "#F0E68CFF",

 "lavender": "#E6E6FAFF",

 "lavenderblush": "#FFF0F5FF",

 "lawngreen": "#7CFC00FF",

 "lemonchiffon": "#FFFACDFF",

 "lightblue": "#ADD8E6FF",

 "lightcoral": "#F08080FF",

 "lightcyan": "#E0FFFFFF",

 "lightgoldenrodyellow": "#FAFAD2FF",

 "lightgray": "#D3D3D3FF",

 "lightgrey": "#D3D3D3FF",

 "lightgreen": "#90EE90FF",

 "lightpink": "#FFB6C1FF",

 "lightsalmon": "#FFA07AFF",

www.hackingwithswift.com 1215

 "lightsalmon": "#FFA07AFF",

 "lightseagreen": "#20B2AAFF",

 "lightskyblue": "#87CEFAFF",

 "lightslategray": "#778899FF",

 "lightslategrey": "#778899FF",

 "lightsteelblue": "#B0C4DEFF",

 "lightyellow": "#FFFFE0FF",

 "lime": "#00FF00FF",

 "limegreen": "#32CD32FF",

 "linen": "#FAF0E6FF",

 "magenta": "#FF00FFFF",

 "maroon": "#800000FF",

 "mediumaquamarine": "#66CDAAFF",

 "mediumblue": "#0000CDFF",

 "mediumorchid": "#BA55D3FF",

 "mediumpurple": "#9370D8FF",

 "mediumseagreen": "#3CB371FF",

 "mediumslateblue": "#7B68EEFF",

 "mediumspringgreen": "#00FA9AFF",

 "mediumturquoise": "#48D1CCFF",

 "mediumvioletred": "#C71585FF",

 "midnightblue": "#191970FF",

 "mintcream": "#F5FFFAFF",

 "mistyrose": "#FFE4E1FF",

 "moccasin": "#FFE4B5FF",

 "navajowhite": "#FFDEADFF",

 "navy": "#000080FF",

 "oldlace": "#FDF5E6FF",

 "olive": "#808000FF",

 "olivedrab": "#6B8E23FF",

 "orange": "#FFA500FF",

www.hackingwithswift.com 1216

 "orange": "#FFA500FF",

 "orangered": "#FF4500FF",

 "orchid": "#DA70D6FF",

 "palegoldenrod": "#EEE8AAFF",

 "palegreen": "#98FB98FF",

 "paleturquoise": "#AFEEEEFF",

 "palevioletred": "#D87093FF",

 "papayawhip": "#FFEFD5FF",

 "peachpuff": "#FFDAB9FF",

 "peru": "#CD853FFF",

 "pink": "#FFC0CBFF",

 "plum": "#DDA0DDFF",

 "powderblue": "#B0E0E6FF",

 "purple": "#800080FF",

 "rebeccapurple": "#663399FF",

 "red": "#FF0000FF",

 "rosybrown": "#BC8F8FFF",

 "royalblue": "#4169E1FF",

 "saddlebrown": "#8B4513FF",

 "salmon": "#FA8072FF",

 "sandybrown": "#F4A460FF",

 "seagreen": "#2E8B57FF",

 "seashell": "#FFF5EEFF",

 "sienna": "#A0522DFF",

 "silver": "#C0C0C0FF",

 "skyblue": "#87CEEBFF",

 "slateblue": "#6A5ACDFF",

 "slategray": "#708090FF",

 "slategrey": "#708090FF",

 "snow": "#FFFAFAFF",

 "springgreen": "#00FF7FFF",

www.hackingwithswift.com 1217

 "springgreen": "#00FF7FFF",

 "steelblue": "#4682B4FF",

 "tan": "#D2B48CFF",

 "teal": "#008080FF",

 "thistle": "#D8BFD8FF",

 "tomato": "#FF6347FF",

 "turquoise": "#40E0D0FF",

 "violet": "#EE82EEFF",

 "wheat": "#F5DEB3FF",

 "white": "#FFFFFFFF",

 "whitesmoke": "#F5F5F5FF",

 "yellow": "#FFFF00FF",

 "yellowgreen": "#9ACD32FF"

]

 let cleanedName = name.stringByReplacingOccurrencesOfString(" ",
withString: "").lowercaseString

 if let hexString = allColors[cleanedName] {

 self.init(hexString: hexString)

 } else {

 return nil

 }

 }

}

With that done, here's how you create a color:

let steelBlue = UIColor(name: "steel blue")

www.hackingwithswift.com 1218

How to convert a hex color to a UIColor
Availability: iOS 2.0 or later.

Here's a simple extension to UIColor that lets you create colors from hex strings. The new
method is a failable initializer, which means it returns nil if you don't specify a color in the
correct format. It should be a # symbol, followed by red, green, blue and alpha in hex format,
for a total of nine characters. For example, #ffe700ff is gold.

Here's the code:

extension UIColor {

 public convenience init?(hexString: String) {

 let r, g, b, a: CGFloat

 if hexString.hasPrefix("#") {

 let start = hexString.startIndex.advancedBy(1)

 let hexColor = hexString.substringFromIndex(start)

 if hexColor.characters.count == 8 {

 let scanner = NSScanner(string: hexColor)

 var hexNumber: UInt64 = 0

 if scanner.scanHexLongLong(&hexNumber) {

 r = CGFloat((hexNumber & 0xff000000) >> 24) / 255

 g = CGFloat((hexNumber & 0x00ff0000) >> 16) / 255

 b = CGFloat((hexNumber & 0x0000ff00) >> 8) / 255

 a = CGFloat(hexNumber & 0x000000ff) / 255

 self.init(red: r, green: g, blue: b, alpha: a)

 return

www.hackingwithswift.com 1219

 return

 }

 }

 }

 return nil

 }

}

If you wanted it always to return a value, change init? to be init then change the return nil
line at the end to be return UIColor.blackColor() or whatever you'd like the default value to
be.

To use the extension, write code like this:

let gold = UIColor(hexString: "#ffe700ff")

How to create custom colors using UIColor RGB and hues
Availability: iOS 2.0 or later.

Although there are quite a few built-in UIColors, you'll want to create your own very
frequently. This can be done in a number of ways, but the most common is specifying
individual vaues for red, green, blue and alpha, like this:

let col1 = UIColor(red: 1, green: 0, blue: 0, alpha: 1)

Each of those numbers need to be between 0 and 1.

An alternative way is to specify color values as hue, saturation and brightness, or HSB. Hue
is a value between 0 and 1 on a color wheel, where 0 and 1 are both red. Saturation is how
deep the color should be (so 0 is just gray) and brightness is how light the shade should be.

www.hackingwithswift.com 1220

Here's how it's done:

let col2 = UIColor(hue: 0, saturation: 0.66, brightness: 0.66, alpha:
1)

let col3 = UIColor(hue: 0.25, saturation: 0.66, brightness: 0.66,
alpha: 1)

let col4 = UIColor(hue: 0.5, saturation: 0.66, brightness: 0.66,
alpha: 1)

let col5 = UIColor(hue: 0.75, saturation: 0.66, brightness: 0.66,
alpha: 1)

The advantage to using HSB rather than RGB is that you can generate very similar colors by
keeping the saturation and brightness constant and changing only the hue – the code above
generates some nice pastel shades of red, green, cyan and magenta, for example.

UIKit
Changing which UITabBarController tabs can be edited
Availability: iOS 2.0 or later.

If you have a More tab in your tab bar controller, this will automatically get an Edit button so
that users can drag tabs around to customize the user interface. This doesn't actually save
the tab ordering for you, which means the tabs will revert on next run unless you persist the
user's choices yourself, but it does do everything else for you.

By default, users can move any and all tabs, but if you want to force some tabs to be in
place you should set the customizableViewControllers property of your tab bar controller.
This should be an array of the view controllers you want to give your users access to edit, or
an empty array if you want the Edit button to go away entirely.

If your tab bar controller is your window's root view controller (for example, if you started with

www.hackingwithswift.com 1221

the Xcode tab bar template project), you can allow users to customize the first three view
controllers like this:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {

 if let tabBarController = window?.rootViewController as?
UITabBarController {

 let slice = tabBarController.viewControllers![0...2]

 let array = Array(slice)

 tabBarController.customizableViewControllers = array

 }

 return true

}

Place that into your AppDelegate.swift file in place of the existing
didFinishLaunchingWithOptions method, and you're done.

How set different widths for a UISegmentedControl's
elements
Availability: iOS 5.0 or later.

Segmented controls give each segment equal width by default, which is aesthetically
pleasing when you have space to spare but technically irritating when space is tight. Rather
than try to squash too much into a small space, you have two options: set custom segment
widths, or ask iOS to size them individually for you.

The first option looks like this:

segmentedControl.setWidth(100, forSegmentAtIndex: 0)

segmentedControl.setWidth(50, forSegmentAtIndex: 1)

www.hackingwithswift.com 1222

segmentedControl.setWidth(50, forSegmentAtIndex: 1)

That gives you individually sized segments while sticking to a value you define, which means
you get to tweak the aesthetics as you want. The second option looks like this:

segmentedControl.apportionsSegmentWidthsByContent = true

That hands full control over to iOS, which is probably the best thing to do most of the time.

How to add Retina and Retina HD graphics to your project
Availability: iOS 8.0 or later.

iOS has a simple, beautiful solution for handling Retina and Retina HD graphics, and in fact it
does almost all the work for you – all you have to do is name your assets correctly.

Imagine you have an image called taylor.png, which is 100x100 pixels in size. That will look
great on non-Retina devices, which means iPad 2 and the first-generation iPad Mini. If you
want it to look great on Retina devices (which means iPad 3, 4, Air, Air 2, Mini 2 and Mini 3,
plus iPhone 4s, 5, 5s, and 6) you need to provide a second image called taylor@2x.png that
is 200x200 pixels in size – i.e., exactly twice the width and height.

Retina HD devices – at the time of writing that's just the iPhone 6 Plus – have an even higher
resolution, so if you want your image to look great there you should provide a third image
called taylor@3x.png that is 300x300 pixels in size – i.e., exactly three times the width and
height of the original.

If you're not using an asset catalog, you can just drag these images into your project to have
iOS use them. If you are using an asset catalog, drag them into your asset catalog and you
should see Xcode correctly assign them to 1x, 2x and 3x boxes for the image. It's critical
you name the files correctly because that's what iOS uses to load the correct resolution.

With that done, you just need to load taylor.png in your app, and iOS will automatically load
the correct version of it depending on the user's device.

www.hackingwithswift.com 1223

How to add a UITextField to a UIAlertController
Availability: iOS 8.0 or later.

The UIAlertController class from iOS 8.0 lets you add as many text fields as you need, and
you can read the value of those text fields when the user taps a button.

The example below creates an alert controller with one button and a text field. When the
button is tapped, the text of the text field is pulled out, at which point it's down to you to do
something interesting with it:

func promptForAnswer() {

 let ac = UIAlertController(title: "Enter answer", message: nil,
preferredStyle: .Alert)

 ac.addTextFieldWithConfigurationHandler(nil)

 let submitAction = UIAlertAction(title: "Submit",
style: .Default) { [unowned self, ac] (action: UIAlertAction!) in

 let answer = ac.textFields![0] as! UITextField

 // do something interesting with "answer" here

 }

 ac.addAction(submitAction)

 presentViewController(ac, animated: true, completion: nil)

}

For more information see Hacking with Swift tutorial 5.

How to add a bar button to a navigation bar

www.hackingwithswift.com 1224

Availability: iOS 2.0 or later.

Navigation bars are one of the most common user interface components in iOS, so being
able to add buttons to them is something you'll do a lot. You can add buttons to the left and
right side of a navigation bar, and as of iOS 5.0 you can add more than one to either side.

Note: bar button items don't belong to the UINavigationBar directly. Instead, they belong to
a UINavigationItem that is currently active on the navigation bar, which in turn is usually
owned by the view controller that is currently active on the screen. So, to create bar button
items for your view controller, you would do this:

navigationItem.leftBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Add, target: self, action:
"addTapped")

navigationItem.rightBarButtonItem = UIBarButtonItem(title: "Add",
style: .Plain, target: self, action: "addTapped")

That will call the addTapped() method on the current view controller when either button is
tapped. Note that the first one uses a standard system icon (recommended when it's
available!) and the second one uses text.

Like I said, as of iOS 5.0 you can attach more than one bar button item to either side of the
navigation bar, like this:

let add = UIBarButtonItem(barButtonSystemItem: .Add, target: self,
action: "addTapped")

let play = UIBarButtonItem(title: "Play", style: .Plain, target:
self, action: "addTapped")

navigationItem.rightBarButtonItems = [add, play]

How to add a button to a UITableViewCell
Availability: iOS 2.0 or later.

www.hackingwithswift.com 1225

There are two steps to add a working button to a table view cell. The first step is to add a
button like this:

cell.accessoryType = .DetailDisclosureButton

The second step is to take action when the button is tapped by creating the
accessoryButtonTappedForRowWithIndexPath method:

override func tableView(tableView: UITableView,
accessoryButtonTappedForRowWithIndexPath indexPath: NSIndexPath) {

 doSomethingWithItem(indexPath.row)

}

That's it!

How to add a custom view to a UIBarButtonItem
Availability: iOS 2.0 or later.

Most UIBarButtonItems contain either an icon or some text, but they can do so much more
– in fact, you can embed any kind of UIView subclass inside a bar button item, then put that
button into a navigation bar or toolbar as you normally would.

For example, you can create a UIProgressView and place it into a bar button like this:

var progressView = UIProgressView(progressViewStyle: .Default)

progressView.sizeToFit()

let progressButton = UIBarButtonItem(customView: progressView)

www.hackingwithswift.com 1226

For more information see Hacking with Swift tutorial 4.

How to add a flexible space to a UIBarButtonItem
Availability: iOS 2.0 or later.

There's a special kind of UIBarButtonItem called FlexibleSpace, and this acts like a spring
between other buttons, pushing them to one side. A flexible space will always expand to take
up as much room as possible, splitting space evenly between other flexible spaces if they
exist.

For example, if you add this button to a toolbar, it will sit on the left edge of the toolbar:

let refresh = UIBarButtonItem(barButtonSystemItem: .Refresh, target:
self, action: "refreshTapped")

If you create and add a flexible space first, then that button will be pushed to the right edge
as the flexible space expands to take up most of the toolbar. Here's how you create the
flexible space:

let spacer = UIBarButtonItem(barButtonSystemItem: .FlexibleSpace,
target: nil, action: nil)

For more information see Hacking with Swift tutorial 4.

How to add a section header to a table view
Availability: iOS 2.0 or later.

You can use the built-in iOS table section headers by returning a value from
titleForHeaderInSection like this:

override func tableView(tableView: UITableView,

www.hackingwithswift.com 1227

override func tableView(tableView: UITableView,
titleForHeaderInSection section: Int) -> String? {

 return "Section \(section)"

}

If you want to return a custom header view with something more than just some text, you
should use viewForHeaderInSection instead, like this:

override func tableView(tableView: UITableView,
viewForHeaderInSection section: Int) -> UIView? {

 let vw = UIView()

 vw.backgroundColor = UIColor.blackColor()

 return vw

}

How to add a shadow to a UIView
Availability: iOS 3.2 or later.

iOS can dynamically generate shadows for any UIView, and these shadows automatically
adjust to fit the shape of the item in question – even following the curves of text inside a
UILabel. This functionality is built right in, so all you need to do is configure its properties,
and there are four you need to care about:

 • shadowColor sets the color of the shadow, and needs to be a CGColor.
 • shadowOpacity sets how transparent the shadow is, where 0 is invisible and 1 is as strong
as possible.
 • shadowOffset sets how far away from the view the shadow should be, to give a 3D offset
effect.
 • shadowRadius sets how wide the shadow should be.

Here's a simple example to get you started:

www.hackingwithswift.com 1228

yourView.layer.shadowColor = UIColor.blackColor().CGColor

yourView.layer.shadowOpacity = 1

yourView.layer.shadowOffset = CGSizeZero

yourView.layer.shadowRadius = 10

Be warned: generating shadows dynamically is expensive, because iOS has to draw the
shadow around the exact shape of your view's contents. If you can, set the shadowPath
property to a specific value so that iOS doesn't need to calculate transparency dynamically.
For example, this creates a shadow path equivalent to the frame of the view:

yourView.layer.shadowPath = UIBezierPath(rect:
yourView.bounds).CGPath

Alternatively, ask iOS to cache the rendered shadow so that it doesn't need to be redrawn:

yourView.layer.shouldRasterize = true

How to add blur and vibrancy using UIVisualEffectView
Availability: iOS 8.0 or later.

As of iOS 8.0, visual effects such as blur and vibrancy are a cinch because Apple provides a
built in UIView subclass that does all the hard work: UIVisualEffectView. For example, if you
want to blur an image, you would use this code:

let imageView = UIImageView(image: UIImage(named: "example"))

imageView.frame = view.bounds

imageView.contentMode = .ScaleToFill

view.addSubview(imageView)

www.hackingwithswift.com 1229

view.addSubview(imageView)

let blurEffect = UIBlurEffect(style: .Dark)

let blurredEffectView = UIVisualEffectView(effect: blurEffect)

blurredEffectView.frame = imageView.bounds

view.addSubview(blurredEffectView)

As well as blurring content, Apple also lets you add a "vibrancy" effect to your views – this is
a translucency effect designed to ensure that text is readable when it's over any kind of
blurred background, and it's used to create that soft glow effect you see in the notification
center.

We could extend the previous example so that it adds a segmented control in the middle of
the view, using a vibrancy effect. This is accomplished by created a second
UIVisualEffectView inside the first one, this time using UIVibrancyEffect to create the glow.
Note that you need to use the same blur type for both your visual effect views, otherwise the
glow effect will be incorrect.

let segmentedControl = UISegmentedControl(items: ["First Item",
"Second Item"])

segmentedControl.sizeToFit()

segmentedControl.center = view.center

let vibrancyEffect = UIVibrancyEffect(forBlurEffect: blurEffect)

let vibrancyEffectView = UIVisualEffectView(effect: vibrancyEffect)

vibrancyEffectView.frame = imageView.bounds

vibrancyEffectView.contentView.addSubview(segmentedControl)

blurredEffectView.contentView.addSubview(vibrancyEffectView)

Warning: you need to add child views to the contentView property of a UIVisualEffectView
otherwise they will not be drawn correctly.

www.hackingwithswift.com 1230

How to add iAd to a view controller
Availability: iOS 4.0 or later.

There are three ways to add iAd to an app. Helpfully, their use cases are pretty clear because
the easiest option give you no control, the hardest option gives you lots of control, and the
middle option gives you as much control as you want.

First, the easiest option – put this into your view controller:

canDisplayBannerAds = true

You will need to import the iAd framework to make that compile correctly. Yes, that's all it
takes to get iAd banners showing in your view. If you don't mind not being able to have
control over when adverts show or where they should go, then you're basically done.

The second option is to place an iAd inside Interface Builder. This gives you more control
because now you can place it where you want it (within reason – Apple does have rules!), you
can attach Auto Layout constraints, you can configure its delegate, and so on.

While that second option is good, you really need to at least know the third option in order to
make use of it: making the iAd entirely in code. To make this work you need to create a
property to store the banner view, like this:

var bannerView: ADBannerView!

Creating a banner view isn't complicated, but you should take care to give it good Auto
Layout constraints. This is particularly important when it comes to taking action if there is no
banner to show – is hiding the banner view enough, or do you need to change other
constraints too?

In the most simple case you can configure an iAd banner in code like this:

www.hackingwithswift.com 1231

bannerView = ADBannerView(adType: .Banner)

bannerView.setTranslatesAutoresizingMaskIntoConstraints(false)

bannerView.delegate = self

bannerView.hidden = true

view.addSubview(bannerView)

let viewsDictionary = ["bannerView": bannerView]

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[bannerView]|", options: .allZeros, metrics: nil, views:
viewsDictionary))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:[bannerView]|", options: .allZeros, metrics: nil, views:
viewsDictionary))

As soon as you set your view controller to be the delegate of the iAd banner, you need to tell
Swift you conform to the ADBannerViewDelegate protocol:

class ViewController: UIViewController, ADBannerViewDelegate {

Now that you're the delegate of the banner view, you should use bannerViewDidLoadAd()
as your signal to show the banner view, and bannerView(_:didFailToReceiveAdWithError:)
as your signal to hide it, like this:

func bannerViewDidLoadAd(banner: ADBannerView!) {

 bannerView.hidden = false

}

func bannerView(banner: ADBannerView!, didFailToReceiveAdWithError
error: NSError!) {

 bannerView.hidden = true

}

www.hackingwithswift.com 1232

}

For more information see Hacking with Swift tutorial 18.

How to adjust a UIScrollView to fit the keyboard
Availability: iOS 2.0 or later.

If your user interface brings up the keyboard, you should respond by adjusting your layout so
that all parts are still visible. If you're using a UIScrollView or any classes that have a scroll
view as part of their layout (table views and text views, for example), this means adjusting the
contentInset property to account for the keyboard.

First you need to register for keyboard change notifications. Put this into your viewDidLoad()
method:

let notificationCenter = NSNotificationCenter.defaultCenter()

notificationCenter.addObserver(self, selector: "adjustForKeyboard:",
name: UIKeyboardWillHideNotification, object: nil)

notificationCenter.addObserver(self, selector: "adjustForKeyboard:",
name: UIKeyboardWillChangeFrameNotification, object: nil)

Now add this method somewhere else in your class:

func adjustForKeyboard(notification: NSNotification) {

 let userInfo = notification.userInfo!

 let keyboardScreenEndFrame =
(userInfo[UIKeyboardFrameEndUserInfoKey] as! NSValue).CGRectValue()

 let keyboardViewEndFrame =
view.convertRect(keyboardScreenEndFrame, fromView: view.window)

 if notification.name == UIKeyboardWillHideNotification {

www.hackingwithswift.com 1233

 if notification.name == UIKeyboardWillHideNotification {

 yourTextView.contentInset = UIEdgeInsetsZero

 } else {

 yourTextView.contentInset = UIEdgeInsets(top: 0, left: 0,
bottom: keyboardViewEndFrame.height, right: 0)

 }

 yourTextView.scrollIndicatorInsets = yourTextView.contentInset

 let selectedRange = yourTextView.selectedRange

 yourTextView.scrollRangeToVisible(selectedRange)

}

That example code is for adjusting text views. If you want it to apply to a regular scroll view,
just take out the last two lines - they are in there so that the text view readjusts itself so the
user doesn't lose their place while editing.

For more information see Hacking with Swift tutorial 16.

How to adjust image content mode using aspect fill, aspect fit
and scaling
Availability: iOS 2.0 or later.

All views (including those that don't hold images) have a content mode that affects the way
they draw their content. The default is Scale To Fill because it's fastest: the contents of the
view just get stretched up (or down) to fit the space available. But there are two others that
you'll be using a lot: Aspect Fit and Aspect Fill.

"Aspect Fit" means "stretch this image up as large as it can go, but make sure that all the
image is visible while keeping its original aspect ratio." This is useful when you want an
image to be as large as possible without stretching its proportions, and it's probably the
most commonly used content mode.

www.hackingwithswift.com 1234

"Aspect Fit" means "stretch this image up as large as it can go, cropping off any parts that
don't fit while keeping its original aspect ratio." This is useful when you want an image to fill
its image view, even when that means losing either the horizontal or vertical edges. If you
want to force an image to fill a specific space, but you want to keep its aspect ratio, this is
the one you should use.

For more information see Hacking with Swift tutorial 1.

How to animate views using animateWithDuration()
Availability: iOS 4.0 or later.

Animation in iOS is done by starting an animation block, then telling iOS what changes you
want to make. Because the animation block is active, those changes won't happen straight
away – instead, iOS will execute them smoothly over the time you specified, so you don't
have to worry when it will finish or what all the intermediate states are.

Here's a basic example to make a view fade out:

UIView.animateWithDuration(1) {

 viewToAnimate.alpha = 0

}

If you want to remove the view from its superview once the fade has finished, you can use a
more advanced version of the same method that gives you a completion block – a closure
that will be run once the animation finishes. Here's how that looks:

UIView.animateWithDuration(1, animations: {

 viewToAnimate.alpha = 0

}) { _ in

 viewToAnimate.removeFromSuperview()

}

www.hackingwithswift.com 1235

You can also specify a delay before the animation starts, and even control the acceleration
and deceleration curves of the animation, like this:

UIView.animateWithDuration(1, delay: 1, options:
UIViewAnimationOptions.CurveEaseIn, animations: {

 viewToAnimate.alpha = 0

}) { _ in

 viewToAnimate.removeFromSuperview()

}

How to animate views with spring damping using
animateWithDuration()
Availability: iOS 7.0 or later.

Spring animations work by changing from a start state to an end state, with a slight
overshoot and bounce at the end. For example, if you want to animate a view moving from X
0 to X 100, it might move to X 120 before bouncing back to X 80, then X 110 and finally X
100, as if the animation were attached to a spring.

Spring animations are built into iOS as of iOS 7.0 and require two values: how "springy" the
spring should be, and how fast it should start. The first value is specified with
usingSpringWithDamping, where higher values make the bouncing finish faster. The second
value is specified with initialSpringVelocity, where higher values give the spring more initial
momentum.

Here's the code to make a view fade out, then fade it the tiniest bit, then fade out again – all
done using a spring animation:

UIView.animateWithDuration(1, delay: 1, usingSpringWithDamping: 0.5,
initialSpringVelocity: 5, options: .CurveEaseInOut, animations: {

 viewToAnimate.alpha = 0

}) { _ in

www.hackingwithswift.com 1236

}) { _ in

 viewToAnimate.removeFromSuperview()

}

How to animate when your size class changes:
willTransitionToTraitCollection()
Availability: iOS 8.0 or later.

A size class change is usually triggered by your user rotating their device, but it can also
happen for example when using the new iOS 9.0 multitasking to adjust window splits. Your
UI needs to look great in all size classes it supports, which means you either create multiple
variations of your layouts inside Interface Builder (this is the preferred route) or you make
changes in code.

More often than not, I find myself mixing approaches: I do the vast majority of work inside IB,
then make minor changes by hand inside the willTransitionToTraitCollection() method.
When this is called, you'll be given a UIViewControllerTransitionCoordinator object (yes,
that's an extremely long name!) to work with, which allows you to animate your changes as
needed.

To give you a very visible demonstration of how this works, I've written some example code
below that adjusts the background color of the current view. You should run this using the
iOS simulator using an iPhone. The reason that this requires the iPhone simulator rather
than the iPad simulator is that iPads have the same size classes in portrait and landscape,
which makes the changes harder to spot.

Anyway, put this code into a view controller, then try it on an iPhone. When you rotate the
simulator, the screen will change between red and blue, or green and blue, depending on the
rotation. The important thing is that the change is animated because it's placed inside a call
to animateAlongsideTransition(), which automatically makes your animation match the
rotation animation.

Using this method requires two closures: the first is where you make the changes you want
to animate, and the second is code to be run when the animation completes. So, when the
new vertical size class is compact, the screen will animate from blue to red, then jump back
to blue. I realise this isn't directly useful in your own apps, but that's because you'll want to

www.hackingwithswift.com 1237

make your own changes – just take the code below and replace the background color
changes with your own logic.

override func willTransitionToTraitCollection(newCollection:
UITraitCollection, withTransitionCoordinator coordinator:
UIViewControllerTransitionCoordinator) {

 coordinator.animateAlongsideTransition({ [unowned self] _ in

 if newCollection.verticalSizeClass == .Compact {

 self.view.backgroundColor = UIColor.redColor()

 } else {

 self.view.backgroundColor = UIColor.greenColor()

 }

 }) { [unowned self] _ in

 self.view.backgroundColor = UIColor.blueColor()

 }

}

How to bring a subview to the front of a UIView
Availability: iOS 2.0 or later.

UIKit draws views back to front, which means that views higher up the stack are drawn on
top of those lower down. If you want to bring a subview to the front, there's a method just for
you: bringSubviewToFront(). Here's an example:

parentView.bringSubviewToFront(childView)

This method can also be used to bring any subview to the front, even if you're not sure where
it is:

childView.superview.bringSubviewToFront(childView)

www.hackingwithswift.com 1238

How to change the scroll indicator inset for a UIScrollView
Availability: iOS 2.0 or later.

It's common to adjust content insets of a scroll view or any class that embeds one (table
view, text view, etc) so that you control the scrolling mechanism precisely, but whenever you
change the content inset it's a good idea also to change the scroll indicator inset: the visual
indicator bar on the right that shows users how far they have left to scroll.

Changing this value adds a tiny bit of UI polish and it's easy to do:

scrollView.scrollIndicatorInsets = UIEdgeInsets(top: 30, left: 0,
bottom: 0, right: 10)

How to check a string is spelled correctly using
UITextChecker
Availability: iOS 3.2 or later.

You can draw on the iOS dictionary in just a few lines of code thanks to the UITextChecker
class. Tell it the range of the string you want to check (this could be the whole string or just
part of it), then ask it to tell you where the spelling error is. If it says there are no errors, the
word is good. Here's the code:

func wordIsReal(word: String) -> Bool {

 let checker = UITextChecker()

 let range = NSMakeRange(0, word.characters.count)

 let misspelledRange = checker.rangeOfMisspelledWordInString(word,
range: range, startingAt: 0, wrap: false, language: "en")

 return misspelledRange.location == NSNotFound

}

www.hackingwithswift.com 1239

}

Note that rangeOfMisspelledWordInString() accepts a language parameter, so you can
change that as needed.

For more information see Hacking with Swift tutorial 5.

How to convert a CGPoint in one UIView to another view
using convertPoint()
Availability: iOS 2.0 or later.

Each view has its own co-ordinate system, meaning that if I tap a button and ask iOS where I
tapped, it will tell me where I tapped relative to the top-left of the button. This is usually what
you want, but if you want to translate a position in one view into a position it's easy enough
to do.

As an example, this code creates two views, creates a virtual "tap", then converts it from the
first view's co-ordinate space to the second's:

let view1 = UIView(frame: CGRect(x: 50, y: 50, width: 128, height:
128))

let view2 = UIView(frame: CGRect(x: 200, y: 200, width: 128, height:
128))

let tap = CGPoint(x: 10, y: 10)

let convertedTap = view1.convertPoint(tap, toView: view2)

That will set convertedTap to X -140.0, Y -140.0.

How to create Auto Layout constraints in code:
constraintsWithVisualFormat()

www.hackingwithswift.com 1240

Availability: iOS 6.0 or later.

While the complexities of Auto Layout make it something most people prefer to grapple with
using Interface Builder, it does have some cool tricks up its sleeve if you prefer to work in
code. One of those tricks is called Visual Format Language (VFL) and lets you use ASCII art
to tell iOS how you want your views laid out.

First, here's a dummy test case you can copy and paste into your project. It creates five
labels of different colors and adds them all to your view:

override func viewDidLoad() {

 super.viewDidLoad()

 let label1 = UILabel()

 label1.translatesAutoresizingMaskIntoConstraints = false

 label1.backgroundColor = UIColor.redColor()

 label1.text = "THESE"

 let label2 = UILabel()

 label2.translatesAutoresizingMaskIntoConstraints = false

 label2.backgroundColor = UIColor.cyanColor()

 label2.text = "ARE"

 let label3 = UILabel()

 label3.translatesAutoresizingMaskIntoConstraints = false

 label3.backgroundColor = UIColor.yellowColor()

 label3.text = "SOME"

 let label4 = UILabel()

 label4.translatesAutoresizingMaskIntoConstraints = false

 label4.backgroundColor = UIColor.greenColor()

 label4.text = "AWESOME"

www.hackingwithswift.com 1241

 label4.text = "AWESOME"

 let label5 = UILabel()

 label5.translatesAutoresizingMaskIntoConstraints = false

 label5.backgroundColor = UIColor.orangeColor()

 label5.text = "LABELS"

 view.addSubview(label1)

 view.addSubview(label2)

 view.addSubview(label3)

 view.addSubview(label4)

 view.addSubview(label5)

}

If you run the project, you'll see the labels are all bunched up in the top-left corner, which
doesn't look great. To fix this, we're going to use VFL to have each label occupy the full width
of the screen, then spaced out so they are position below each other.

When you use VFL you need to create a dictionary of the views you want to work with. This
dictionary needs to have the name of the view inside VFL and a reference to the view itself,
but in practice most people just use the same name for VFL as the variable like this:

let viewsDictionary = ["label1": label1, "label2": label2, "label3":
label3, "label4": label4, "label5": label5]

Put that just below the final addSubview() call.

Now for the VFL itself: put this directly beneath the previous line in order to have every label
stretch out to occupy the full width of the screen:

for label in viewsDictionary.keys {

www.hackingwithswift.com 1242

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[\(label)]|", options: [], metrics: nil, views: viewsDictionary))

}

Finally, add this to make the views lay themselves out below each other:

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:|[label1]-[label2]-[label3]-[label4]-[label5]", options: [],
metrics: nil, views: viewsDictionary))

This is only the beginning of what VFL can do – you should definitely read my Auto Layout
tutorial for more details.

For more information see Hacking with Swift tutorial 6.

How to create a page curl effect using UIPageViewController
Availability: iOS 5.0 or later.

When iBooks first launched in iOS 3.2, its page curl effect was almost addictive: it moved so
fluently with your finger that it felt you were touching real paper. From iOS 5.0 on this page
curl effect is available for every developer as part of the UIPageViewController class. Its API
isn't immediately obvious to newbies, though, so I'm going to give you a complete example.

In the code below, the page view controller is created in viewDidLoad(). I also create five
UIViewControllers to serve as pages inside the app, then tell the page view controller to
start with the first one. I put in a couple of helper methods so that the view controllers could
have random background colors so you can see it all working.

Most of the work is done by the viewControllerBeforeViewController and
viewControllerAfterViewController methods, which must either return a view controller to
show before or after the current one (when the users starts to turn the page) or nil to mean
the user is at the end and there are no more pages to show in that direction.

To make this work in your own app, you'll obviously want to replace the plain view controller

www.hackingwithswift.com 1243

pages with your own UIViewController subclass that does something more interesting. If
you're showing quite a few different pages, you should probably create them on demand
rather than creating an array of them all up front.

Anyway, here is the complete example – you can use this with the Xcode "Single View
Application" to get a page view controller up and running immediately:

import UIKit

class ViewController: UIViewController,
UIPageViewControllerDataSource, UIPageViewControllerDelegate {

 var pageController: UIPageViewController!

 var controllers = [UIViewController]()

 override func viewDidLoad() {

 super.viewDidLoad()

 pageController = UIPageViewController(transitionStyle: .PageCurl,
navigationOrientation: .Horizontal, options: nil)

 pageController.dataSource = self

 pageController.delegate = self

 addChildViewController(pageController)

 view.addSubview(pageController.view)

 let views = ["pageController": pageController.view] as [String:
AnyObject]

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("H
:|[pageController]|", options: [], metrics: nil, views: views))

view.addConstraints(NSLayoutConstraint.constraintsWithVisualFormat("V
:|[pageController]|", options: [], metrics: nil, views: views))

www.hackingwithswift.com 1244

 for _ in 1 ... 5 {

 let vc = UIViewController()

 vc.view.backgroundColor = randomColor()

 controllers.append(vc)

 }

 pageController.setViewControllers([controllers[0]],
direction: .Forward, animated: false, completion: nil)

 }

 func pageViewController(pageViewController: UIPageViewController,
viewControllerBeforeViewController viewController: UIViewController)
-> UIViewController? {

 if let index = controllers.indexOf(viewController) {

 if index > 0 {

 return controllers[index - 1]

 } else {

 return nil

 }

 }

 return nil

 }

 func pageViewController(pageViewController: UIPageViewController,
viewControllerAfterViewController viewController: UIViewController) -
> UIViewController? {

 if let index = controllers.indexOf(viewController) {

 if index < controllers.count - 1 {

 return controllers[index + 1]

 } else {

 return nil

www.hackingwithswift.com 1245

 return nil

 }

 }

 return nil

 }

 func randomCGFloat() -> CGFloat {

 return CGFloat(arc4random()) / CGFloat(UInt32.max)

 }

 func randomColor() -> UIColor {

 return UIColor(red: randomCGFloat(), green: randomCGFloat(),
blue: randomCGFloat(), alpha: 1)

 }

}

How to create a parallax effect in UIKit
Availability: iOS 7.0 or later.

Parallax effects have been standard since iOS 7.0, and the UIInterpolatingMotionEffect
class makes this easy by automatically smoothing accelerometer input so your views can
adjust to tilt data.

If you want to have a UIView respond to tilting, add this function to your code then call it on
any view you want:

func addParallaxToView(vw: UIView) {

 let amount = 100

 let horizontal = UIInterpolatingMotionEffect(keyPath: "center.x",

www.hackingwithswift.com 1246

 let horizontal = UIInterpolatingMotionEffect(keyPath: "center.x",
type: .TiltAlongHorizontalAxis)

 horizontal.minimumRelativeValue = -amount

 horizontal.maximumRelativeValue = amount

 let vertical = UIInterpolatingMotionEffect(keyPath: "center.y",
type: .TiltAlongVerticalAxis)

 vertical.minimumRelativeValue = -amount

 vertical.maximumRelativeValue = amount

 let group = UIMotionEffectGroup()

 group.motionEffects = [horizontal, vertical]

 vw.addMotionEffect(group)

}

How to create custom menus using UIMenuController
Availability: iOS 3.0 or later.

iOS has a built-in menu system that, while useful, doesn't actually get much use – because
users don't expect to see it, developers don't use it, thus making it even less likely that users
expect to see it.

Anyway, if you want to attach multiple actions to elements in your UI – pieces of text in a text
view or web view, table view rows, and so on – you might find iOS menus are for you, so you
need to turn to UIMenuController. This has extremely simple API: you just create a
UIMenuItem object for every action you want, then register them all and wait for the user to
do something.

Below is a complete example for a view controller that has a web view inside it – you'll need
to create that in your storyboard. The code sets up a new menu item named "Grok" that runs
the runGrok() method when tapped. I've made it do something real: when the user selects
some text, they tap Grok to have that printed out to the Xcode console.

www.hackingwithswift.com 1247

Here's the code:

class ViewController: UIViewController, UITextViewDelegate {

 @IBOutlet weak var webView: UIWebView!

 override func viewDidLoad() {

 super.viewDidLoad()

 webView.loadHTMLString("<p>Hello, world!</p>", baseURL: nil)

 enableCustomMenu()

 }

 func enableCustomMenu() {

 let lookup = UIMenuItem(title: "Grok", action: "runGrok")

 UIMenuController.sharedMenuController().menuItems = [lookup]

 }

 func disableCustomMenu() {

 UIMenuController.sharedMenuController().menuItems = nil

 }

 func runGrok() {

 let text =
webView.stringByEvaluatingJavaScriptFromString("window.getSelection()
.toString();")

 print(text)

 }

}

www.hackingwithswift.com 1248

How to create popover menus using
UIPopoverPresentationController
Availability: iOS 8.0 or later.

Show a UIAlertController action sheet on iPad isn't as easy as on iPhone. The reason for
this is simple: on iPhone the action sheet slides up from the bottom, effectively owning the
user's attention until it's dismissed, whereas on iPad it could be shown from anywhere. In
fact, if you just try and show one on an iPad like this, your app crashes:

let ac = UIAlertController(title: "Hello!", message: "This is a
test.", preferredStyle: .ActionSheet)

presentViewController(ac, animated: true, completion: nil)

The solution is to use a UIPopoverPresentationController, which gets created for you when
you try to access the popoverPresentationController property of a UIAlertController. With
this, you can tell it where to show from (and what view those coordinates relate to) before
presenting the action sheet, which makes it work correctly on iPad.

To rewrite the previous lines so they work, you'd do this:

let ac = UIAlertController(title: "Hello!", message: "This is a
test.", preferredStyle: .ActionSheet)

let popover = ac.popoverPresentationController

popover?.sourceView = view

popover?.sourceRect = CGRect(x: 32, y: 32, width: 64, height: 64)

presentViewController(ac, animated: true, completion: nil)

How to customize swipe edit buttons in a UITableView
Availability: iOS 8.0 or later.

www.hackingwithswift.com 1249

As of iOS 8.0 there's an easy way to customize the list of buttons that appaer when the user
swipes from right to left: editActionsForRowAtIndexPath. Return an array of
UITableViewRowAction objects that have titles and styles (and also background colors if
you want to customize their appearance), and iOS does the rest.

When you create a UITableViewRowAction object you give it a trailing closure describing
what should happen when the user taps the button. You'll get reminded of what action
triggered the code, and you'll also be given the index path of the row where the user was
tapping. For example, you might do this:

override func tableView(tableView: UITableView,
editActionsForRowAtIndexPath indexPath: NSIndexPath) ->
[UITableViewRowAction]? {

 let delete = UITableViewRowAction(style: .Destructive, title:
"Delete") { (action, indexPath) in

 // delete item at indexPath

 }

 let share = UITableViewRowAction(style: .Normal, title: "Disable")
{ (action, indexPath) in

 // share item at indexPath

 }

 share.backgroundColor = UIColor.blueColor()

 return [delete, share]

}

Note that the first button uses a Destructive style so it will be colored red by default, but the
second button specifically has a blue color assigned to it.

www.hackingwithswift.com 1250

How to deselect a UITableViewCell using
clearsSelectionOnViewWillAppear
Availability: iOS 3.2 or later.

When a user taps a table view row, it automatically gets highlighted by iOS, and frequently
we use that action to show another view controller with more detailed information. When the
user goes back, though, you probably want their selection to go away so that it doesn't
remain selected, and if you're using a UITableViewController that's easy to do with
clearsSelectionOnViewWillAppearIf you set this property to be true the user's selected cell
will automatically be deselected when they return to the table view. It does this intelligently,
though: the row starts selected, and animates to be deselected, meaning that the user gets a
brief reminder of the row they tapped before it gets deselected.

How to detect a double tap gesture
Availability: iOS 3.2 or later.

The iOS UITapGestureRecognizer class has a built-in way to detect a double tap on any
view. All you need to do is create the recognizer, set its numberOfTapsRequired property to
2, then add it to the view you want to monitor.

Here's an example:

override func viewDidLoad() {

 super.viewDidLoad()

 let tap = UITapGestureRecognizer(target: self, action:
"doubleTapped")

 tap.numberOfTapsRequired = 2

 view.addGestureRecognizer(tap)

}

func doubleTapped() {

 // do something cool here

}

www.hackingwithswift.com 1251

}

How to detect edge swipes
Availability: iOS 7.0 or later.

Detecting pan gestures is easy enough with a regular UIPanGestureRecognizer, but there's
a special gesture recognizer to use if you want to detect the user swiping from the edge of
their screen. The example below demonstrates detecting the user swiping from the left edge
of the screen:

override func viewDidLoad() {

 let edgePan = UIScreenEdgePanGestureRecognizer(target: self,
action: "screenEdgeSwiped:")

 edgePan.edges = .Left

 view.addGestureRecognizer(edgePan)

}

func screenEdgeSwiped(recognizer: UIScreenEdgePanGestureRecognizer) {

 if recognizer.state == .Recognized {

 print("Screen edge swiped!")

 }

}

How to detect when the Back button is tapped
Availability: iOS 2.0 or later.

www.hackingwithswift.com 1252

You probably already know that viewWillDisappear() is called when a view controller is
about to go away, and that's also called when the user taps the Back button in a navigation
controller. Problem is, the same method is called when the user moves forward, i.e. when
you push another view controller onto the stack.

The solution is simple: create a Boolean property called goingForwards in your view
controller, and set it to true before pushing any view controller onto the navigation stack,
then set it back to false when the view controller is shown again. This way, when
viewWillDisappear() is called you can check goingForwards: if it's false, the user tapped
Back.

How to dim the screen
Availability: iOS 2.0 or later.

There is no built-in way to dim the screen unless you're presenting a view controller, at which
point iOS dims the background view controller for you. Instead, if you want to dim stuff you
need to do it yourself: create a full-screen UIView with a translucent background color (I find
66% black works best) then set its alpha to be 0. When you want things to dim, set the alpha
to be 1.

How to draw custom views in Interface Builder using
IBDesignable
Availability: iOS 8.0 or later.

You've always been able to have custom views inside your apps, but if you're having a hard
time visualizing how they look at design time then you should try @IBDesignable: it lets you
see exactly how your custom views look inside IB, and if you combine it with
@IBInspectable you can even adjust your view's design there too.

This example view draws an ellipse that fills itself. If you add this to your project, create a
view, then set that view to have this custom subclass, you'll see an ellipse appear
immediately. You can move the view or resize it, and the ellipse will be updated. Plus,
because I used @IBInspectable you can adjust the colors and stroke width right inside the
attributes inspector, helping you make sure your UI looks exactly as you expect.

@IBDesignable class EllipseView: UIView {

www.hackingwithswift.com 1253

@IBDesignable class EllipseView: UIView {

 @IBInspectable var strokeWidth: CGFloat = 0

 @IBInspectable var fillColor: UIColor = UIColor.blackColor()

 @IBInspectable var strokeColor: UIColor = UIColor.clearColor()

 override func drawRect(rect: CGRect) {

 let context = UIGraphicsGetCurrentContext()

 let rectangle = CGRectInset(frame, strokeWidth / 2, strokeWidth /
2)

 CGContextSetFillColorWithColor(context, fillColor.CGColor)

 CGContextSetStrokeColorWithColor(context, strokeColor.CGColor)

 CGContextSetLineWidth(context, strokeWidth)

 CGContextAddEllipseInRect(context, rectangle)

 CGContextDrawPath(context, .FillStroke)

 }

}

How to find a UIView subview using viewWithTag()
Availability: iOS 2.0 or later.

If you need a quick way to get hold of a view inside a complicated view hierarchy, you're
looking for viewWithTag() – give it the tag to find and a view to search from, and this method
will search all subviews, and all sub-subviews, and so on, until it finds a view with the
matching tag number. The method returns an optional UIView because it might not find a
view with that tag, so unwrap it carefully.

Here's an example:

www.hackingwithswift.com 1254

if let foundView = view.viewWithTag(0xDEADBEEF) {

 foundView.removeFromSuperview()

}

Easy to remember tags such as 0xDEADBEEF are quite common amongst coders.

NB: Extensive use of viewWithTag() is a sign of code structure. It's good for the occasional
shortcut, but really shouldn't be relied on for serious development.

For more information see Hacking with Swift tutorial 25.

How to flip a UIView with a 3D effect: transitionWithView()
Availability: iOS 2.0 or later.

iOS has a built-in way to transition between views, and you can use this to produce 3D flips
in just a few lines of code. Here's a basic example that flips between two views:

func flip() {

 let transitionOptions: UIViewAnimationOptions =
[.TransitionFlipFromRight, .ShowHideTransitionViews]

 UIView.transitionWithView(firstView, duration: 1.0, options:
transitionOptions, animations: {

 self.firstView.hidden = true

 }, completion: nil)

 UIView.transitionWithView(secondView, duration: 1.0, options:
transitionOptions, animations: {

 self.secondView.hidden = false

 }, completion: nil)

}

www.hackingwithswift.com 1255

}

Here's a basic test harness you can use to see that method in action:

var firstView: UIView!

var secondView: UIView!

override func viewDidLoad() {

 super.viewDidLoad()

 firstView = UIView(frame: CGRect(x: 32, y: 32, width: 128, height:
128))

 secondView = UIView(frame: CGRect(x: 32, y: 32, width: 128, height:
128))

 firstView.backgroundColor = UIColor.redColor()

 secondView.backgroundColor = UIColor.blueColor()

 secondView.hidden = true

 view.addSubview(firstView)

 view.addSubview(secondView)

 performSelector("flip", withObject: nil, afterDelay: 2)

}

Try experimenting with the different values of UIViewAnimationOptions to see what other
animations are available.

www.hackingwithswift.com 1256

How to give UITableViewCells a selected color other than
grey
Availability: iOS 7.0 or later.

Ever since iOS 7.0, table view cells have been grey when tapped, even when you specifically
told Interface Builder you wanted them to be blue. Don't worry, though: it's an easy thing to
change, as long as you don't mind writing three lines of code. Specifically, you need to add
something like this to your cellForRowAtIndexPath method:

let backgroundView = UIView()

backgroundView.backgroundColor = UIColor.redColor()

cell.selectedBackgroundView = backgroundView

You can customize the view as much as you want to, but remember to keep the overall
amount of work low to avoid hurting scroll performance.

How to give a UINavigationBar a background image:
setBackgroundImage()
Availability: iOS 5.0 or later.

You can call setBackgroundImage() on any navigation bar, providing an image to use and
the bar metrics you want it to affect, and you're done. Bar metrics left you specify what sizes
of bars you want to change: should this by all bars, just phone-sized bars, or just phone-
sized bars on landscape?

Here's an example that changes the navigation bar background image to a file called
"navbar-background.png" (you'll want to change that!) across all device sizes:

let img = UIImage(named: "navbar-background")

navigationController?.navigationBar.setBackgroundImage(img,
forBarMetrics: .Default)

www.hackingwithswift.com 1257

How to give a UIStackView a background color
Availability: iOS 9.0 or later.

You can't do this – UIStackView is a non-drawing view, meaning that drawRect() is never
called and its background color is ignored. If you desperately want a background color,
consider placing the stack view inside another UIView and giving that view a background
color.

How to hide passwords in a UITextField
Availability: iOS 2.0 or later.

User text in a UITextField is visible by default, but you can enable the iOS text-hiding
password functionality just by setting your text field's secureTextEntry property to be true,
like this:

textField.secureTextEntry = true

How to hide the navigation bar using hidesBarsOnSwipe
Availability: iOS 8.0 or later.

iOS 8.0 gives UINavigationController a simple property that masks some complex behavior.
If you set hidesBarsOnSwipe to be true for any UINavigationController, then iOS
automatically adds a tap gesture recognizer to your view to handle hiding (and showing) the
navigation bar as needed. This means you can mimic Safari's navigation bar behavior in just
one line of code, like this:

navigationController?.hidesBarsOnSwipe = true

Remember to set this back to false when you want to stop the behavior from happening.

www.hackingwithswift.com 1258

How to hide the navigation bar using hidesBarsOnTap
Availability: iOS 8.0 or later.

As of iOS 8.0 it's easy to make a navigation bar automatically hide when the user taps the
screen, but only when it's part of a UINavigationController. When set to true, the
hidesBarsOnTap property of a navigation controller automatically adds a tap gesture
recognizer to your view to handle hiding (and showing) the navigation bar as needed.

Code:

navigationController?.hidesBarsOnTap = true

Remember to set this back to false when you want to stop the behavior from happening.

For more information see Hacking with Swift tutorial 1.

How to hide the status bar
Availability: iOS 7.0 or later.

You can hide the status bar in any or all of your view controllers just by adding this code:

override func prefersStatusBarHidden() -> Bool {

 return true

}

www.hackingwithswift.com 1259

Any view controller containing that code will hide the status bar by default. If you want to
animate the status bar in or out, just call setNeedsStatusBarAppearanceUpdate() on your
view controller – that will force prefersStatusBarHidden() to be called again, at which point
you can return a different value. If you want, your call to
setNeedsStatusBarAppearanceUpdate() can actually be inside an animation block, which
causes the status bar to hide or show in a smooth way.

How to let users tap on a UITableViewCell while editing is
enabled
Availability: iOS 3.0 or later.

As soon as you set the editing property of a UITableView to be true, its cells stop being
tappable. This is often a good idea, because if a user explicitly enabled editing mode they
probably want to delete or move stuff, and it's only going to be annoying if they can select
rows by accident.

Of course, as always, there are times when you specifically want both actions to be available
- for the user to be able to move or delete a cell, and also tap on it to select. If that's the
situation you find yourself in right now, here's the line of code you need:

tableView.allowsSelectionDuringEditing = true

How to load a HTML string into a WKWebView or UIWebView:
loadHTMLString()
Availability: iOS 2.0 or later.

If you want to generate HTML locally and show it inside your app, it's easy to do in both
UIWebView and WKWebView. First, here's the code for UIWebView:

let webView = UIWebView()

webView.loadHTMLString("<html><body><p>Hello!</p></body></html>",
baseURL: nil)

www.hackingwithswift.com 1260

And now here's the code for WKWebView:

let webView = WKWebView()

webView.loadHTMLString("<html><body><p>Hello!</p></body></html>",
baseURL: nil)

If you want to load resources from a particular place, such as JavaScript and CSS files, you
can set the baseURL parameter to any NSURL. This could, for example, be the resource
path for your app bundle, which would allow you to use local images and other assets
alongside your generated HTML.

For more information see Hacking with Swift tutorial 7.

How to make UITableViewCell separators go edge to edge
Availability: iOS 8.0 or later.

All table view cells have a separator underneath them by default, and that separator likes to
start a little way from the left edge of the screen for stylistic reasons. If this clashes with your
own personal aesthetic, you might think it's easy to remove but Apple has made the matter
quite confused by changing its mind more than once.

If you absolutely, definitely want to remove the separator inset from all cells, you need to do
two things. First, add these two lines of code to your table view controller's viewDidLoad()
method:

tableView.layoutMargins = UIEdgeInsetsZero

tableView.separatorInset = UIEdgeInsetsZero

Now look for you cellForRowAtIndexPath method and add this:

www.hackingwithswift.com 1261

cell.layoutMargins = UIEdgeInsetsZero

Done!

How to make UITableViewCells auto resize to their content
Availability: iOS 8.0 or later.

If you're using Auto Layout, you can have your table view cells automatically size to fit their
content by adding two methods to your table view controller: heightForRowAtIndexPath
and estimatedHeightForRowAtIndexPath. If both of these are implemented, and both
return UITableViewAutomaticDimension, then your table view cells will be measured using
Auto Layout and automatically fit their content.

If you're using the built-in table cell styles (e.g. Default or Subtitle) then you should make sure
you modify the numberOfLines properties of your cell's labels so that the text can grow as
needed.

In case you're still not sure, here's some example code:

override func tableView(tableView: UITableView,
heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

override func tableView(tableView: UITableView,
estimatedHeightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

 return UITableViewAutomaticDimension

}

For more information see Hacking with Swift tutorial 32.

www.hackingwithswift.com 1262

How to make a button glow when tapped with
showsTouchWhenHighlighted
Availability: iOS 2.0 or later.

If you want an easy way to let users know when a UIButton was tapped, try setting its
showsTouchWhenHighlighted property to be true. This will render a circular glow effect
behind the button when it's tapped, which is particularly effective on text-only buttons.

Here's the code:

btn.showsTouchWhenHighlighted = true

If you're using Interface Builder, look for and check the "Shows touch when highlighted"
option for your button.

How to make a clear button appear in a textfield
Availability: iOS 2.0 or later.

If you want to let users clear their entry on a UITextField, the standard approach is to add a
clear button to the right edge of the text field. This can be done in two ways, depending on
what effect you want:

textField.clearButtonMode = .Always

textField.clearButtonMode = .WhileEditing

The first will always show the clear button, and the second will only show it while the user is
editing the text.

How to make the master pane always visible in a

www.hackingwithswift.com 1263

UISplitViewController
Availability: iOS 8.0 or later.

Split view controllers on iPad have an automatic display mode, which means in landscape
both the left and right view controllers are visible, but in portrait the left view controller slides
over and away as needed.

If this isn't preferable – if, for example, you want to mimic the way the Settings app works in
portrait – you can force both view controllers to be visible at all times like this:

splitViewController.preferredDisplayMode =
UISplitViewControllerDisplayMode.AllVisible

How to pad a UITextView by setting its text container inset
Availability: iOS 7.0 or later.

You can force the text of any UITextView to have padding – i.e., to be indented from its
edges – by setting its textContainerInset property to a value of your choosing. For example,
to give a text view insets of 50 points from each edge, you would use this code:

textView.textContainerInset = UIEdgeInsets(top: 50, left: 50, bottom:
50, right: 50)

How to print using UIActivityViewController
Availability: iOS 6.0 or later.

Printing in iOS used to be done using UIPrintInteractionController, and, while that still
works, it has a much better replacement in the form of UIActivityViewController. This new
class is responsible for taking a wide variety of actions of which printing is just one, but users
can also tweet, post to Facebook, send by email, and any other action that has been
registered by another app.

www.hackingwithswift.com 1264

If you have a UIImage you want to print, you can just pass it in. If you want to print text, you
can wrap it inside an NSAttributedString with some formatting, then place that inside a
UISimpleTextPrintFormatter object, then print that – iOS automatically takes care of
pagination, margins and more.

Below are two example functions that print an image and some text to help get you started:

func shareImage(yourImage: UIImage) {

 let vc = UIActivityViewController(activityItems: [yourImage],
applicationActivities: [])

 presentViewController(vc, animated: true, completion: nil)

}

func shareText(text: String) {

 let attrs = [NSFontAttributeName: UIFont.systemFontOfSize(72),
NSForegroundColorAttributeName: UIColor.redColor()]

 let str = NSAttributedString(string: text, attributes: attrs)

 let print = UISimpleTextPrintFormatter(attributedText: str)

 let vc = UIActivityViewController(activityItems: [print],
applicationActivities: nil)

 presentViewController(vc, animated: true, completion: nil)

}

For more information see Hacking with Swift tutorial 3.

How to put a background picture behind
UITableViewController
Availability: iOS 3.2 or later.

You can put any type of UIView behind a table view, and iOS automatically resizes it to fit the
table. So, adding a background picture is just a matter of using a UIImageView like this:

www.hackingwithswift.com 1265

tableView.backgroundView = UIImageView(image: UIImage(named: "taylor-
swift"))

How to read a title from a UIPickerView using titleForRow
Availability: iOS 2.0 or later.

As soon as you start using UIPickerView for the first time, you realise it doesn't have a built-
in way to read the title of any of its items. The reason for this is obvious in retrospect, but
don't worry if you didn't get it at first: you should read the title straight from the picker's data
source.

You should already have conformed to the UIPickerViewDataSource and
UIPickerViewDelegate protocols, which means implementing the titleForRow picker view
method. If you want to read the title of the selected item later, you can do one of the
following:

 • Read straight from the array you used to populate the picker view. This is the most
common method, but of course it only works if the data is simple.
 • Write a new method named something like titleForPickerRow() that you can use in your
data source and to read the title later. This is preferred if it takes some work to calculate row
titles, but really it's better to cache this kind of thing if the work is non-trivial.
 • Use the same method call as the picker view: pickerView(_:titleForRow:forComponent:).
Yes, that just calls the method you implemented, but it's neat and self-describing so as long
as your data doesn't take time to calculate this is fine to use.

If you want to try the last option, here's some example code:

let title = pickerView(yourPickerView, titleForRow: 0, forComponent:
0)

How to recolor UIImages using template images and

www.hackingwithswift.com 1266

imageWithRenderingMode
Availability: iOS 7.0 or later.

Template images are the iOS 7.0 way of tinting any kind of image when it's inside a
UIImageView. This is usually used to mimic the tinting of button images (as seen in toolbars
and tab bars) but it works anywhere you want to dynamically recolor an image.

To get started, load an image then call imageWithRenderingMode() on it, like this:

if let myImage = UIImage(named: "myImage") {

 let tintableImage = myImage.imageWithRenderingMode(.AlwaysTemplate)

 imageView.image = tintableImage

}

The tint color of a UIImageView is the standard iOS 7 blue by default, but you can change it
easily enough:

imageView.tintColor = UIColor.redColor()

How to register a cell for UICollectionView reuse
Availability: iOS 6.0 or later.

If you're working entirely in code, you can register a UICollectionViewCell subclass for use
with your collection view, so that new cells are dequeued and re-use automatically by the
system.

Here's the most basic form of this technique:

collectionView.registerClass(UICollectionViewCell.self,
forCellWithReuseIdentifier: "Cell")

www.hackingwithswift.com 1267

That registers a basic collection view cell, which you can then customise in code if you want
to. You can then dequeue a cell with this:

func collectionView(collectionView: UICollectionView,
cellForItemAtIndexPath indexPath: NSIndexPath) ->
UICollectionViewCell {

 let cell =
collectionView.dequeueReusableCellWithReuseIdentifier("Cell",
forIndexPath: indexPath)

 return cell

}

If a cell doesn't already exist that can be re-used, a new one will be created automatically.

As you might imagine, you will most of the time want to create your own custom
UICollectionViewCell subclass and use that instead, but the code is the same – just use
your class name instead.

If you're working with Interface Builder, all this work is done for you by creating prototype
cells.

How to register a cell for UITableViewCell reuse
Availability: iOS 6.0 or later.

Reusing table view cells has been one of the most important performance optimizations in
iOS ever since iOS 2.0, but it was only with iOS 6.0 that the API got cleaned up a little with
the addition of two new methods on UITableView: registerClass() and registerNib().

Both of these method calls take a parameter forCellReuseIdentifier, which is a string that
lets you register different kinds of table view cells. For example, you might have a reuse
identifier "DefaultCell", another one called "Heading cell", another one "CellWithTextField",
and so on. Re-using different cells this way helps save system resources.

If you want to use registerClass(), you provide a table view cell class as its first parameter.

www.hackingwithswift.com 1268

This is useful if your cell is defined entirely in code. As an example, this uses the default
UITableViewCell class:

tableView.registerClass(UITableViewCell.self, forCellReuseIdentifier:
"DefaultCell")

You can then dequeue that cell like this:

func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {

 let cell =
tableView.dequeueReusableCellWithIdentifier("DefaultCell")!

 return cell

}

If there aren't any cells created that can be reused, iOS will automatically create them – this
API really is very easy.

The other option is to use registerNib(), which takes an Interface Builder nib file and loads
from there. Nibs contain the class name to use along with their design, so this method is
more common. Here's an example

tableView.registerNib(UINib(nibName: "yourNib", bundle: nil),
forCellReuseIdentifier: "CellFromNib")

Although knowing the above code is definitely useful, if you're using storyboards you will find
it easier to create prototype cells and give them a reuse identifier directly inside Interface
Builder.

For more information see Hacking with Swift tutorial 33.

www.hackingwithswift.com 1269

How to remove a UIView from its superview with
removeFromSuperview()
Availability: iOS 2.0 or later.

If you created a view dynamically and want it gone, it's a one-liner in Swift thanks to the
removeFromSuperview() method. When you call this, the view gets removed immediately
and possibly also destroyed – it will only be kept around if you have a reference to it
elsewhere. Here's how it's done:

yourView.removeFromSuperview()

How to remove cells from a UITableViww
Availability: iOS 2.0 or later.

It's easy to delete rows from a table view, but there is one catch: you need to remove it from
the data source first. If you don't do this, iOS will realize there's a mis-match between what
the data source thinks should be showing and what the table view is actually showing, and
you'll get a crash.

So, to remove a cell from a table view you first remove it from your data source, then you call
deleteRowsAtIndexPaths() on your table view, providing it with an array of index paths that
should be zapped. You can create index paths yourself, you just need a section and row
number.

Here's some example code to get you started:

objects.removeAtIndex(0)

let indexPath = NSIndexPath(forItem: 0, inSection: 0)

tableView.deleteRowsAtIndexPaths([indexPath],
withRowAnimation: .Fade)

www.hackingwithswift.com 1270

How to respond to the device being shaken
Availability: iOS 3.0 or later.

You can make any UIViewController subclass respond to the device being shaken by
overriding the motionBegan method. This is use to handle motion (shaking) but in theory
also remote control actions – although I can't say I've ever seen someone write code to
handle that!

This code will print a message every time the device is shaken:

override func motionBegan(motion: UIEventSubtype, withEvent event:
UIEvent?) {

 print("Device was shaken!")

}

For more information see Hacking with Swift tutorial 20.

How to scale, stretch, move and rotate UIViews using
CGAffineTransform
Availability: iOS 2.0 or later.

Every UIView subclass has a transform property that lets you manipulate its size, position
and rotation using something called an affine transform. This property is animatable, which
means yuo can make a view smoothly double in size, or make it spin around, just by
changing one value.

Here are some examples to get you started:

imageView.transform = CGAffineTransformMakeScale(2, 2)

imageView.transform = CGAffineTransformMakeTranslation(-256, -256)

imageView.transform = CGAffineTransformMakeRotation(CGFloat(M_PI))

www.hackingwithswift.com 1271

imageView.transform = CGAffineTransformMakeRotation(CGFloat(M_PI))

imageView.transform = CGAffineTransformIdentity

The first one makes an image view double in size, the second one makes it move up and left
256 points, the third one makes it spin around 180 degrees (the values are expressed in
radians), and the fourth one sets the image view's transform back to "identity" – this means
"reset."

For more information see Hacking with Swift tutorial 15.

How to send an email
Availability: iOS 3.0 or later.

In the MessageUI framework lies the MFMailComposeViewController class, which handles
sending emails from your app. You get to set the recipients, message title and message text,
but you don't get to send it – that's for the user to tap themselves.

Here's some example code:

func sendEmail() {

 if MFMailComposeViewController.canSendMail() {

 let mail = MFMailComposeViewController()

 mail.mailComposeDelegate = self

 mail.setToRecipients(["paul@hackingwithswift.com"])

 mail.setMessageBody("<p>You're so awesome!</p>", isHTML: true)

 presentViewController(mail, animated: true, completion: nil)

 } else {

 // show failure alert

 }

}

www.hackingwithswift.com 1272

func mailComposeController(controller: MFMailComposeViewController,
didFinishWithResult result: MFMailComposeResult, error: NSError?) {

 controller.dismissViewControllerAnimated(true, completion: nil)

}

Make sure you add import MessageUI to any Swift file that uses this code!

Note that not all users have their device configure to send emails, which is why we need to
check the result of canSendMail() before trying to send. Note also that you need to catch
the didFinishWithResult callback in order to dismiss the mail window.

Warning: this code frequently fails in the iOS Simulator. If you want to test it, try on a real
device.

How to set a custom title view in a UINavigationBar
Availability: iOS 2.0 or later.

Each view controller has a navigationItem property that dictates how it customizes the
navigation bar if it is viewed inside a navigation controller. This is where you add left and right
bar button items, for example, but also where you can set a title view: any UIView subclass
that is used in place of the title text in the navigation bar.

For example, if you wanted to show an image of your logo rather than just some text you
would use this:

navigationItem.titleView = UIImageView(image: UIImage(named: "logo"))

How to set prompt text in a navigation bar
Availability: iOS 2.0 or later.

You should already know that you can give a title to a navigation controller's bar by setting

www.hackingwithswift.com 1273

the title property of your view controllers or a view controller's navigationItem, but did you
also know that you can provide prompt text too? When provided, this causes your navigation
bar to double in height and show both the title and prompt.

It's easy to do:

navigationItem.title = "Your title text here"

navigationItem.prompt = "Your prompt text here"

Your prompt text appears above your title text, so choose carefully.

How to set the tabs in a UITabBarController
Availability: iOS 2.0 or later.

If you're creating your tab bar controller from scratch, or if you just want to change the set up
of your tabs at runtime, you can do so just by setting the viewControllers property of your
tab bar controller. This expects to be given an array of view controllers in the order you want
them displayed, and you should already have configured each view controller to have its own
UITabBarItem with a title and icon.

If your tab bar controller is the root view controller of your window, you should be able to
write something like this:

if let tabBarController = window?.rootViewController as?
UITabBarController {

 let first = FirstViewController()

 let second = SecondViewController()

 tabBarController.viewControllers = [first, second]

}

www.hackingwithswift.com 1274

For more information see Hacking with Swift tutorial 7.

How to set the tint color of a UIView
Availability: iOS 7.0 or later.

The tintColor property of any UIView subclass lets you change the coloring effect applied to
it. The exact effect depends on what control you're changing: for navigation bars and tab
bars this means the text and icons on their buttons, for text views it means the selection
cursor and highlighted text, for progress bars it's the track color, and so on.

tintColor can be set for any individual view to color just one view, for the whole view in your
view controller to color all its subviews, or even for the whole window in your application so
that all views and subviews are tinted at once.

To tint just the current view controller, use this code:

override func viewDidLoad() {

 view.tintColor = UIColor.redColor()

}

If you want to tint all views in your app, put this in your AppDelegate.swift:

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?)
-> Bool {

 // Override point for customization after application launch.

 window?.tintColor = UIColor.redColor()

 return true

}

www.hackingwithswift.com 1275

How to share content with UIActivityViewController
Availability: iOS 6 or later.

Before iOS 6.0 was released there were a number of third-party libraries that tried to simplify
the sharing of content, but even with those libraries in place it was still far too hard.
Fortunately, Apple added UIActivityViewController, a class that makes sharing to any
service as simple as telling it what kind of content you have.

The nice thing about UIActivityViewController is that it automatically takes advantage of the
apps the user has installed. If they have configured Twitter, they can post tweets; if they have
configured Facebook, they can post to their timline; if they have a printer configured, they
can print your images; and more. It takes no extra work from you: you just tell iOS what kind
of content you want to share, and it does the rest.

Here's how you share an image:

if let image = UIImage(named: "myImage") {

 let vc = UIActivityViewController(activityItems: [image],
applicationActivities: [])

 presentViewController(vc, animated: true, completion: nil)

}

And here's an example of sharing a text and an image:

let shareText = "Hello, world!"

if let image = UIImage(named: "myImage") {

 let vc = UIActivityViewController(activityItems: [shareText,
image], applicationActivities: [])

 presentViewController(vc, animated: true, completion: nil)

}

www.hackingwithswift.com 1276

If you want to share a URL to a website, make sure you wrap it up in an NSURL first.

For more information see Hacking with Swift tutorial 3.

How to share content with the Social framework and
SLComposeViewController
Availability: iOS 6.0 or later.

The UIActivityViewController class is the iOS way of sharing almost anything to almost
anywhere, but what if you don't want to let users choose? Well, iOS has a tool for that too,
and it's called the Social framework. Start by importing that now:

import Social

You can now create and present a SLComposeViewController that allows the user to share
to Facebook like this:

let vc = SLComposeViewController(forServiceType:
SLServiceTypeFacebook)

vc.setInitialText("Look at this great picture!")

vc.addImage(UIImage(named: "myImage.jpg")!)

vc.addURL(NSURL(string: "https://www.hackingwithswift.com"))

presentViewController(vc, animated: true, completion: nil)

That attaches initial text, an image and a URL all to that share sheet, although the user can
customize the text before posting. If you want to use Twitter instead, try this:

let vc = SLComposeViewController(forServiceType:
SLServiceTypeTwitter)

www.hackingwithswift.com 1277

For more information see Hacking with Swift tutorial 3.

How to show and hide a toolbar inside a
UINavigationController
Availability: iOS 3.0 or later.

All navigation controllers have a toolbar built right in, but it's not showing by default. And
even if it were showing, it doesn't have any items by default – that's down to you fill in.

To get started, give a view controller some toolbar items by setting its toolbarItems property
like this:

let add = UIBarButtonItem(barButtonSystemItem: .Add, target: self,
action: "addTapped")

let spacer = UIBarButtonItem(barButtonSystemItem: .FlexibleSpace,
target: self, action: nil)

toolbarItems = [add, spacer]

You can now tell the navigation controller to show its toolbar like this:

navigationController?.setToolbarHidden(false, animated: false)

If you animate between two view controllers with different toolbar items, iOS automatically
animates their change.

For more information see Hacking with Swift tutorial 4.

How to stop Auto Layout and autoresizing masks conflicting:
translatesAutoresizingMaskIntoConstraints

www.hackingwithswift.com 1278

Availability: iOS 7.0 or later.

If you create any views in code – text views, buttons, labels, etc – you need to be careful how
you add Auto Layout constraints to them. The reason for this is that iOS creates constraints
for you that match the new view's size and position, and if you try to add your own
constraints these will conflict and your app will break.

There are two solutions. First, don't add Auto Layout constraints to views created in code.
Sound like a bad idea? That's because it is: like it or lump it, Auto Layout is something you
want on your side. So, that leaves option two: tell iOS not to create Auto Layout constraints
automatically, and that's done with this line of code:

yourView.translatesAutoresizingMaskIntoConstraints = false

For more information see Hacking with Swift tutorial 6.

How to stop empty row separators appearing in UITableView
Availability: iOS 2.0 or later.

Table views show separators between empty rows by default, which looks quite strange
when you have only a handful of visible rows. Fortunately, one simple line of code is all it
takes to force iOS not to draw these separators, and it's this:

tableView.tableFooterView = UIView()

What's actually happening is that you're creating an empty UIView and making it act as the
footer of the table – this is the bottom most thing visible in the table. When iOS reaches the
bottom of the cells you provide, it draws this view at the end rather than drawing empty rows
and their separators, so it totally clears up the problem.

How to stop users selecting text in a UIWebView or

www.hackingwithswift.com 1279

WKWebView
Availability: iOS 2.0 or later.

Using a webview to show rich media easily is a common thing to do, but by default users
can select the text and that makes it look a little less like native code. To fix this, add the
following CSS to the HTML you load, and users won't be able to select anything again:

<style type="text/css">

* {

 -webkit-touch-callout: none;

 -webkit-user-select: none;

}

</style>

How to stop your view going under the navigation bar using
edgesForExtendedLayout
Availability: iOS 7.0 or later.

As of iOS 7.0, all views automatically go behind navigation bars, toolbars and tab bars to
provide what Apple calls "context" – having some idea of what's underneath the UI (albeit
blurred out with a frosted glass effect) gives users an idea of what else is just off screen.

If this is getting in your way (and honestly it does get in the way surprisingly often) you can
easily disable it for a given view controller by modifying its edgesForExtendedLayout
property.

For example, if you don't want a view controller to go behind any bars, use this:

edgesForExtendedLayout = .None

www.hackingwithswift.com 1280

How to style the font in a UINavigationBar's title
Availability: iOS 6.0 or later.

If you're setting title's in a navigation bar, you can customise the font, size and color of those
titles by adjusting the titleTextAttributes attribute for your navigation bar. To do this on a
single bar just set it directly whenever you want to; to change all bars, set it inside your app
delegate using the appearance proxy for UINavigationBar so that it kicks in before the first
bar is loaded.

Here's an example that makes title text be 24-point Georgia Bold in red:

let attrs = [

 NSForegroundColorAttributeName : UIColor.redColor(),

 NSFontAttributeName : UIFont(name: "Georgia-Bold", size: 24)!

]

UINavigationBar.appearance().titleTextAttributes = attrs

How to support pinch to zoom in a UIScrollView
Availability: iOS 2.0 or later.

Making a scroll view zoom when you pinch is a multi-step approach, and you need to do all
the steps in order for things to work correctly.

First, make sure your scroll view has a maximum zoom scale larger than the default of 1.0.
You can change this in Interface Builder if you want, or use the maximumZoomScale
property in code.

Second, make your view controller the delegate of your scroll view. Again, you can do this in
Interface Builder by Ctrl-dragging from the scroll view to your view controller.

Third, make your view controller conform to the UIScrollViewDelegate protocol, then add
the viewForZoomingInScrollView() method, like this:

www.hackingwithswift.com 1281

func viewForZoomingInScrollView(scrollView: UIScrollView) -> UIView?
{

 return someView

}

That's it for code, but make sure you create your layouts consistently – whether you use Auto
Layout or not, you need to be careful to follow Apple's instructions.

How to swipe to delete UITableViewCells
Availability: iOS 2.0 or later.

It takes just one method to enable swipe to delete in table views:
tableView(_:commitEditingStyle:forRowAtIndexPath:). This method gets called when a
user tries to delete one of your table rows using swipe to delete, but its very presence is what
enables swipe to delete in the first place – that is, iOS literally checks to see whether the
method exists, and, if it does, enables swipe to delete.

When you want to handle deleting, you have to do three things: first, check that it's a delete
that's happening and not an insert (this is down to how you use the UI); second, delete the
item from the data source you used to build the table; and third, call
deleteRowsAtIndexPaths() on your table view.

It is crucial that you do those things in exactly that order. iOS checks the number of rows
before and after a delete operation, and expects them to add up correctly following the
change.

Here's an example that does everything correctly:

override func tableView(tableView: UITableView, commitEditingStyle
editingStyle: UITableViewCellEditingStyle, forRowAtIndexPath
indexPath: NSIndexPath) {

 if editingStyle == .Delete {

 objects.removeAtIndex(indexPath.row)

www.hackingwithswift.com 1282

 objects.removeAtIndex(indexPath.row)

 tableView.deleteRowsAtIndexPaths([indexPath],
withRowAnimation: .Fade)

 } else if editingStyle == .Insert {

 // Create a new instance of the appropriate class, insert it
into the array, and add a new row to the table view.

 }

}

How to use Dynamic Type to resize your app's text
Availability: iOS 7.0 or later.

As of iOS 7.0 users can set a system-wide preferred font size for all apps, but many
programmers ignore this setting much to user's annoyance. You're not one of those
developers, are you? Of course not! So here's how to honor a user's font settings using
UIFont:

let headlineFont =
UIFont.preferredFontForTextStyle(UIFontTextStyleHeadline)

let subheadFont =
UIFont.preferredFontForTextStyle(UIFontTextStyleSubheadline)

And that's it! This technology is called Dynamic Type, and it's powerful because that code
will return correctly sized fonts for the user's preference, which means your app's text will
shrink or grow as needed.

Note that it is technically possible for users to change their Dynamic Type setting while your
app is running. If you want to cover this corner case, use NSNotificationCenter to subscribe
to the UIContentSizeCategoryDidChangeNotification notification then refresh your user
interface if you receive it.

For more information see Hacking with Swift tutorial 32.

www.hackingwithswift.com 1283

How to use IBInspectable to adjust values in Interface Builder
Availability: iOS 8.0 or later.

The @IBInspectable keyword lets you specify that some parts of a custom UIView subclass
should be configurable inside Interface Builder. Only some kinds of values are supported
(booleans, numbers, strings, points, rects, colors and images) but that ought to be enough
for most purposes.

When your app is run, the values that were set in Interface Builder are automatically set, just
like any other IB value. Neat, huh?

Here's an example that creates a GradientView class. This wraps the CAGradientLayer
class up in a UIView that you can place anywhere in your app. Even better, thanks to
@IBInspectable you can customize the colors in your gradient right inside IB. Add this class
to your project now:

@IBDesignable class GradientView: UIView {

 @IBInspectable var startColor: UIColor = UIColor.whiteColor()

 @IBInspectable var endColor: UIColor = UIColor.whiteColor()

 override class func layerClass() -> AnyClass {

 return CAGradientLayer.self

 }

 override func layoutSubviews() {

 (layer as! CAGradientLayer).colors = [startColor.CGColor,
endColor.CGColor]

 }

}

Now go to IB, drop a UIView on to your storyboard, then change its class to be
GradientView. Once that's done, Xcode will compile your project automatically, and then
inside the attributes inspector you'll see two color selectors for the start and end color.

www.hackingwithswift.com 1284

Note: @IBInspectable frequently does not play nicely with type inference, which is why I've
explicitly declared both the type (UIColor) and default value (UIColor.whiteColor()).

How to use SFSafariViewController to show web pages in
your app
Availability: iOS 9.0 or later.

If a user clicks a web link in your app, you used to have two options before iOS 9.0 came
along: exit your app and launch the web page in Safari, or bring up a new web view
controller that you've designed, along with various user interface controls. Exiting your app is
rarely what users want, so unsurprisingly lots of app ended up creating mini-Safari
experiences to browse inside their app.

As of iOS 9.0, Apple allows you to embed Safari right into your app, which means you get its
great user interface, you get its access to stored user data, and you even get Reader Mode
right out of the box. To get started, import the SafariServices framework into your view
controller, like this:

import SafariServices

Now make your view controller conform to the SFSafariViewControllerDelegate protocol,
like this:

class ViewController: UIViewController,
SFSafariViewControllerDelegate {

Now for the main piece of code, although I think you'll agree it's easy:

let urlString = "https://www.hackingwithswift.com"

if let url = NSURL(string: urlString) {

www.hackingwithswift.com 1285

if let url = NSURL(string: urlString) {

 let vc = SFSafariViewController(URL: url, entersReaderIfAvailable:
true)

 vc.delegate = self

 presentViewController(vc, animated: true, completion: nil)

}

That's all it takes to launch Safari inside your app now – cool, huh? We need to assign
ourselves as the delegate of the Safari view controller because when the user taps "Done"
inside Safari we need to dismiss it. Make sure you add this method to your view controller:

func safariViewControllerDidFinish(controller:
SFSafariViewController) {

 dismissViewControllerAnimated(true, completion: nil)

}

For more information see Hacking with Swift tutorial 32.

How to use light text color in the status bar
Availability: iOS 7.0 or later.

As of iOS 7.0, all view controllers set their own status bar style by default, which means they
can have black text or white text depending on what looks best for your view controller. If
you want to have light text in the status bar, add this code to your view controller:

override func preferredStatusBarStyle() -> UIStatusBarStyle {

 return .LightContent

}

www.hackingwithswift.com 1286

If you want to change the status bar color dynamically, you should call
setNeedsStatusBarAppearanceUpdate() on your view controller, which will force
preferredStatusBarStyle() to be called again. Pro tip: you can put
setNeedsStatusBarAppearanceUpdate inside an animation block to have the change
animate.

What are size classes?
Availability: iOS 8.0 or later.

Size Classes are the iOS method of creating adaptable layouts that look great on all sizes
and orientations of iPhone and iPad. For example, you might want to say that your UI looks
mostly the same in portrait and landscape, but on landscape some extra information is
visible. You could do this in code by checking for a change in the size of your view controller
and trying to figure out what it means, but that's a huge waste of time – particularly now that
iPad has multiple different sizes thanks to multitasking in iOS 9.

With Size Classes, you don't think about orientation or even device size. You care about
whether you are running in a compact size or regular size, and iOS takes care of mapping
that to various device sizes and orientations. iOS will also tell you when your size class
changes so you can update your UI.

For example, an iPad app running full screen in portrait has regular horizontal and vertical
size classes. In landscape, it also has regular horizontal and vertical size classes. If your app
is used in iOS 9 multitasking, then its size class can be one of the following:

 • If the apps are running with an even split in landscape, both have compact horizontal and
regular vertical size classes.
 • If the apps are running with an uneven split in landscape, the primary app has a regular
horizontal class and the second has a compact horizontal size class. Both apps have regular
vertical classes.
 • If the apps are running with an uneven split in portrait, both apps have compact horizontal
size classes and regular vertical size classes.

Size Classes can be implemented in code if you want, but it's much easier to use Interface
Builder. The key is to change only the bits you have to – try to share as much of your user
interface as possible!

www.hackingwithswift.com 1287

For more information see Hacking with Swift tutorial 31.

What are the different UIStackView distribution types?
Availability: iOS 9.0 or later.

One of the most compelling reasons to upgrade to iOS 9.0 is the new UIStackView class it
introduced, which offers a simplified way of doing layouts in iOS. To give you more control
over how it arranges their subviews, stack views offer five different distribution types for you
to try, and here's what they do:

 • Fill makes one subview take up most of the space, while the others remain at their natural
size. It decides which view to stretch by examining the content hugging priority for each of
the subviews.
 • Fill Equally adjusts each subview so that it takes up equal amount of space in the stack
view. All space will be used up.
 • Fill Proportionally is the most interesting, because it ensures subviews remain the same
size relative to each other, but still stretches them to fit the available space. For example, if
one view is 100 across and another is 200, and the stack view decides to stretch them to
take up more space, the first view might stretch to 150 and the other to 300 – both going up
by 50%.
 • Equal Spacing adjusts the spacing between subviews without resizing the subviews
themselves.
 • Equal Centering attempts to ensure the centers of each subview are equally spaced,
irrespective of how far the edge of each subview is positioned.

For more information see Hacking with Swift tutorial 31.

What is content compression resistance?
Availability: iOS 9.0 or later.

When Auto Layout has determined there isn't enough space to accomodate all your views at
their natural size, it has to make a decision: one or more of those views needs to be
squashed to make space for the others, but which one? That's where content compression
resistance comes in: it's a value from 1 to 1000 that determines how happy you are for the
view to be squashed if needed.

www.hackingwithswift.com 1288

If you set a view's content compression resistance to be 1, it will be first in line to be
squashed. If you set it to be 1000, it won't ever be squashed. The value is 750 by default,
which means "I'd really prefer this not be squashed", but you might find you need to set it to
be 751 or 749 on occasion, which means "I'd still really prefer this not to be squashed, but if
there's no other choice…"

locationInView(): How to find a touch's location in a view
Availability: iOS 2.0 or later.

When the user starts touching an iOS screen, touchesBegan() is immediately called with a
set of UITouches. If you want to find where the user touched, you need to take one of those
touches then use locationInView() on it, like this:

override func touchesBegan(touches: Set<UITouch>, withEvent event:
UIEvent?) {

 if let touch = touches.first {

 let position = touch.locationInView(view)

 print(position)

 }

}

That will make position a CGPoint representing where the user touched in the current view.
You can if you want pass a different view to locationInView(), and it will tell you where the
touch was relative to that other view instead.

stringByEvaluatingJavaScriptFromString(): How to run
JavaScript on a UIWebView
Availability: iOS 2.0 or later.

You can run custom JavaScript on a UIWebView using the method
stringByEvaluatingJavaScriptFromString(). The method returns an optional string, which

www.hackingwithswift.com 1289

means if the code returns a value you'll get it back otherwise you'll get back nil.

Here's an example that pulls out the current page's title:

let pageTitle =
webView.stringByEvaluatingJavaScriptFromString("document.title")

Note: if you're using a WKWebView you can use its title property directly to get the same
thing.

WKWebView
How to enable back and forward swiping gestures in
WKWebView
Availability: iOS 8.0 or later.

One of the many advantages of WKWebView over UIWebView is its ability to draw on some
of the native user interface of Safari. It's a long way from the SFSafariViewController that
was introduced in iOS 9.0, but you can enable the built-in gestures that let users go back
and forward by swiping left and right.

Here's the code:

webView.allowsBackForwardNavigationGestures = true

For more information see Hacking with Swift tutorial 4.

How to monitor WKWebView page load progress using key-

www.hackingwithswift.com 1290

value observing
Availability: iOS 8.0 or later.

iOS often uses a delegate system to report important changes, such as when a table view
cell has been tapped or when a web page has finished loading. But the delegate system only
goes so far, and if you want fine-grained detailed information sometimes you need to turn to
KVO, or "key-value observing."

In the case of seeing how much of a page has loaded in WKWebView, KVO is exactly what
you need: each web view has a property called estimatedProgress, and you can be asked
to be notified when that value has changed.

First, create a progress view that will be used to show the loading progress:

progressView = UIProgressView(progressViewStyle: .Default)

progressView.sizeToFit()

You can place that anywhere you like. Now add the current view controller as an observer of
the estimatedProgress property of your WKWebView, like this:

webView.addObserver(self, forKeyPath: "estimatedProgress",
options: .New, context: nil)

The .New in that line of code means "when the value changes, tell me the new value."

Finally, implement the observeValueForKeyPath() method in your view controller, updating
the progress view with the estimated progress from the web view, like this:

override func observeValueForKeyPath(keyPath: String, ofObject
object: AnyObject, change: [NSObject: AnyObject], context:
UnsafeMutablePointer<Void>) {

 if keyPath == "estimatedProgress" {

 progressView.progress = Float(webView.estimatedProgress)

 }

www.hackingwithswift.com 1291

 }

}

For more information see Hacking with Swift tutorial 4.

What's the difference between UIWebView and WKWebView?
Availability: iOS 8.0 or later.

The UIWebView class has been around since iOS 2.0 as a way to show HTML content inside
your app, but iOS 8.0 introduced WKWebView as an alternative - what's the difference?

Well, there are several differences, but two are particularly important. First, UIWebView is
part of UIKit, and thus is available to your apps as standard. You don't need to import
anything – it's just there. This also means it's available inside Interface Builder, so you can
drag and drop web view into your designs.

Second, WKWebView is run in a separate process to your app so that it can draw on native
Safari JavaScript optimizations. This means WKWebView loads web pages faster and more
efficiently than UIWebView, and also doesn't have as much memory overhead for you.

In iOS 8.0 WKWebView was unable to load local files, but this got fixed in iOS 9.0. The main
reason to use UIWebView nowadays is for access to older features such as "Scale pages to
fit" - this is not available in WKWebView.

For more information see Hacking with Swift tutorial 4.

evaluateJavaScript(): How to run JavaScript on a
WKWebView
Availability: iOS 8.0 or later.

Using evaluateJavaScript() you can run any JavaScript in a WKWebView and read the
result in Swift. This can be any JavaScript you want, which effectively means you can dig
right into a page and pull out any kind of information you want.

www.hackingwithswift.com 1292

Here's an example to get you started:

webView.evaluateJavaScript("document.getElementById('someElement').in
nerText") { (result, error) in

 if error != nil {

 print(result)

 }

}

For more information see Hacking with Swift tutorial 4.

Xcode
How to create exception breakpoints in Xcode
Availability: iOS 7.0 or later.

Exception breakpoints are a powerful debugging tool that remarkably few people know
about, so please read the following carefully and put it into practice!

A regular breakpoint is on a line you specify, and causes the debugger to pause execution at
that point so you can evaluate your program's state. An exception breakpoint tells the
debugger to pause whenever a problem is encountered anywhere in your program, so you
can evaluate your program's state before it crashes.

Exception breakpoints are trivial to set up: go to the Breakpoint Navigation (Cmd+7), then
click the + button in the bottom left and choose Add Exception Breakpoint. You can leave it
there if you want to, but it's preferable to make one further change to reduce unnecessary
messages: right-click on your new breakpoint, choose Edit Breakpoint, then change the
Exception value from "All" to "Objective-C".

www.hackingwithswift.com 1293

For more information see Hacking with Swift tutorial 18.

How to debug view layouts in Xcode
Availability: iOS 8.0 or later.

View debugging lets you visualize exactly how your app is drawing to the screen by
exploding your UI into 3D. So, if you're sure you added a button but you just can't see it,
view debugging is for you: you can spin your interface around inside Xcode, and you'll
probably find your button lurking behind another view because of a bug.

To activate view debugging, first you need to be using iOS 8.0, either on a device or the
simulator. Run your app, and browse to the view controller you want to inspect. Now go to
Xcode and look just below the main text editor, where the row of debugging buttons live: you
want to click the button that has three rectangles in, just to the left of the location arrow.

When you use view debugging your app is paused, so make sure and tell Xcode to continue
execution when you're done by pressing Cmd+Ctrl+Y.

For more information see Hacking with Swift tutorial 18.

How to load assets from Xcode asset catalogs
Availability: iOS 7 or later.

Xcode asset catalogs are a smart and efficient way to bring together your artwork in a single
place. But they are also optimized for performance: when your app is built, your assets
converted to an optimized binary format for faster loading, so they are recommended for all
kinds of apps unless you have a specific reason to avoid them. (Note: SpriteKit games
should texture atlases if possible.

If you don't already have an asset catalog in your project, you can create one by right-click
on your project and choosing New File. From "iOS" choose "Resource" then Asset Catalog,
then click Next and name your catalog. You can now select your new asset catalog in Xcode,
and drag pictures directly into it.

Images stored inside asset catalog all retain their original filename, minus the path extension

www.hackingwithswift.com 1294

part. For example, "taylor-swift.png" will just appear as "taylor-swift" inside your asset
catalog, and that's how you should refer to it while loading too.

Asset catalogs automatically keep track of Retina and Retina HD images, but it's
recommended that you name your images smartly to help make the process more smooth:
taylor-swift.png, taylor-swift@2x.png and taylor-swift@3x.png are the best way to name your
files for standard, Retina and Retina HD resolutions respectively.

For more information see Hacking with Swift tutorial 2.

www.hackingwithswift.com 1295

